通辽地区浅层地下水化学特征演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地下水开采,通辽市城区附近浅层地下水中出现TDS和总硬度超标现象,威胁到了当地生产及生活用水安全。因此,本文以“西辽河平原地下水资源及其环境问题调查评价”项目为支撑,综合应用水文地质学、水文地球化学、水文地球化学模拟的理论与方法,对通辽市城区附近浅层地下水化学成分的时空演变规律进行了深入的研究。
     研究区第四系浅层含水层(80m以上)主要岩性为中细砂、细砂、粉砂和泥质细砂组成。地下水以大气降水和侧向径流补给为主,水质总体较好,多数为良好级别以上的水,水化学类型以HCO_3-Ca、HCO_3-Ca·Mg为主,部分为较差级别水,市区附近出现HCO_3·SO_4-Ca·Mg、HCO_3-Ca·Na及HCO_3-Na·Ca型水。TDS均小于lg/L,大部分地区浅层地下水为微硬水。通辽市城区降落漏斗中心附近,TDS含量较高,最高为962.99mg/L,这里出现了一些极硬水。水化学演化分析结果表明TDS和总硬度总体上呈增加趋势,在通辽市城区东部增加最快。到2003年,TDS增加了662.99mg/L,硬水分布面积达1427.8km2,极硬水超过100km2。
     沿地下水流向,文石、方解石和白云石的饱和指数从小于0到大于0呈递增的变化趋势,由不饱和逐渐变为饱和。水文地球化学模拟显示地下水径流过程中发生了方解石、白云石、文石、盐岩、石膏和二氧化碳的溶解,以及钙离子的吸附和钠离子解析,使得浅层地下水的TDS和总硬度增加。
     影响和决定研究区浅层地下水化学成分形成及演化规律的因素主要包括水—岩相互作用和人类活动因素的影响。①溶解沉淀作用、阳离子交换吸附作用、蒸发浓缩作用共同决定了研究区浅层地下水化学成分的形成特征;②地下水超量开采,水位持续下降,改变了地下水运动的流场,原饱水带变为包气带,还原环境转化为氧化环境,同时增加了大气降水等垂直入渗补给途径,加大了对Ca2+、Mg~2+、Na~、Cl等离子的淋滤过程,直接影响了浅层地下水TDS和总硬度的含量;③农业灌溉的不正确施肥、在城镇周围生活垃圾及工业废渣的随意堆放及渗井、渗坑的存在等人为污染直接导致浅层地下水受到严重污染。
With the development of groundwater, The TDS and total hardness of the shallow groundwater exceed the standard near Tongliao City, which threats the safety of domestic and industrial water usage. Therefore, supported by the project of "Assessment of groundwater resource and its environmental problems in Xiliao River Plain", this dissertation focused on the in depth study on the spatial-temporal evolution of shallow groundwater chemical characteristics in Tongliao City, which integrated the theories and methodologies of hydrogeology, hydro-geochemistry, and hydrogeochemical simulation.
     The study area focus on the Quaternary shallow groundwater aquifer (with thickness of more than 80m), which mainly consists of medium-find sand, fine sand, silty sand, and shaly fine sand. Precipitation and lateral flow are the main recharge of the groundwater. In general, the groundwater quality was relatively good, most of which can be classified into the standard of good or better. The major hydrochemical type of groundwater is HCO_3-Ca and HCO_3-Ca·Mg. Groundwater with relatively poor quality existed in some parts. Close to the city, groundwater exhibited the hydrochemical type of HCO_3·SO_4-Ca'Mg, HCO_3-Ca·Na and HCO_3-Na·Ca. Overall, TDS was less than lg/L and most part of the region possessed the relative hard water. Near the depression cone in the Tongliao City, TDS was higher, which ranged up to 962.99mg/L, with extremely hard water occurred. Based on the analysis of evolution of groundwater chemicals, TDS and Hardness tended to increase, which increased greatly in the suburbs in Tongliao City. By 2003, TDS increased 662.99mg/L, the area covered by hard water reached to 1427.8 km~2, while the extremely hard water covered an area of over 100 km~2.
     Along the flow direction, saturation index of aragonite, calcite and dolomite increased from less than zero to larger than zero, which means they changed from unsaturation to saturation gradually. The hydrogeochemical simulation indicated that the increase in TDS and total hardness resulted from the dissolving of aragonite, calcite, dolomite, halite, gypsum and C02(g) dissolved into shallow groundwater, which caused TDS and hardness increasing, as well as the adsorption of calcium ion and dissociative of sodium ion during the groundwater flow process..
     The major factors that affected the formation and evolution of shallow groundwater chemical characteristics are water-rock interaction and human activities.①the formation of shallow groundwater chemical characteristics depended on the processes of dissolution-precipitation, cation exchange and absorption, as well as evaporation and concentration;②over-development of groundwater and decreasing of groundwater table changed the flow path of groundwater, so that the saturated zone became vadose zone, and the reduction environment changed to oxidation. In addition, vertical recharge increased such as precipitation, which enhanced the eluviations of ions such as Ca~(2+), Mg~(2+), Na~+and C1, resulting directly in the TDS and total hardness of groundwater.③Human activities such as incorrect fertilization in agricultural irrigation, randomly stacking of domestic wastes and industrial wastes around the city, and the existing of leakage wells and pits directly and severely polluted the groundwater.
引文
A. P. Belousova. etc. Evolution of goundwater chemical composition under human activity in an oilfield[J]. Environmental Geology. Volume 38, Numberl/June 22,1999,34-46.
    A. Vandenbohede, L. Lebbe. Numerical modeling and hydrochemical characterization of a fresh-water lens in the Belgian coastal plain[J]. Hydrogeology Journal. Volume 10, Number 5/October 2002:S76-S86.
    Alan E. Fryanetc. Groundwater recharge and chemical evolution in the southern High Plains of Texas[J]. USA. Hydrogeology Journal. Volume9, Number6/December,2001:522-542.
    Deutsch W J. Groundwater Geochemistry-Fundamentals and Application to Contamination[M]. CRC Press,1997.
    Edmunds W. E., Carrillo-Rivera J. J., Cardona A. Geochemical evolution of groundwater beneath Mexico City[J]. Journal of Hydrology,2002,258:1-24.
    Frengstad B, Skrede A K M, Banks D, et al., The chemistry of Norwegian groundwaters:III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analyzed by ICP-MS techniques[J]. The Science of the Total Environment,2000(246):21~40.
    Garrels R M, Mackenzie F T. Origin of the chemical com2positions of some springs and lakes [A]. In:Gould R F, ed. Equilibrium Concepts in Natural Water Systems [C].Advances in Chemistry,1967,67:222-242.
    Garrels R M, Thompson M E. A chemical model for seawater at 25℃ and one atmospheric total pressure [J]. Amer Jour Sci,1962,260:57-66.
    Ian Clark, Peter Fritz. Environmental Isotopes in Hydrogeology[M]. Springer,1997.
    J Stimson, et al. Isotopic and geochemical evidence of regional-scale anisotrop y and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia[J]. Applied Geochemistry.2001(16):1097-1114.
    Jardine P M, Taylor D L. Kinetics and mechanisms of Co(II)EDTA oxidation by pyrolusite [J]. Geochim. Cosmochim. Acta,1995,59(20):4193~4203.
    Jong-Sik Ryu, Kwang-Sik Lee, Ho-Wan Chang. Hydrogeochemical and isotopic investigations of the Han River basin, South Korea[J], Journal of Hydrology,2007(345):50-60.
    Kehew, A E. Applied chemical hydrogeology[M]. Prentice hall,2001.
    Parkhurst D L., Thorstenson D C., Plummer. L N.. PHREEQE-A computer program for geochemical calculations [R].U. S. Geological Survey Water-Resources investigations Report 80-96,1980(Revised and reprinted,1990)
    R. Favara. etc. Hydrochemical evolution and environmental features of Salso River catchment, central Sicily (Italy)[J]. Environmental Geology. Volume 39, Number 11/October 13,2000:1205-1215
    R. Stephen Fisher. Hydrochemical evolution of soldium-Sulfate and Soldium-Chloride groundwater Beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA[J]. Hydrogeology Journal Volum 31, Numbers 2/February,1997,221-230.
    Regina N. Tempel, Lisa A. Shevenell, paul lechler, jonathan price. Geochemical modeling approach to predicting arsenic concentrations in a mine pit lake[J]. Applied geochemistry,2000,15:475-4921.
    Saiers J E, Guha H, Jardine P, Brooks S. Development and evaluation of a mathematical model for the transport and oxidation reduction of CoEDTA[J]. Water Resour. Res., 2000,36(11):3151-3165.
    Werner Stumm, James J. Morgan. Aquatic chemistry:Chemical Equilibria and Rates in Natural Waters[M]. New York, Wiley interscience,3rd edition,1996.
    XueYuqun, XiaChunboog, Wu Jichun. Athree-dimensinonal miscible transport model or seawater intrusion in China[J]. Water Resomees Rearch,1995,31(4):903-912.
    Yousif, K. Kharaka.水-岩相互作用国际学术会议三十年[J].地质科技学报.2005,3:111~112
    毕二平,母海东,陈宗宇,等.人类活动对河北平原地下水水质演化的影响[J].地球学报,2001,22(4):365~368.
    曹玉清,王古兴,陈鸿雁.白城地区开采含水层水的化学成分及其形成问题的探讨.水文地球化学理论与方法的研究[M].北京:地质出版社.1981年第1版,42-49.
    陈永金,陈亚宁,李卫红,等,塔里木河下游地下水化学特征对生态输水的响应[J].地理学报,2005,60(2):309~318.
    丁宏伟,张举.河西走廊地下水水化学特征及其演化规律[J],干旱区研究,2005,22(1):24~28.
    段磊,王文科,曹玉清,等.天山北麓中段地下水水化学特征及其形成作用[J].干旱区资源与环境,2007,21(9):29~34.
    郭永海,沈照理,钟佐燊,等.从地面沉降论河北平原深层地下水资源属性及合理评价[J].地球科学,中国地质大学学报,1995,20(4):415~420.
    郭永海,沈照理,钟佐燊.河北平原地下水化学环境演化的地球化学模拟[J].中国科学,1997,27(4):360~365.
    郭永海、王驹、吕穿河,等.高放废物处置甘肃北山野马泉顶选区地下水化学特征及水—岩作用模拟[J].地学前缘,2003,12(特刊):117~122.
    郭占荣,聂振龙,焦鹏程,等.三屯河流域平原区地下水化学组成特征及变化[J].勘察科学技术,2002,3:34~38.
    韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟(D).武汉:中国地质大学傅士学位论文,2007.
    胡安焱,惠潇.干旱区灌溉条件下土壤水分动态类型及其应用—以新疆昌吉地下水均衡场为例[J].地下水,2001,23(2):69~70.
    姜凌.干旱区绿洲地下水化学成分形成及演化机制研究—以阿拉善腰坝绿洲为例[D],长安大学博士学位论文,2009.
    李福林,陈学群,张奇,等.莱州湾东岸海底地下水的水文地球化学特征及其地球化学演化模式[J].海洋科学进展,2005,23(2):190~196.
    李向全,侯新伟,周志超,等.太原盆地地下水系统水化学特征及形成演化机制[J].现代地质,2009,23(1):1-8.
    李义连,王焰新,周来茹,等.地下水矿物饱和度的水文地球化学模拟分析——以娘子关泉域岩溶水为例[J].地质科技情报,2002,21(1):33~36.
    李志,于孟文,张丽玲,等.西辽河平原地下水资源及其环境问题调查评价[M].北京:地质出版社,2009.
    刘爱菊,郭平战,王勋文.朝邑滩地下水水化学分带性及其形成机制之探讨[J].地下水,1997,19(2):56~58.
    刘昌明,陈志恺.中国水资源现状评价和供需发展趋势[M].北京:中国水利水电出版社,2001.
    刘丹,杨立中,李晓.秦岭隧道地下水水化学异常的形成机理.矿物岩石,2000,20(4):75~80.
    马振民,刘立才,陈鸿汉,等.山东泰安岩溶水系统地下水化学环境演化[J].现代地质.2002(4):424~429.
    钱会,马致远.水文地球化学[M].北京:地质出版社,2005.
    任增平,闫俊萍.内蒙古达拉特旗平原区地下水水化学特征及形成机制分析[J].中国煤田地质,1999,11(3):30~33.
    沈照理,王焰新.水-岩相互作用研究的回顾与展望[J].地球科学——中国地质大学学报,2002,29(2):127~133.
    唐亮亮.洞穴滴水水文水化学特征及其意义—以芙蓉洞为例[D].重庆:西南大学硕士学位论文,2008.
    王东胜,吴玉成,陈亮.束鹿地区地下水咸化机理分析[J].中国地质灾害与防治学报.1997,8(2):62~66.
    王恒纯主编.同位素水文地质概论[M].北京:地质出版社,1991.
    文冬光,沈照理,钟佐燊,等.水-岩相互作用的地球化学模拟理论及应用[M].北京:中国地质大学出版社,1998.
    吴恒,张信贵,代志宏,等.南宁市地下水化学场分区特征及其主要影响因素[J].广西科学,2000.7(1):30~34.
    叶许春.近20年来昆明盆地北端孔隙水化学场演变过程及其驱动因素分析[D].昆明:昆明理工大学硕十学位论文,2005.
    尹泽生.莱州市滨海区海水入侵研究[M].北京:海洋出版社,1992.
    张水龙,冯平.海河流域地下水资源变化及对生态环境的影响[J].水利水电技术,2003,34(9):47~49.
    张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化[M].北京:地质出版社,2000.
    张宗枯,施德鸿,沈照理,等.人类活动影响下华北平原地下水环境演化与发展[J].地球学报,2007,18(4):337~344.
    赵华,马金珠,朱高峰,等.甘肃民勤盆地地下水环境变化及原因探讨[J].干旱区研究,2004,21(3):210~214.
    赵建.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学,1999,19(2):525~531.
    郑西来,任加国,武倩倩,等.海水入侵过程中的水文地球化学作用研究[J].工程勘察,2009,3:31~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700