海—气动量通量及海洋大气边界层湍流特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海-气通量交换过程是气候系统各层圈相互作用的主要过程之一。海洋表面能量、物质交换反映了海洋-大气之间相互作用和联系,海-气通量输送强烈地影响上层海洋结构及大气边界层结构,进而影响大气环流和海洋环流,造成不同尺度的天气及气候变化。而且海-气通量的观测研究对于模拟和理解海洋-大气系统的耦合、变化性质也十分重要,天气预报及气候模式中海洋边界层参数的不确定性极大的影响了其模拟能力。
     利用涡动相关法测量边界层通量是目前最可靠的测量方法之一,但由于海上环境复杂以及一些具体条件的限制,使得其在海上进行观测的难度很大。本文利用国家海洋局2006-2007年“908专项”-ST02区块水体环境调查及2005年国家863规范化外海实验两个项目的近海层大气湍流观测资料,尝试克服在海上观测所面临的大量硬件及软件方面的困难,利用涡动相关法计算了海-气间的分析和计算了北黄海、南海北部及吕宋海峡海域及西太平洋近海面层动量通量、风速标准差、曳力系数、空气动力粗糙度,分析了部分特征量与水平平均风速(U)的关系。进而得到了一些有意义的结论:
     (1)通过计算稳定度参数发现近海面层大气绝大多数时间处于不稳定、弱不稳定的状态。
     (2)在东方红2号综合海洋调查船上用相同的仪器相同的观测方法及后期处理方法,计算了3个海区的动量通量值。北黄海秋、冬季、南海北部及吕宋海峡海域及西太平洋海域动量通量平均值分别为:0.079、0.081、0.107、0.070 N/m2。
     (3)各海区曳力系数值对平均风速不敏感,随平均风速变化较小,在平均风速大于4m/s时,北黄海秋、冬季、南海北部及吕宋海峡海域及西太平洋海域103CD平均值分别为:1.335、1.359、1.046、1.324。
     (4)近海面层大气湍流强度数值量级约为10-2,比近地面层大气湍流强度普遍低一个量级,且近海面层大气湍流强度与风速呈负相关关系。
     (5)当平均风速大于4m/s时,各海区水平风速标准差与稳定度参数的关系不明显,数据较离散,北黄海秋、冬季节无量纲垂直风速标准差与稳定度参数相似性关系较好,满足Monin-Obukhov相似理论。秋季最佳拟合关系为σw/u*=1.9(-Z/L)11/3,冬季为σw/u*=2.0(-Z/L)1/3。
     (6)当平均风速大于4m/s时,各海区粗糙度与平均风速均呈线性关系。北黄海秋、冬季、南海北部及吕宋海峡海域及西太平洋海域拟合关系式分别为:103Z0=0.0350U-0.1335、103Z0=0.0414U-0.1719、103Z0=0.0429U-0.2004、103Z0=0.0303U-0.1031。
The sea-air flux exchange is the main process of interaction of each climate system layer laps. The energy and material exchange between atmosphere and ocean's surface reflects ocean-atmosphere and interaction influences the up Marine structure and low atmospheric boundary layer structure, which affect the atmosphere general circulation and ocean circulation caused by different scales, then the weather and climate change. The study of the flux is also very important to understand the Marine-the coupling, changes atmospheric system. Weather and climate patterns of Marine boundary parameter uncertainty have greatly influenced the simulation capability.
     Using eddy correlation method for measuring the flux boundary is the most reliable measurement method, but due to the complex environment and some specific conditions, the observation is difficulty. Use the atmospheric turbulence observation data of 908 project of ST02 during 2006-2007 and the standardization of national offshore sea experiment of 863 project in 2005,try to overcome the difficulty of observation and calculation, using eddy correlation method to calculate the momentum fluxes, drag coefficient deviations, air force, analyzes the characteristics of roughness of the north and south of north yellow sea, the sea and the west Pacific Luzon. Some significant conclusions:
     (1)Through calculating stability parameters of offshore surface, it was found that atmosphere in a stable, weak instability state at most of the time
     (2) Three areas' momentum fluxes are calculated, which observed in the R/V dongfanghong 2 with the same equipment of the same observation method and calculation method. The North Yellow sea in autumn and winter, north china sea and Luzon channel, the western Pacific momentum fluxes average respectively is 0.079,0.081,0.107,0.070 N/m2.
     (3) The drag and bulk aerodynamic coefficients are sensitive to changes of the average wind speed, when the average wind speed smaller than 4m/s. The North Yellow sea in autumn and winter, north China sea and Luzon channel, the western Pacific momentum 103CD respectively is 1.335,1.359,1.046,1.324.
     (4) Results show the magnitude of turbulence intensity that over the sea surface is 10-2, which is lower than that of the land underlying surface.
     (5) The relationship between standard deviations of horizontal wind and stability parameters is not obvious. Autumn and winter data over the North Yellow sea verify that standard deviation of vertical velocity meets Monin-Obukhov similarity theory very well. The best fitting relationship in autumn and winter isσw/u*= .9(-Z/L)1/3 andσw/u*=2.0(-Z/L)1/3
     (6)The sea average wind speed and the roughness are linear relationship, when the average speed more than 4m/s. The best fitting relationship of the North Yellow sea in autumn and winter, north china sea and Luzon channel, the western Pacific momentum 1 respectively is 103Z0=0.0350U-0.1335,103Z0=0.0414U-0.1719,103Z0=0.0429U-0.2004, 103Z0=0.0303U-0.1031。
引文
[1]Andreas E R, Hill j R, et al.Statistics of surface-layer turbulence over terrain with meter-scale heterogeneity.Boundary-Layer Meteorology,1998.86.379-408
    [2]Berger B W, Davis K J, Yi C,et al.A Re-Evaluation of Long-Term Flux Measurement Techniques Part Ⅰ:Averaging and Coordinate Rotation, Boundary-Layer Meteorology,2001.1-40
    [3]Charnock H. Wind stress on a water surface. Quart J Roy Meteor Soc,1955. 81:639-640
    [4]Clark J F, Ching J K S,Godowitch J M. An experimental study of turbulence in an urban environment.Tech. Rep. U.S.E. P.A. Research Triangle Park, N. C.,NMS PB 2260855,1985
    [5]Edson J B.Direct covariance flux estimates from mobile platforms at sea. Journal of Atmospheric and Oceanic Technology,1998.15:547-562
    [6]Enderson. A study of wind stress and heat flux over the open ocean by the inertial-disspation method.Journal of Physical Oceanography,1993.23: 2153-2161
    [7]Fairall C W, Larsen S E. Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorology,1996.34,(3),287-301
    [8]Finnigan J J, Clement R,Malhi Y, Leuning R,Cleugh H.A revaluation of long-term Flux measurement techniques.Part Ⅰ:Averaging and coordinate rotation. Boundary-Layer Meteorology,2003.107,1.-48
    [9]Hedde T, Durand P. Turbulence intensities and bulk coefficents in the surface layer above the sea. Boundary-Layer Meteorology,2002.71.415-432
    [10]Paul A Hwang. Influence of wavelength on the parameterization of drag coefficient and surface roughness,Journal of Oceanography,2004.835-841
    [11]Lager W G,Pond S.Open Ocean Momentum Flux Measurements in moderate to strong winds.journal of Physical Oceanography.1981.11,324-336
    [12]Mitsuta Y,Fujitani T. Direct measurement of turbulent fluxes on a cruising ship.Boundary-Layer Meteorology,1973.107:1-48
    [13]Naito Gen'ichi.Direct measurements of momentum and sensible heat fluxes at the tower in the open sea. J. Meleor. Soc. Japan,1977,56(1),25-33
    [14]Ohtaki E,Matsui T.Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor.Boundary-Layer Meteorology,1982,Vol.24:109-119
    [15]Paul A, H wang. Influence of wavelength on the parameterization of drag coefficient and surface roughness.Journal of Oceanography.2004.60.835-841
    [16]Pond S,GTPhelps J E, Paguin, et al.Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the Ocean. J Atmos Sci,1971.28: 901-917
    [17]Roth M. Turbulent transfer relationships over an urban surface.Ⅱ:Integral statistics. Quart J Roy Meteor So,1993.119:1105-1120
    [18]Rutgersson A,Smedman A S,Hogstrom U.Use of conventional stability parameters during swell,J. Geophys. Res,2001.106,117-127
    [19]Subrahamanyam D B, Ramachandran R. Structural characteristics of marine atmospheric boundary layer and its associated dynamics over the Central Arabian Sea during INDOEX, IFP-99 campaign.CURRENT SCIENCE,2008.85(9),1334-1340
    [20]Smedman A S,et al.Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys,2003.Res.
    [21]Smedman A U, et al.A case study of air-sea interaction during swell conditions. J. Geophysics. Res.,1999.104(C11),25,833-25,851
    [22]Smith S D, Anderson R J, et al.Sea surface wind stress and drag coefficients: the HEXOS results.Boundary-Layer Meteorology,1992.60:190-142
    [23]Sorbjan Z. Structure of the Atmospheric Boundary Layer. Englewood Cliffs, Prentiee-HallIne,1989,74-76
    [24]Stuart D, Smith. Wind stress and heat flux over the ocean in gale force winds. Journal of Physical Oceanography 1980,10:709-726
    [25]Tanner,C B,Thurtell G W. Anemoelinometer Measurements of Reynolds Stress and Heat TransPort in the AtmosPheric Surface Layer.University of Wiseonsin Teeh.ReP.,1969.Ecom-66-G22-F:82
    [26]O Rannik, T Vesala. Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method.Boundary-Layer Meteorology, 1999.91.259-280
    [27]Wilczak J,Oncley S,Stage S A. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology,2001.99:127-150
    [28]Wyngaard J C, Cote 0 R, Zumi Y. Local free convection, similarity, and the budgets of shear stress and heat flux.J Atmos Sci,1971.28(1):1171-1182
    [29]Xu D, Li X, Zhang L, et al.On the distributions of wave periods, wavelengths, and amplitudes in random wave field. J Geophys. Res.2004.109
    [30]Yelland M J, et al.Wind Stress Measurements from the Open Ocean Corrected for Air flow Distortion by the Ship. Journal of Physical Oceanography,1998.28: 1511-1526
    [31]Yelland M J,MoatB I,et al.CFD Model Estimates of the Airflow Distortion over Research Ships and the Impact on Momentum Flux Measurements.Journal of Atmospheric and Oceanic Technology,2002.19:1477-1499
    [32]陈铭夏,李宗恺.南京市近地层湍流结构及输送特征研究.气象科学,2000.20(2):111-119
    [33]陈铭夏,王庆安.近地层大气湍流微结构对比分析.南京气象学院学报,1998.21(A01):p.459-468
    [34]陈奕德,等.2002年南海夏季风爆发期间南海北部海气通量分析与比较.大气科学,2005,29(5):761-770
    [35]陈陟,陈联寿,等.我国西部高原地区近地层湍流特征的研究.地球物理学报,2002.45(C00):93-105
    [36]高志球,张庆荣.南沙群岛海域近海面粗糙度,中性曳力系数及总体交换系数研究.热带海洋,2000.19(1):38-43
    [37]胡敦欣,赵永平.船上海气之间湍流通量的观测研究.海洋与湖沼,1996.27(2)163-168
    [38]纪文君.海面阻力系数的流体力学研究.海洋技术,2002.21(2):17-20
    [39]蒋国荣,等.南海夏季风爆发前后海-气界面热交换特征.气象学报,2004.62(2): 189-199
    [40]李富余,等.采样长度和频率对大气湍流数据处理结果的影响.气象水文海洋仪器,2003.(3):25-31
    [41]李曜.由船载超声风速仪数据计算摩擦速度.中国海洋大学硕士论文,2006.
    [42]刘衡,蒋维楣.近埴层湍流特征及其在扩散模拟中的应用.高原气象,1998.17(4):390-396
    [43]刘辉志,洪钟祥.北京城市下垫面边界层湍流统计特征.大气科学,2002.26(2):241-248
    [44]刘树华,李洁,等.在EBEX-2000实验资料中的湍流宏观量特征.大气科学,2005.29(4):503-509
    [45]刘树华,那景阳.我国草原下垫面低层大气湍流结构.大气科学,1996.20(3):378-383
    [46]马耀明,马伟强,等.青藏高原草甸下垫面湍流强度相似性关系分析.高原气象,2002.21(5):514-517
    [47]马耀明,王介民,张庆荣,等.南沙海域大气湍流通量输送特征分析.高原气象,1997.16(1):45-51
    [48]马耀明,吴晓鸣.藏北高原草甸下垫面近地层能量输送及微气象特征.大气科学,2000.24(5):715-722
    [49]马耀明,张庆荣.南沙海域大气湍流通量输送特征分析.高原气象,1997.16(1):45-51
    [50]马耀明,张庆荣.南沙海域近海层大气湍流结构及输送特征研究.大气科学,1997.21(3):357-365
    [51]门雅彬.船基系统海气通量测量方法研究.海洋技术,2004.23(3):51-54
    [52]苗曼倩,季劲钧.青藏高原大气边界层湍流特征量分析.高原气象,1998.17(4):356-363
    [53]苗曼倩,张雷鸣.非定常天气海面通量特征,大气科学,1990.14(4):464-474
    [54]钱莉英,周乐度.一种船载海面通量观测的校正方法.海洋科学,1994.(4):59-63
    [55]曲绍厚.西太平洋热带海域动量、感热和潜热等湍流通量的观测研究.气象学报,1988.46(4):452-461
    [56]斯塔尔R B.边界层气象学导论.青岛:青岛海洋大学出版社,1991
    [57]汪炳祥,陈伯海.海面阻力系数模式的探讨.海洋与湖沼,1996.18(1):99-106
    [58]汪炳祥,钱成春.海面阻力系数与大气稳定度的关系.海洋通报.1992.11(5).22-33
    [59]王存忠,曹文俊.天津市郊大气边界层湍谱特征分析.气象学报,1994.52(4):484-492
    [60]王仁磊.北黄海春秋季海气通量的观测研究.中国海洋大学硕士论文,2009.
    [61]王霄雪,刘罡,蒋维楣.城市水泥下垫面、郊区下垫面湍流统计特征分析.科学技术与工程,2007.7(23):6014-6020
    [62]王秀芹,钱成春,王伟.风应力拖曳系数选取对风暴潮数值模拟的影响.青岛海洋大学学报,2001.31(5):640-646.
    [63]谢玲玲.西北太平洋环流及其与南海水交换研究.中国海洋大学博士论文,2009.
    [64]熊康,西太平洋热带海域湍流通量以及海面粗糙度Zo和曳力系数的观测研究.大气科学,1990.14(4):475-482
    [65]徐静琦,魏皓,顾海涛,等.西太平洋暖池区的海-气通量及整体交换系数.气象学报,1997.55(6):703-712
    [66]徐天真,徐伯海.西太平洋暖池区海-气通量计算分析.青岛海洋大学学报,1994.23(增刊):97-107
    [67]徐玉貌,周朝辅.广州市近地层大气的湍流微结构和谱特征.大气科学,1993.17(3):338-348
    [68]徐自为,刘绍民,等.涡动相关仪观测数据的处理与质量评价研究.地球科学进展,2008.23(4):357-370
    [69]薛宇欢.渤海夏季海气通量船基系统观测研究.中国海洋大学硕士论文,2009
    [70]闫俊岳,等.1998年南海季风爆发期间近海面层大气湍流结构和通量输送的观测研究.气候与环境研究,2000.5(4):447-458
    [71]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006.216-218
    [72]张霭琛,吕杰.北京市郊区及城区边缘的大气湍流结构特征.大气科学,1991.5(4):87-96
    [73]张宏升,李富余,陈家宜.不同下垫面湍流统计特征研究.高原气象,2004.23(5):598-604
    [74]张强,胡隐樵.兰州山地湍流输送和湍流强度的研究.高原气象,1992.11(2): 126-132
    [75]仲雷,马耀明,李茂善.珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析.大气科学,2007.31(1):48-56
    [76]周明煜,姚文清,徐祥德.北京城市大气边界层低层垂直动力和热力特征及其与污染物浓度关系的研究.中国科学:D辑,2005.35(A01):20-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700