多孔介质动水化学注浆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于流体力学理论和地下水溶质运移理论,采用物理模型实验、数值模拟及现场试验等方法,研究了静水条件下浆液的扩散方式及其形成条件、注浆动态压力经验公式、多孔注浆效应,分析了在运动条件下脲醛树脂浆液凝胶特征,建立了动水条件下浆液流动的力学模型。本文的研究内容及取得的认识包括:
     (1)通过对脲醛树脂浆液的防渗堵漏适应性研究,得出了摩尔比小于1.5的脲醛树脂不适合作为防渗堵漏注浆材料,总结出了脲醛树脂类浆液可以作为防渗堵漏注浆材料的条件。在研究浆液凝胶机理的基础上,根据室内试验获得了脲醛树脂浆液在酸性条件下的固化特征,为提高浆液在防渗堵漏工程中材料的可靠性提供了依据。
     (2)基于相似理论,进行了砂土体介质中注浆压力室内模型试验,研究了注浆压力的影响因素,并根据相似准则建立了化学浆液注浆动态压力公式。该公式表明,在注浆过程中,注浆压力是动态变化的,可以通过对注浆泵流量、浆液凝胶时间参数的实时动态调整,实现压力的过程实时控制,最终达到改善岩土体的可灌注性,提高灌注效果的目的。
     (3)基于圆孔扩张模型力学理论和统一强度准则,分析了注浆浆液在土体中扩散的弹、塑性力学关系,得出了浆液在砂土体中发生渗透和劈裂的压力条件,并通过室内试验验证了这一规律。
     (4)利用VMODFLOW数值软件,研究了双孔、三孔、圈形孔布置的多孔条件下浆液流动规律,分析了注浆压力分布规律和浆液浓度扩散特征。结果表明,在双孔和三孔注浆时,在已经形成的注浆范围周围容易形成压力梯度增高带,该增高带的形成使得浆液向增高带相反方向流动,即在新注浆孔和老注浆孔之间很难形成连续的注浆固结体,所以注浆范围大小不能是简单的单孔注浆半径的叠加。而圈形布孔时,容易在未封闭的圈内形成高压带,而在圈外形成低压带,浆液更容易流向低压带。
     (5)凝胶时间是注浆过程控制中的重要参数。本文分析了浆液在运动状态下的凝胶时间特征,根据浆液动态凝胶特征要求设计了浆液动态凝胶测试平台,获得了在不同流速下浆液的浆液固化时的粘度变化规律。结果表明,浆液在运动状态下凝胶时间和静止状态下相比,其具有一定的滞后性。通过实验所获得的脲醛树脂浆液在运动状态下粘度变化实时曲线,建立了脲醛树脂浆液在运动状态下浆液固化时、粘度随时间和剪切速率变化的数学公式。
     (6)动水条件下化学注浆的力学模型和数值模拟通过室内模型试验研究了不同动水条件下动水注浆效果的影响因素。基于地下水运移模型和VMODFLOW数值模拟软件,分析了动水注浆时浆液流场与动水流场之间相互作用,运用流体力学欧拉方程,构建了动水条件下化学浆液(脲醛树脂浆液)注浆的力学模型,建立了浆液扩散随时间和空间变化公式。
Based on fluids theory and underground water substance migration theory, this paper aims to study the different difussion patterns and conditions of grout under the static water, emprical formula of grouting pressure behaviour and porpous grouting effect. Furthermore, several methods including physical model experiment, numerical simulation and field test etc. are employed in this process. Besides, it is to analyze the gelation features of urea resin grout in motion and build the grout hydromechanical model under dynamic water. The research contents of this paper lies in the following aspects:
     1. The features of urea resin grout are analyzed on the basis of the research about anti-seepage adaptablity of the grout. The result shows that urea resin with a molar ration less than 1.5 is not suitable as the anti-seepage grouting material. The conditions of urea resin grout acting as the anti-seepage grouting material is also presented. On the basis of researching the gelation mechanism of the grout and labortary test result, it possesses the curing rules feature and water contamination feature of urea resin grout in the acid condition so as to provide the convincing reference for improving the groutability in the application of anti-seepage project.
     2. Based on the theory of similarity, the interior model test of grouting pressure in the grouting process is made. Having researching about the influencing factors of grouting pressure, the dynamic formula of chemical grouting is listed according to the similarity criterion. The formula shows that, according to the grouting pressure change, the groutability and its effects of gneis can be improved through adjusting grouting pumping capactity and grout gelation time and grouting pressure in the whole process of grouting.
     3. Based on the mechanical theory of cavity expansion model and unified strength criterion, the diffusion mechanics of the grout in soil mass is analyzed. And pressure conditions of the grout while penetrating and gadding in sandy soil is given and the rationality of this rule is verified through laboratory test.
     4. According to the migration rules of underground water, the grout flowing rules under porous conditions including diplopore, triporate and circle-type setting is studied and the distribution rules of grouting pressure and concentration diffussion features are analyzed by applying numercial analysis software VMODFlow4.0. The result proves that the pressure gradient rising in the grouting scope renders the rightabout flow of the grout. In other words, it is very difficult to form the continuous grouting induration between new grouting hole and old grouting hole. As a result, the grouting scope cannot be simlpe superposition of the haplopore grouting radial.
     5. The gelation time feature of the grout in stationary state is studied by referring to gelation time, the important parameter in the grouting process control. In the requirement of dynamic gelation features of grout, the testing platform of dynamic gelation is presented. By revolving speed instead of flow velocity, the viscosity changing rules of grout solidification at different revolving speeds are analyzed. Compared with the grout gelation time in static state, its dynamic state lies in certain hysteresis. According to the real-time viscosity change curve of gelresin grout in dynamic state, the mathematical formula of urea resin grout gelation is given. The formula indicates the rules of grout solidification viscosity as the time and shearing rate changes.
     6. Through laboratory test, the impact on the grouting effects under the conditions of different dynamic water is studied. On the basis of underground water migration model and numerical simulation software VMODFLOW, the rules about the interractions between the flow field of grout and that of dynamic water while grouting under dynamic water. By applying Eulerian equation of hrdromechanics, the grouting mechanical modle of chemical grout under dynamic water (urea resin grout) and the formula of grout changes over time and space and the optimal distance formula of the position of grouting holes are setup.
引文
[1]唐业清,李启明,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社, 1999.
    [2]孙强,李厚恩,秦四清等.地下水引起的基坑破坏分析[J].岩土工程学报, 2006, 28(3): 1428~1432.
    [3]张顶立.跨江跨海隧道修建技术及其发展趋势.中国矿业大学深部岩土力学与地下工程国家重点实验室学术报告[C], 2008, 9.
    [4]魏秉亮.神府矿区突水溃砂地质灾害研究[J].中国煤田地质,1996,8(2):28~30.
    [5]隋旺华,费芳草.松散含水层下采煤水砂突涌防治研究现状与展望[C].第二届全国岩土与工程学术大会论文集.北京:科学出版社,2006:330~332.
    [6]蔡光桃.采煤冒裂带上覆松散土层渗透变形研究[D].徐州:中国矿业大学,2005.
    [7]周国庆.黄淮地区厚冲积层中立井井壁破裂灾害[M].见王思敬、黄鼎成主编《中国工程地质世纪成就》.北京:地质出版社,2004:677~686.
    [8]蔡荣等.煤矿井筒重复破坏的化学注浆治理[J].煤田地质与勘探,2003,31(4):46~48.
    [9]王档良,童培国,武善元.化学灌浆治理巨厚表土层立井井壁漏水[J],水文地质与工程地质,2007,5:20~23.
    [10]左如松,朱岩华,姜振泉.化学注浆在兴隆庄煤矿西风井深井井筒微裂隙防渗中的应用[J].华东地质学院学报,2003,26(4):371~375.
    [11]蔡振雷,刘朝峰.竖井井筒特殊井壁段壁后动水帷幕注浆法封水技术[J].中州煤炭,2004(10):51~53.
    [12]李松营.应用动水注浆技术封堵矿井特大突水[J].煤炭科学技术,2008(8):28~30.
    [13]李文平.深厚表土中煤矿立井破裂工程地质研究[J].徐州:中国矿业大学出版社,2000.
    [14]周国庆.特殊地层含水层注浆加固参数与井壁垂直附加力关系的研究[D].徐州:中国矿业大学,1996.
    [15]毕思文.徐淮地区煤矿竖井变形破坏机理及防治对策的研究[J].建井技术,1996(3):26~29.
    [16]王国明,孙勇,丁成华.注浆加固井壁的技术探讨[J].建井技术, 1998.19(3):31~32.
    [17]许延春,席京德,官云章等.兴隆庄矿井筒破坏防治工程效果的综合监测与分析[J].岩石力学与工程学报, 2001,20(增):1204~1208.
    [18]席京德,许延春.兴隆庄矿主副井筒破坏预防性治理的研究与经验[J].建井技术, 1999.20(1):26~29.
    [19]杨永平,白开圣,王方胜.地面注浆治理破坏井壁[J].煤炭科学技术,1997,25(10):26~28.
    [20]王国明,张斗群.鲍店矿副井井壁破坏地面注浆加固技术[J].建井技术, 1997,18(5):4~8.
    [21]杨平.卸压槽治理井壁破裂研究[J].岩土工程学报,1998,20(3):19~22.
    [22]吕恒林,崔广心.卸压法治理井壁破裂的力学机理[J].中国矿业大学学报, 2000,29(4):343~347.
    [23]吕恒林,张强,蒙勇等.卸压槽治理井壁结构破裂的模拟试验研究[J].中国矿业大学学报, 2001,30(2):130~134.
    [24]程杰华.基坑工程事故的原因分析[J].广东土木与建筑,2002,(2):60~61.
    [25]袁程.深基坑工程过程控制和预警研究[D].东南大学,2004.
    [26]刘振钰.建筑基坑工程事故预防与处理[J].山西建筑,2005(13):52~53.
    [27]王典、柯海熬.深基坑工程病害事故的应急处理[J].西部探矿工程,2005(1):13~14.
    [28]胡世杨.深基坑施工中常见事故对策和补救方法[J].基坑开挖,2005(1):159~161.
    [29]吴宏.论基坑管涌和漏水的成因及防治[J].山西建筑,2005(16):110~113.
    [30]吴海涛.上海轨道交通4号线渗水事故分析[J].施工技术,2003(13):52~53.
    [31]唐忠元.杭州地铁工地坍塌原因分析[J].现代施工技术,2008(14):46~51.
    [32]崔颖哲,范鹏.软土地基地铁基坑的堵漏抢险[J].隧道建设,2005(2):54~56.
    [33]李韬,许丽萍,陈晖等.基坑工程风险的定量分析初探[J].岩土工程学报,2006(28):1916~1920.
    [34]李晴阳,刘万兰,黄毅.上海软土地区深基坑施工承压水风险及其控制[J],建筑施工,2008(6):445~448.
    [35]王典,柯海熬.深基坑工程病害事故的应急处理[J].西部探矿工程,2005(1):13~14.
    [36]孙向明,胡艳荣,赵小文.基坑突涌事故的分析与处理[J].水利科技与经济,2009(7)12:460~461.
    [37]杜锦新.基坑支护事故分析及加固措施[J].建设科技,2006(10):120~121.
    [38]坪井直道.化学注浆法的实际应用[M].北京:煤炭工业出版社.1980.
    [39]王档良,姜振泉.在建矿井井壁渗漏地质成因分析及化学注浆治理[J].建井技术,2009(1):24~28.
    [40] E. A. Vik, L. Sverdrup, A. Kelley. Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten Tunnel[J]. Tunneling and underground space technology. 2000, 15(4):369~378.
    [41] Wang Dangliang, Characteristics of Water Inflow and Chemical Grouting Treatment of Liu Yuanzi Coal Mine Shaft in Ordos Basin[J], Mining Science and Technology, 2010(4):607~610.
    [42]王档良,鞠远江.杨庄煤矿副井破裂井壁多次治理效果对比分析[J].煤炭科学技术,2009(1):35~38.
    [43]王云露.2011中国经济展望[J].中国经济,2010(6):41~45.
    [44]钱七虎.城市可持续发展与地下空间开发利用[J].地下空间,1998(4):1~3.
    [45] Komiya K, Soga K, Akagi H, et al. Soil consolidation associated with grouting during shield tunneling in soft clayey ground[J]. Geotechnique, 2001,51(10):835~846
    [46]熊厚金,林天健,李宁.岩土工程化学[M].2001.北京:科学出版社.
    [47]蒋硕忠.我国化学灌浆的发展与近期展望[J].中国建筑防水,2005(3):11~13.
    [48]杨学祥,李焰.三峡大坝基础帷幕化学灌浆技术及其效果分析[J].水利与建筑工程学报, 2006, 4(1): 44~47.
    [49]倪兴华,隋旺华,官云章,王档良,杜永.煤矿立井破裂井壁防治技术研究[M].徐州:中国矿业大学出版社. 2005.
    [50]蒋硕忠.我国化学灌浆技术发展与展望[J].长江科学院院报,2003,20(5):25~27.
    [51]蒋硕忠.绿色化学灌浆技术研究综述[J].长江科学院院报,2000,23(5):33~40.
    [52]肖荣久.国外化学注浆技术的发展及应用[J].西北地质,1994.15(3):16~22.
    [53] E.Nonveiller. Grouting Theory and Practice. Elsevier Science Publisher B.V., The Netherlands, 1989.
    [54] G.S.Littlejohn. Chemical Grouting. Ground Engineering, 1985,2(3):18~22..
    [55]张文彬.新型高分子材料在矿井壁后堵水的应用[J].煤矿现代化,2006,(6):29~31.
    [56]谭日升,蒋硕忠,薛希亮.三峡大坝化学灌浆研究[J].长江科学院院报2000,17(6):4~8.
    [57]张帆.富水砂层隧道围岩止水施工技术[J].石家庄铁道学院院报,2005,18(1):99~102.
    [58] [56]何开明,周健,王兰民.化学灌浆黄土地基的抗液化性状研究[J].地震研究, 2003,26(4):396~399
    [59]程鉴基.化学灌浆在岩石工程中的综合应用[J].岩石力学与工程学报.1996,15(2):186~192.
    [60]隋旺华,李永涛,李冠田,王国庆.煤矿立井微孔隙岩体注浆防渗及机理分析[J].岩土工程学报, 2005, 22(2):214~218.
    [61]叶林宏,何泳生,冼安如,任可昌论化学灌浆液与被灌岩土的相互作用[J].岩土工程学报,1994,16(6):47~55.
    [62]张良辉,熊厚金,张清.浆液的非稳定流过程分析[J].岩石力学与工程学报,1997,(6):564~570.
    [63]成虎林.水电工程化学灌浆对浆液扩散有效半径的控制方法[J].西北水电.2006,(1):33~37.
    [64]华萍,孙永明,漆尧平.改性乙二醛-水玻璃化学灌浆材料的研究[J].安全与环境工程学报,2006,13(1):100~102.
    [65]陈洪光,冯坤.提高聚氨酯化学注浆材料性能的试验研究[J].石家庄铁道学院学报, 2005,18(3):79~83.
    [66] Shen, C. K.; Smith, Scott S.1976. Elastic and viscoelastic behavior of a chemically stabilized sand[J]. Transportation Research Record,1976.(593): 41~45.
    [67] Gallagher, Patricia M.; Conlee, Carolyn T.; Rollins, Kyle M. Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2):186~196.
    [68] Dash, Umakant; Lee, Thomas S.; Anderson, Randy. Jet grouting experience at posey webster street tubes seismic retrofit project[J] .Geotechnical Special Publication, 2003(120): 413~417.
    [69] Kodaka, Takeshi; Oka, Fusao; Ohno, Yasutoshi; Takyu, Tsutomu; Yamasaki, Nobuhiro. Modeling of cyclic deformation and strength characteristics of silica treated sand. Geotechnical Special Publication[J].Geomechanics: Testing, Modeling, and Simulation - Proceedings of the First Japan-U.S. Workshop on Testing, Modeling, and Simulation, 2005,(143):205~216.
    [70] Berry, Dick. Soil grouting - There's only one way to view it[J]. Geotechnical News, 2006, 24(3):39~47.
    [71] Mittag, Jens, Savidis, Stavros A. The groutability of sands - results from one-dimensional and spherical tests[J]. Geotechnical Special Publication,2003,(120 II): 372~382.
    [72] Ozgurel, H. Gurkan, Gonzalez, H.A., Vipulanandan. Two dimensional model study on infiltration control at a lateral pipe joint using acrylamide grout[J]. Proceedings of the Pipeline Division Specialty Conference, 2005: 631~642.
    [73] Ozgurel, H. Gurkan, Vipulanandan, Cumaraswamy. Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,131(12): 1457~1465.
    [74] Anagnostopoulos, C.A., Grammatikopoulos, I.N., Stavridakis, E.I. Improvement of physical and mechanical properties of fine sand with one-shot and two-shot process grouting[C]. Advances in Geotechnical Engineering: The Skempton Conference - Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, organised by the Institution of Civil Engineers, 2004: 1019~1031.
    [75] Morikawa, Yoshito; Tokoro, Takehiko; Takahashi, Norio. Evaluation of the cohesion of chemically grouted sands[J]. Journal of the Society of Materials Science, Japan, 1998,47(2): 148~151.
    [76] Krizek, Raymond J. ; Michel, Dominique F.; Hetal, Maan; Borden, Roy H. Engineering properties of acrylate polymer grout[J]. Geotechnical Special Publication, 1992,1(30): 712~724.
    [77] Kumagai, Koji, Tokoro, Takehiko; Yanagisawa, Eiji..Factors affecting the unconfined compressive strength of sands stabilized by chemical grout[C].Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1993,(469 pt 3-23): 121~126.
    [78] Honma,S.Finite element analysis of the injection and distribution of chemical in soils[D]. Univ. of Wisconsin,Milwaukee,WI. 1984, 18(8~10):927~938.
    [79] Gallagher, P.M. and J.K. Mitchell.Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand[J].soil Dynamics and earthquake engineering,2002,22(9~12):1017~1026.
    [80] Gallagher, P.M.Passive Site Remediation for Mitigation of Liquefaction Risk, Ph.D.Dissertation [J]. Virginia Polytechnic Inst. and State Univ, Blacksburg, VA, 2002:238~243.
    [81] Gallagher, P.M. and A.J. Koch.Model testing of passive site stabilization technique, grouting and grouting treatment[J]. Geotechnical Special Publication, 120, 1478-1489,ASCE, Reston, VA. 22(9~12), 2008: 1017~1026
    [82]王国际.注浆技术理论与实践[M].中国矿业大学出版社, 2000.
    [83]赵春鹏,赵临五等.E0胶合板低成本UMF树脂的研制[J].林产工业,2004,3(46):46~50.
    [84]杜官本.摩尔比对脲醛树脂初期产物结构影响的研究[J].粘接,1999,20(3):1~4.
    [85]陈应淋等.脲醛树脂溶液的防砂工艺配方[P].中国专利CN1116472.
    [86]孙振等.脲醛树脂中Uron结构与胶制品耐水性的关系.木材胶粘剂及人造板表面加工学术讨论会论文集[C].重庆:1992,中国林学会,1993,9~12.
    [87]孙振等.脲醛树脂结构与形态—脲醛树脂胶体理论及其进展.木材胶粘剂及人造板表面加工学术讨论会论文集[C].重庆:1992,中国林学会,1993,16~21.
    [88]张国荣等.应用于固砂地层的FSJ-II脲醛树脂胶粘剂[J].中国粘胶剂,2001,10(1):41~43.
    [89]邹斌等.改性脲醛树脂加固基床土质的研究[J].西南交通大学学报,2001,36(1):33~36.
    [90]徐艳伟.脲醛树脂固砂工艺技术在文留油田的应用[J].油田化学,2001,18(3):196~198.
    [91]于培志.聚合物增韧性脲醛树脂封堵剂的研究与应用[J].油田化学,2002,19(1):36~39.
    [92]蒋楚生,周德培.二次劈裂注浆锚索承载力的计算[J].岩石力学与工程学报,2005 14(3): 2414~2419.
    [93]王哲,龚晓南,程永辉,张玉国.劈裂注浆技术在运营铁路软土地基处理中的应用[J].岩石力学与工程学报,2001,24(9):1619~1623.
    [94]王档良,隋旺华.岩体灌浆压力变化规律实验研究[J].金属矿山,2008(1):153~55.
    [95]王档良.破壁化学注浆机理研究[D].中国矿业大学硕士学位论文,2005.
    [96]李月健.土体内球形空穴扩张及挤土沉桩机理研究.浙江大学博士学位论文,2001.
    [97]张晓春,杨挺青,缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999 29(1): 97~103.
    [98]张忠苗,包风,陈云敏等.考虑材料应变软化的球(柱)孔扩张理论在桩底注浆中的研究[J].岩土工程学报, 2000, 22(2): 243~247.
    [99]蒋明境,沈珠江.考虑材料应变软化的柱形孔扩张问题[J].岩土工程学报,1995 17(4):813~817.
    [100]韩金田.复合注浆技术在地基加固中的应用研究[D].中南大学博士学位论文,2007.
    [101]郑春苗.地下水污染物迁移模拟[M].北京:高等教育出版社,2009.
    [102]隋旺华.煤层开采沉陷土体变形机理及预测[D] .中国矿业大学博士学位论文,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700