北京山区典型流域防护林体系对位配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源紧缺,水土流失严重,风沙危害频繁是北京市生态环境恶化的集中表现,是困扰首都生态建设的重要问题。北京山区作为北京市重要的生态屏障,在保持水土、涵养水源、防风固沙、美化环境等方面发挥着重要作用,但由于防护林体系空间布局与结构配置不尽合理,生态功能发挥不够充分,加之防护林建设规模与生态耗水、生态用水定量不协调,水土资源利用效率不合理等问题,严重阻碍北京山区防护林体系生态功能的发挥。为优化防护林体系配置,提高防护林体系生态功能的发挥,本研究结合“十一五”国家科技支撑“防护林体系空间配置和结构优化技术研究”,在小流域尺度上,从防护林体系结构布局、结构配置与水土资源利用关系着手,对北京山区典型流域防护林体系的对位配置、防护林体系与水土资源的关系进行深入研究,提出了典型流域防护林体系的对位配置模式。主要研究成果如下:
     (1)从北京山区森林资源现状着手,以乡镇或林场为研究单元,分析每个研究单元的森林资源特征,采用因子分析和系统聚类分析的方法将北京山区防护林体系划分为五个类型,针对每个类型的地形地貌特征、森林资源特点、区域发展目标等特点,提出每个防护林体系类型的适宜林种。
     (2)在综合考虑典型流域主导生态方向的基础上,收集土地利用状况和降雨、水质等资料,探讨了典型流域适宜森林覆盖率的计算方法,认为适宜森林覆盖率的确定应综合考虑最大限度拦蓄特大暴雨、减轻土壤侵蚀和净化水质3个方面。研究结果表明:土门西沟流域的适宜森林覆盖率为54.94%,潮关西沟流域的适宜森林覆盖率为55.36%,半城子水库流域的适宜森林覆盖率为58.61%。这一结果为小流域尺度防护林建设提够了一定价值的参考依据。
     (3)在研究典型流域森林植被特征的基础上,以“近自然林业”为理论基础,采用系统动力学模型人工神经网络对典型流域进行植被类型的配置,配置结果为:土门西沟流域针叶林13.40%,阔叶林30.24%,混交林34.99%,灌木林21.37%;潮关西沟流域针叶林3.66%,阔叶林19.36%,混交林52.45%,灌木林22.65%;半城子水库流域针叶林22.71%,阔叶林8.72%,混交林37.78%,灌木林29.24%。
     (4)选择北京山区的主栽优势树种——油松、侧柏、刺槐、栎类、荆条、绣线菊、北鹅耳枥,研究坡度、坡向、坡位、海拔、土壤类型、土壤质地等立地因子对其高生长和径生长的影响,为优势树种的立地选择和防护林体系建设提供参考。在分析主栽树种的林冠截留能力、枯枝落叶层的持水能力、土壤层贮水能力的基础上,采用坐标综合评定法对主要优势树种的水源涵养功能进行评定,结果表明混交林水源涵养功能最好。
     (5)论文基于地理信息系统(GIS)、遥感(RS)、景观分析软件FRAGSTATS进行综合分析,研究半城子水库流域1990-2005年森林植被格局的动态变化特征和驱动力,在此基础上构建SWAT模型空间数据库和属性数据库,根据典型流域DEM和水系分布图将整个流域分成23个子流域,结合1990-2006年水文实测资料进行模型参数的敏感度分析以及参数的校准和验证,研究表明:不同典型年的径流特征显示降雨和土地利用变化对径流产生了较大的影响。年内降雨较多的月份,产生的径流也较大,反之年内降雨量较少的月份,产生的径流量也较小。防护林体系对位配置的结果表明,各植被类型的产流量大小为阔叶林122.26mm,针叶林185.34mm,灌木林340.18mm,混交林255.33mm。与2005年相比,流域内植被的生态用水减少,径流量增加49.01万m3。为森林植被变化的水文响应研究提供了有效的途径。
Less water resource, serious soil erosion and strong sandstorm are concentrated experience of worsens ecological environment of Beijing, and puzzled ecological construction of capital. Beijing mountain area is an important ecological barrier of Beijing city, which plays influential role on maintain soil and water, conserve water resource, protection sandstorm and improvement environment. But unreasonable spatial allocation and structure, weakened ecological function, incompatible protection forest systems’scale with ecological water use and quota of ecological water use serious hindered ecological function of protection forest system in Beijing mountain area. In order to optimize structure and enhance function of protection forest system, the research start with structure pattern, structure allocation and relation of water and soil, pare allocated protection forest system, analysis relation of water and soil resource with protection forest system, proposed para allocation patterns of protection forest system in typical watershed. The main research results are as follows:
     (1) Start from forest resource situation of Beijing mountain area, take the villages and towns or the farm as research unit, divided protection forest system of Beijing mountain area into five types by using factorial analysis and cluster analysis method, propose suitable forest type of each protection forest system.
     (2) Concerning of main ecological oriental of typical watershed, collected land use, rainfall, water quality data. Discussed computational method of suitable forest coverage in typical watershed, and thought retain maximum rainfall, reduce soil erosion and purify water should be concerned. The result shows: suitable forest coverage rate of Tumen West watershed is 54.94%, suitable forest coverage rate of Chaoguan West watershed is 55.36%, suitable forest coverage rate of Banchengzi reservoir watershed is 58.61%. The result offers reference on protection forest system construction in small watershed.
     (3) As a foundation of research on forest characteristics, take“near natural forestry” as rationale, used systems dynamics model artificial neural network to allocate forest type, the disposition results show: coniferous forest 13.40%, foliage forest 30.24%, mixed forest 34.99%, scrub forest 21.37% in Tumen west watershed; coniferous forest 3.66%, foliage forest 19.36%, mixed forest 52.45%, scrub forest 22.65% in Chaoguan west watershed; coniferous forest 22.71% hm2, foliage forest 8.72%, mixed forest 37.78%, scrub forest 29.24% in Banchengzi reservoir watershed.
     (4) Choose dominant species Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, Quercus, Vitex negundo, Spiraea, Carpinus turczaninowii Hance as object in Beijing mountain area, research influence of slope, elevation, soil type, soil texture on their high growth and diameter growth, provided reference for site selection and protection forest system’s construction. Analyzed interception capacity of forest crown, litter and soil, and the conclusion indicated the strongest is mixed forest.
     (5) Used GIS, RS and FRAGSTATS to research landscape patterns and driving of Banchengzi reservoir watershed from 1990 to 2005, and construct spatial data and attribute data in SWAT. According to DEM, Banchengzi reservoir watershed is divided into 23 sub basins, and calibrated parameter with hydrology data from 1990 to 2006, the model shows: rainfall characteristic and land use characteristic strong influenced runoff. With plenty rainfall, the runoff is bigger; with less rainfall, runoff is small. Disposition result of protection forest system shows: runoff of foliage forest, coniferous forest, scrub forest and mixed forest are 122.26mm, 185.34mm, 340.18mm and 255.33mm. Ecological water use of forest is reduces, the amount of runoff increases 490,100m3. The results provided effective method to research the relation of landscape and hydrology response.
引文
[1] 摆万奇,赵士洞.土地利用变化驱动力系统分析[J].资源科学.2001,23(3):39-41.
    [2] 包晓斌.晋西昕水河流域生态经济型防护林体系配置模式[J].防护林科技,1996,(2):34-37.
    [3] 陈百明,刘新卫,杨红.LUCC 研究的最新进展评述[J].地理科学进展,2003,2(1): 2-29.
    [4] 陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-480.
    [5] 陈林武,王鹏,余树全.四川盆地生态经济型防护林体系分类探讨[J].西南林学院学报,1999,19(3):151-155.
    [6] 董承德.用综合因素建模探讨合理森林覆盖率[J].陕西林勘设计.1989(4):5-6.
    [7] 高成德,田晓瑞.北京密云水库集水区水源保护林最佳森林覆盖率研究[J].林业实用技术,2005,(8):3-5.
    [8] 高成德 , 余新晓 . 密云水库集水区水源保护林最优林种结构的研究 [J]. 林业实用技术,2005,(8):30-31.
    [9] 高甲荣,刘德高,吴家兵.密云水库北庄示范区水源保护林林种配置研究[J].水土保持学报,2000,14(1):12-17.
    [10] 高甲荣,肖斌,张东升,等.国外森林水文研究进展评述[J].水土保持学报,2001,15(5):60-64,75.
    [11] 高 智 慧 , 康 志 雄 , 叶 胜 荣 , 等 . 浙 江 省 林 种 、 树 种 结 构 调 整 研 究 [J]. 浙 江 林 业 科技,1998,18(1):54-63.
    [12] 关志成.寒区流域水文模拟研究[D].江苏:河海大学,2002.
    [13] 郭焕成,宋金平.北京市山区生态环境建设与生态经济发展研究[J].北京联合大学学报,2001,15(1):126-130.
    [14] 郭立群,陈宏伟,方向京,等.头塘山地系统防护林体系空间配置[J].云南林业科技,1994,(3):16-23.
    [15] 郭养儒,葛安新.陕西省森林覆盖率的研究[J].陕西林业科技.1992(4):33-37.
    [16] 郭忠升,张宏民.森林覆盖率的理论研究概况及存在的问题[J].陕西林业科技,1996(2):30-33.
    [17] 郭忠升.水土保持林有效覆盖率的初步研究[J].西北林学院学报,1997,12(1):97-100.
    [18] 海东霞 . 系统聚类分类法在水土保持林林种分类中的应用 [J]. 水土保持科技情报,2000,(3):43-44.
    [19] 韩淑敏 , 谢平, 朱勇. 土地利用/ 覆被变化的水文水资源效应研究评述[J]. 水科学研究,2007,1(1):43-49.
    [20] 韩珍喜,乌志颜.对赤峰市黄土丘陵区最佳森林覆被率的探讨[J].内蒙古林业调查设计.1986(2):18-22.
    [21] 郝仕龙,陈南详,柯俊.黄土丘陵小流域土地利用景观空间格局动态分析[J].农业工程学报,2005,21(6):50-53.
    [22] 何固心.美国森林植被对河川径流量影响的研究[J].地理科学进展,1986,(1):35-40.
    [23] 王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):439-444.
    [24] 何鑫,李琼芳.马尔柯夫法在耕地质量动态评价中的应用[J].资源开发与市场,2004(1):9-10.
    [25] 贺缠生,傅伯杰,陈利顶,等。非点源污染的管理及控制[J].环境科学,1998,19(5):87-91.
    [26] 胡彩虹.黄河流域水文模型的分析比较研究[D].湖北:武汉大学,2004.
    [27] 胡慧璋.淳安新安江水库集水区最佳森林覆盖率的探讨[J].浙江林业科技.1988(8):21-25.
    [28] 胡震峰.土地利用与景观格局动态变化研究[J].科技情报开发与经济, 2003, 13(12): 143-145.
    [29] 黄家荣.用层次分析法调整三都县林种树种结构[J].四川林勘设计,1999,(4):24-27.
    [30] 贾丹,岳德鹏.北京地区风沙的现状、成因及防治对策[J].延边大学农学学报,2006,28(2): 140-144.
    [31] 金鑫,郝振纯,张金良.水文模型研究进展及发展方向[J].水土保持研究,2006,13(4):197-200.
    [32] 靳怀成.北京地区的水土流失及其防治[J].水土保持研究,2001,8(4):154-157.
    [33] 李昌峰,高俊峰.土地利用变化对水资源影响研究的现状和趋势[J].土壤,2002,(4):191-205.
    [34] 李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2): 211-224.
    [35] 李良厚.太行山南段石灰岩低山区植被构建主要技术研究[D].北京林业大学博士论文,2006.
    [36] 李文英,王冰,黎祜琛.栎类树种的生态效益和经济价值及其资源保护对策[J].林业科技通讯,2001(8):13-15.
    [37] 李晓明,黄金玲,王永安.湖南、湖北防护林林种划分及其防护技术参数的研究[J]. 中南林业调查规划,1996,(1):11-19.
    [38] 李秀彬.全球环境变化研究的核心领域——土地利用/覆盖变化的国际研究动向[J].地理学报,1996,51(6):553-557.
    [39] 李永生,李林英,郑智礼,等.太行山石灰岩区防护林体系布局结构调整[J].山西林业科技,2002,(4):7-11.
    [40] 李卓玲.辽河流域防护林体系工程林种结构确定的量化方法[J].内蒙古林业调查设计,1998,(增刊):61-64.
    [41] 林斯超.试论三江平原合理的森林覆被率[J].东北林业大学学报,1987,(1):97-103.
    [42] 刘德隅. 在长江防护林建设规则中划分林种类型的探讨[J].云南林业科技,1991, (2) :14-16.
    [43] 刘纪远.国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996.
    [44] 刘启慎,赵北亮,谭浩亮.太行山石灰岩低山区水土保持防护林高效空间配置研究[J].河南林业科技,2000,20(1):1-6.
    [45] 刘 盛 和 , 何 书 金 . 土 地 利 用 动 态 变 化 的 空 间 分 析 测 算 模 型 [J]. 自 然 资 源 学 报 ,2002.17(5):533-540.
    [46] 刘霞,张光灿,郭春利.中国防护林实践和理论的发展[J].防护林科技,2000,(1):36-38.
    [47] 刘新卫,陈百明,史学正.国内 LUCC 研究进展综述[J]土壤,2004,36(2):132-135.
    [48] 刘志韬.山西管涔山林区森林对径流的影响[J].水土保持通报,1981,(4):56-61.
    [49] 柳林俊 . 生态防护林树种选择和生产力因子数量化评价 [J]. 科技情报开发与经济,2004,14(11):211-212.
    [50] 龙广英,滕锡东,刘志强.浅谈造林中适地适树的树种选择运用[J].林业勘察设计,2001(3) :45.
    [51] 陆玲娣.中国蔷薇科绣线菊亚科的演化、分布兼述世界绣线菊亚科植物的分布[J].植物分类学报,1996,34(4):361-375.
    [52] 倪九派,李瑞雪,高明,等.三峡库区小流域生态调控的空间途径——以重庆市开县石碗溪小流域为例[J].资源科学,2005,27(7):125-132.
    [53] 宁朝枢,张清华. 试论太行山防护林分类系统[J].河北林学院学报,1992, (4) :297-301.
    [54] 欧阳惠,森林林冠截留效益计量的研究[J].科技通报,2001,17(4): 25-31.
    [55] 齐力旺,冯建成,韩素英,等.晋西山区防护林体系林种结构优化方案的研究[J].山西农业大学学报,1996,16(3):255-257.
    [56] 任宪威.树木学(北方本)[M].北京:中国林业出版社,2002:452-453.
    [57] 任志远,张艳芳.土地利用变化与生态安全评价[M].北京:科学出版社,2003.
    [58] 邵青还. 对近自然林业理论的诠释和对我国林业建设的几项建议 [J]. 世界林业研究,2003,16(6):1-5
    [59] 石丽萍.北京市林地数量变化及其驱动力研究[D].北京林业大学硕士论文,2006.
    [60] 石 培 礼 , 李 文 华 . 森 林 植 被 变 化 对 水 文 过 程 和 径 流 的 影 响 效 应 [J]. 自 然 资 源 学报,2001,16(5):481-487.
    [61] 史培军,宫鹏,李晓兵,等.土地利用/土地覆盖变化研究的方法与实践[M].北京:科学出版社,2000.
    [62] 史培军,江源,王静爱,等.土地利用/覆盖变化与生态安全响应机制[M].北京:科学出版社,2004.
    [63] 史玉虎,袁克侃. 鄂西三峡库区森林变化对河川径流泥沙的影响[J]. 北京林业大学学报,1998,20(6):54-58.
    [64] 宋朝枢,张清华.试论太行山防护林分类系统[J].河北林学院学报,1992,7(4):297-301.
    [65] 宋金平,彭萍.北京山区生态环境问题与建设思路[J].北京规划建设,2004,(1): 57-59.
    [66] 宋西德,刘粉莲,罗伟祥,等.西北黄土丘陵沟壑区防护林网络体系概念及其配置模式[J].西北林学院学报,2003,18(1):71-73.
    [67] 宋西德,罗伟祥,侯林.AHP 法在防护林体系优化结构研究中的应用[J].西北林学院学报,1997,12(4):41-47.
    [68] 孙枫,李生宝,蒋齐.宁夏盐池沙区生态经济型防护林体系林种树种优化比例研究[J].林业科学研究,2003,16(4):459-464.
    [69] 孙尚海,张淑芝.应用耗散结构理论配置水保林体系及其效益研究[J].中国水土保持,1995,(4):23-27.
    [70] 孙时轩.造林学[M].北京: 中国林业出版社, 2001.
    [71] 唐德瑞,何景峰,李根前,等.陕南低山丘陵区防护林体系主要林种树种功能优化研究[J].陕西林业科技,1994,(3):32-42.
    [72] 王兵,臧玲.我国土地利用/覆盖变化研究近期进展[J]地域研究与开发,2006,25(2):86-91.
    [73] 王大毫.丽江地区最佳森林覆盖率的探讨[J].云南林业调查规划.1986,(4):49-53.
    [74] 王 迪 海 , 唐 德 瑞 . 小 流 域 防 护 林 对 位 配 置 优 化 模 式 研 究 [J]. 山 东 农 业 大 学 学报,2000,31(1):67-70.
    [75] 王凤臻,尹秋浦,杜文峰.山东省最适区域森林覆盖率初探[J].林业资源管理.1999(3):25-27.
    [76] 王辉.景泰二期灌区林种结构优化分析[J].甘肃林业科技,1997,(3):18-21.
    [77] 王礼先 , 高甲荣 , 谢宝元 , 等 . 密云水库集水区生态经济分区研究 [J]. 水土保持通报,1999,19(2):1-6.
    [78] 王礼先,王斌瑞,朱金兆,等.林业生态工程学[M].中国林业出版社,2000.
    [79] 王良民等.我国落叶栎的地理分布[J].北京林学院学报,1985,(2):57-69.
    [80] 王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.
    [81] 王思远,刘纪远,张增祥,等.中国土地利用时空特征分析[J].地理学报,2001,56(6):631-639.
    [82] 王秀兰,包玉海.土地利用动态变化研究方法探讨[J]地理科学进展,1999,18(1):81-87.
    [83] 吴 秉 礼 , 石 建 忠 , 等 . 甘 肃 水 土 流 失 区 防 护 林 效 益 森 林 覆 盖 率 研 究 [J]. 生 态 学报.2003,23(6):1125-1137.
    [84] 吴炳生,祝小科.乌江流域防护林的林种分类研究[J].贵州农学院学报,1991, (1):99-106.
    [85] 吴晓莆 , 王志恒 , 崔海亭 , 等 . 北京山区栎林的群落结构与物种组成 [J]. 生物多样性,2004,12(1):155-163.
    [86] 吴孝钦,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32-34.
    [87] 吴征谧.中国植被[M].北京:科学技术出版社,1995.
    [88] 肖纪浩,侯广力,马勇,等.辽东水源涵养林体系林种结构规划可行性研究[J].辽宁林业科技,1999,(6):33-36.
    [89] 辛颖,赵雨森.水源涵养林水文生态效应研究进展[J].防护林科技,2004,(2):23-26.
    [90] 熊野威,鄂玉江.对森林覆盖率概念的补充与完善[J].技术经济,1998(11): 47-48.
    [91] 徐维浩.试论北京水土保持中的生态环境建设[J].生态经济,2001,(5):11-13.
    [92] 杨东升,王有和,高丽凤.多维适地适树造林的探讨[J].防护林科技,2001, (1):72-75.
    [93] 杨俊平.内蒙古合理森林覆盖率的初步探讨[J].内蒙古林业调查设计.1988, (2):18-22.
    [94] 杨祖达,廖显春,周新成,等.宜昌县生态经济型长江防护林体系林种结构布局的研究[J].中南林业调查规划,1994,(3):44-48.
    [95] 余坤勇,刘健,赖玫妃,等.基于防止土壤侵蚀为目标富屯溪最佳森林覆盖率的确定[J].陕西林业科技,2007,29(3):398-403.
    [96] 余新晓,于志民,王礼先,等.水源保护林培育经营管理评价[M].北京,中国林业出版社,2001.
    [97] 袁建平,蒋定生,甘淑.不同治理度下小流域正态整体模型试验——林草措施对小流域径流泥沙的影响[J].自然资源学报,2000,15(1):91-96.
    [98] 袁正科,周刚.黄塘小集水区生态经济型防护林林种布局研究[J].生态学杂志,1998,17(6):7-13.
    [99] 张鼎华.“近自然林业”经营法在杉木人工幼林经营中的应用[J].应用与环境生物学报,2001,6(2):219-223.
    [100] 张富,余新晓,景亚安,等.黄土高原水土保持防治措施对位配置研究[M].黄河水利出版社,2007.
    [101] 张光灿, 刘霞, 赵玫. 水土保持林体系结构及其保持水土功能综述[J]. 福建水土保持,1999,(3):18-20.
    [102] 张浩.适地适树的哲学意义[J].科学技术与辩证法,1993,10(2):4-6.
    [103] 张浩军,肖彬,王德雄,等.多目标决策在长防林建设中的应用及体系结构优化[J].湖南林业科技,2000,27(3):33-52.
    [104] 张华,张勃.国际土地利用灌盖变化模型研究综述[J].自然资源学报,2005,20(3):422-431
    [105] 张纪林,褚保金,孙明华.沿海平原农区森林覆盖率灰色线性规划的确定研究[J].江苏林业科技.2000,27(3):1-6.
    [106] 张健,陈林武,宫渊波.四川盆地防护林体系结构研究[J].西南林学院学报,1996,16(2):77-87.
    [107] 张健,宫渊波,陈林武.最佳防护效益森林覆盖率定量探讨[J].林业科学,1996,32(4):317-323.
    [108] 张 钰 , 刘 桂 民 , 马 海 燕 , 等 . 黑 河 流 域 十 地 利 用 与 覆 被 变 化 特 征 [J]. 冰 川 冻土,2004.26(6):740-746.
    [109] 章异平,徐军亮,康慕谊,等.近自然林业的研究进展[J].水土保持研究,2007,14(3):214-217.
    [110] 赵建华.基于 WetSpa 分布式流域水文模型的径流预报[D].广东:中山大学,2005.
    [111] 赵米金,徐涛.土地利用/土地覆被变化环境效应研究[J].水土保持研究,2005,12(1):43-47
    [112] 赵人俊. 流域水文模拟[M].北京:水利电力出版社,1984.
    [113] 中野秀章(李云森译). 森林水文学[M].北京:中国林业出版社,1983.
    [114] 钟哲科,柴锡周.丘陵红壤防护林树种优化模式选择[J].林业科技通讯,1994,(4):12-14.
    [115] 周 广 胜 , 王 玉 辉 . 土 地 利 用 / 覆 盖 变 化 对 气 候 的 反 馈 作 用 [J]. 自 然 资 源 学报,1999,14(4):318-322.
    [116] 周洪昌 , 王庆华 , 郭立群等 . 金沙江流域防护林树种选择与配置 [J]. 云南林业科技,1994,(3):24-30.
    [117] 周为荣.如东县最佳森林覆盖率的探讨[J].江苏林业科技,1989,(2):42-42.
    [118] 周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应[J].自然资源学报,2001,16(5):420-426.
    [119] 周浙昆.中国栎属的起源烟花及其扩散[J].云南植物研究,1992,14(3):227-236.
    [120] 朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置[J].北京林业大学学报,2002,24(5/6): 5-13.
    [121] 邹建文,曾志新,廖菊阳,等.层次分析法在湘北地区林种结构调整中的应用[J].湖南林业科技,2004,31(4):34-37.
    [122] Bernt Matheussen, Robin L Kirschbaum, Iris A Goodman, et al. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada) [J]. Hydrological Processes, 2000, 14(5):867-885.
    [123] Beven K J , Kirkby M J . Toward a simple physically based variable contributing area of catchment hydrology[ R] . Working paper No. 154, School of Geography , Univ Leeds ,UK,1979.
    [124] Beven K. J. How far can we go in distributed hydrological modling [J]. Hydrology and Earth System Sciences, 2005,5(1):1-12.
    [125] Beven KJ , Kirkby M J . A physically based variable contributing area model of basin hydrology [J ], Hydrol. Sci. Bull. , 1979 , 24 (1) : 43 - 69.
    [126] Bewket Woldeamlak, Geert Sterk. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia [J].Hydrological Process,2005,19:445- 458.
    [127] Bloschl G,G,Sivapalan M. Special issue on scale issues in hydrological modeling[J]. Hydrological Processes,1995,9(3-4):251-290.
    [128] Bonell M, Balek J. Recent and scientific developments and research needs in hydrological processes of the humid tropics[A].In: Bonell M, Hufschmidt M M, Gladwell J S. Hydrology and Water Management in the Humid Tropics [C].UNESCO, Paris, 1993.167- 260.
    [129] Bormann H,Diekk ruger B and Hauschild M. Impacts of landscape management on the hydrological behavior of small agricultural catchments[J]. Physics and chemistry of the earth, 1999, 24(4):291-296.
    [130] Bosch J M, Hewlett J D.A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration [J].Journal of Hydrology,1982,(103):323- 333.
    [131] Braud A IJ , Vich J Zuluaga, et al. Vegetation influence of runoff and sediment yield in the Audes region: observation and modeling[J]. Journal of hydrology, 2001, 254:124-144.
    [132] [Bruijnzeel L A. Hydrology of moist forests and the effects of conversion: A state of knowledge review[R].IHP-UNESCO Humid Tropical Programme, Paris, France, 1990.
    [133] Calder I R. Land use impacts on water resources [A].Background Paper No.1.In Land-water Linkages in Rural Watersheds [C].Electronic Workshop, FAO: Rome, 18 September- 27 October, 2000.
    [134] Ciarpica L, Todini E. TOPKAPI : a model for the representation of the rainfall runoff process at different scales [ J ] .Hydrological Processes ,2002 ,16(2) : 207~229.
    [135] D J Mitchell. The use of vegetation and land use parameters in modeling catchment sediment yield. In: J B Thornes (editor), Vegetation and erosion [M]. John Wiley and Sons,1990. 289 - 316.
    [136] Dakova SN Y,Uzonov D,Mandadjiev. Low flow-the river ecosystem’s limiting factor[J]. Ecological Engneering,2000,16(1):167-174.
    [137] Dawen Yang , Srikantha Herath. Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation[J]. Hydrological Processes, 2001,11: 2085-2099.
    [138] De Roo A P J,Schmuck G,Perdigao V. The influence of historic land use change and future planned land use scenarios on floods in the Oder catchment[J].Physics and chemistry of the earth, 2003, 28:1291-1300.
    [139] DeFries R, K N Eshleman. Land-use change and hydrologic processes: a major focus for the future [J].Hydrological Processes,2004,(18): 2183- 2186.
    [140] Dyhr-Nielsen M. Hydrological effect of deforestation in the Chao Phraya basin in Thailand [R].Paper presented at the International Symposium on Tropical Forest Hydrology and Application, Chiangmai,Thailand,11- 14 June 1986.
    [141] Eckhardt, K., and Arnold, J.G. Automatic calibration of a distributed catchment model[J]. Journal of Hydrology, 2001,251, 103-109.
    [142] Edwards K A. The water balance of the Mbeya experimental catchments [A].In: Blackie J R, Edwards K A, Clarke R T. Hydrological Research in East Africa[C].East Afr. Agric. For. J., 1979, 43: 231 - 247.
    [143] Elkaduwa W K B, Sakthivadivel R. Use of historical data as a decision support tool in watershed management: a case study of the Upper Nilwala Basin in Sri Lanka[R].Research Report 26.International Water Management Institute, Colombo, Sri Lanka,1998.
    [144] F H Bornann and GE Likens. Pattern and processes in a forested ecosystem [M]. Springer – Verlag, New York , 1979.
    [145] F. Bouraoui, S, Benabdallah, A. Jrad and G. Bidoglio. Application of the SWAT model on the Medjerda river basin (Tunisia) [J]. Physics and Chemistry of the Earth, 2005, 30:497-507.
    [146] Fischer.G. and G. K. Heilig. Population momentum and demand on land and water resources[M].WP-96-149.lnternatonallnstitute for Applied Systems Analysis: Laxenburg. Austria. 1996.
    [147] Fohrer N , Haverkamp S, Eckhardt K, et al. Hydrologic response to land use changes on the catchment scale. Physics and chemistry of the earth (B),2001,26(7-8): 577-582.
    [148] Freeze P A ,Harlan R L. Blue print for a physically based digital simulated hydrologic response mode[J ] . Hydro. Sci. ,Bull , 1969 ,9 :237 - 258.
    [149] H A Viles. The Agency of organic beings: A selective review of recent work in biogeomorphology. In : JB Thornes (editor) , Vegetation and erosion [M]. John Wiley and Sons , 1990. 5-24.
    [150] Hadidow latabadi , Morgan M G.Integrated assessment of climate change [J].Science,1993 ,259:1813-1932.
    [151] Hagemann S, Kleidon A. The influence of rooting depth on the simulated hydrological cycle of a GCM[J]. Physics and chemistry of the earth (B), 1999,26(7):775-779.
    [152] Hillbricht-llkow ska, Rybak J , Rzepecki M. Ecohydrological research of lake-watershed relations in diversified landscape[J]. Ecological Engineering, 2000,16(1):91-98.
    [153] Hornbeck J W , Adams M B, Corbett E S, et al. Long-term impacts of forest treatments on water yield: a summary for northeastern United States[J]. Journal of Hydrology, 1993,150:323-344.
    [154] Huslshoff RM. Landscape indices describing a Dutch landscape[J]. Landscape Ecol, 1995, 10(2):101-111.
    [155] J.A. Huisman, L. Breuer, H. G. Frede. Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change[J]. Physics and Chemistry of the Earth, 2004, 29: 749-758.
    [156] Janauer G A. Ecohydro logy: fusing concepts and scales [J]. Ecology, 2000, 16(1):9-16.
    [157] K. Holvoet, A. van Griensven, P. Seuntjens, P.A. Vanrolleghem. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT[J]. Physics and Chemistry of the Earth, 2005, 30: 518-526.
    [158] Kell B. Wilson. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agriculture and Forest Meteorology,2001,106(2):153-168.
    [159] Kleidon, HeimannM. Assessing the role of deep rooted vegetation in the climate system wity model simulations: mechanism, comparison to observations and implications for Amazonian deforestation[J]. Climate Dynamics, 2000,16:183-199.
    [160] Klijn F,W itte J-P M. Eco-hydrology: Groundwater flow and site factors in plant ecology[J]. Hydrogeology Journal,1999, 7:65-77.
    [161] Lkrup J K, Hansen E. Effect of land use on the streamflow in the southwestern highlands of Tanzania [A].In: Rosbjerg D, Boutayeb N, Gustard A, et al. Sustainability of Water Resources under Increasing Uncertainty (Proceedings of the Rabat Symposium S1, 1997)[C].IAHS Publication no.240,1997.227- 236.
    [162] M B Abbott , J C Ref sgaara. Distributed Hydrological Modelling [M]. Kluwer Academic Publishers ,1996.
    [163] M. A. Lenzi , M. Di Luzio. Surface runoff, soil erosion and water quality modeling in the Alpone watershed using AGNPS integrated with a Geographic Information System[J]. European Journal of Agronomy, 1997, 6:1-14.
    [164] Marcos Heil Costa, Aurélie Botta, Jeffrey A Cardille. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia [J].Journal of Hydrology, 2003,(283): 206 - 217.
    [165] Mingbin Huang, Mingan Shao, Yushan Li. Comparison of a modified statistical-dynamic water balance model with the numerical model WAVES and field measurements[J]. Agricultural water management, 2001, 48:21-35.
    [166] Misgana K. Muleta, John W. Nicklow. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J]. Journal of Hydrology, 2005, 306: 127-145.
    [167] Naef F, Scherrer S,Weiler M.A process based assessment of the potential to reduce flood runoff by land use change[J]. Journal of hydrology, 2002, 267:74-79.
    [168] Pereira H C. Land Use and Water Resources—In Temperate and Tropical Climates [M]. Cambridge: Cambridge University Press, 1973.
    [169] Qian W C. Effects of deforestation on flood characteristics with particular reference to Hainan Island, China [J].International Association of Hydrological Sciences Publication,1983,(140):249- 258.
    [170] Ramadhar Singh, K.N. Tiwari and B.C. Mal. Hydrological studies for small watershed in India using the ANSWERS model[J]. Journal of Hydrology, 2006,318:184-199.
    [171] Richey J E , Nobre C ,Deser C. Amazon river discharge and climate variability[J].Science , 1989,246:101-103
    [172] Rodriguez-Iturbe, Ecohydrology: A hydrologic perspertive of climate-soil-vegetation dynamics[J]. Water resources research, 2000,36(1):3-9.
    [173] Sahin V, Hall MJ. The effects of afforestation and deforestation on water yields [J].Journal of Hydrology, 1996, (178):293- 309.
    [174] Sandra van der Linden, Ming-ko Woo. Application of hydrological models with increasing complexity to subarctic catchments[J]. Journal of Hydrology,2003,270:145-157.
    [175] Sandstrem K. Forests and Water-Friends or Forest Hydrological Implications of Deforestation and Land Degradation in Semi-arid Tanzania [D]. PH.D.thesis. Linkeping Studies in Arts and Science-120.Department Theme Research, University of Linkeping: Sweden, 1995.
    [176] Sandstrom K. Forest Can Provide Waer: A Widespread Story or A Science affect[J]. American Biology,1998, 27(2):132-138.
    [177] Schlesinger W H, Reynolds J F, Gunningham G L , et al. Biological feedbacks in global desertification [J]. Science,1990, 247:1043-1048.
    [178] Shao QH. A boom of “nature-approximating forestry” in Middle Europe [J].World Forest Res, 1991,4(4):8-15
    [179] Smith R E,Scott D F. The effects of afforestation on lowflows in various regions of South Africa[J].Water SA,1992,18(3):185- 194.
    [180] The IGBP in Action: Work Plan 1994-1998[R].IGBP Report No.28.Stochkholm:IGBP, 1994.
    [181] Turner MG, Ruscher GL. Changes in landscape patterns in Georgia, USA[J]. Landsape Ecol,1998,1(4):241-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700