生物滤池与膜生物反应器处理微污染源水对比试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体污染的加剧,生物处理工艺在微污染水源水处理中的应用逐渐受到人们重视。对松花江水质调查分析表明,松花江微污染水源水水质污染物主要以氨氮、高锰酸盐指数、苯乙烯为主。本文采用三种生物处理工艺:生物活性炭滤池、生物沸石滤池以及膜生物反应器(MBR),考察了对污染物氨氮、高锰酸盐指数、DOC、苯乙烯和硝基苯的去除效果,并从技术经济上对比了生物活性炭滤池和微滤膜生物反应器的应用前景。
     试验结果表明,生物沸石滤池启动时期对氨氮去除率高达90%以上,随着运行时间的延长,去除率呈现逐渐降低的趋势,运行后期由于生物作用,氨氮去除率稳定在20~30%左右;对高锰酸盐指数平均去除率为17.04%;对苯乙烯去除率达到74.3%;基本不能去除硝基苯。生物活性炭滤池对氨氮去除率保持在40%左右;与生物沸石滤池相比,活性炭滤池对高锰酸盐指数有较高的去除率;对苯乙烯和硝基苯去除率均在95%以上。
     本文对生物滤池亚硝酸盐积累问题进行了探讨,研究得出进水氨氮浓度,pH值以及溶解氧是影响亚硝酸盐积累的关键因素。pH值超过7.6,亚硝酸盐沿着水流方向呈逐渐增加的趋势,pH值在8.0附近,亚硝酸盐积累出现最大值;进水氨氮浓度为超过4mg/L时,能明显的观察到亚硝酸盐积累;气水同向流时,进水溶解氧越低,亚硝酸盐积累现象越明显;气水逆向流时,基本上不会发生亚硝酸盐积累;在相同条件下,生物沸石滤柱中亚硝酸盐积累更为严重,通常是生物活性炭滤柱亚硝酸盐增加值的2~3倍。
     MBR工艺具有较长的污泥停留时间,使得硝化细菌能够成为优势菌种,因此有很高的氨氮去除率,并且不会发生亚硝酸盐积累,膜孔的截留作用以及MBR反应池内大量微生物的吸附和降解作用,保证了MBR对有机物良好的去除效果,生物作用以及曝气吹脱作用使得MBR对苯乙烯和硝基苯基本能完全去除。
     经济技术分析表明,以12000m3/d为设计流量,生物活性炭滤池工艺和MBR工艺的吨水投资分别为140.08元/t、714.10元/t;单位制水成本分别为0.106元/m3、0.508元/m3。在工程总投资中,活性炭滤料和膜组件的购置费占的比例较大,分别为38.4%和87.5%,昂贵的组件材料成本限制了两种工艺的广泛推广。MBR工艺对污染物去除效果有着一般生物处理无可比拟的优势;从经济上考虑,目前生物滤池去除微污染源水污染物较有优势。
The continuous deterioration of water environment presents great difficulties and challenges to the capability and performance of conventional water treatment processes, therefore, broad concern has been obtained on biotreatment of micro-polluted source water. The research on the water quality of Songhuajiang river demonstrated that the main pollutants of this river are ammonia, permanganate index and styrene. In order to evaluate the efficiency on organic pollutant removal, three biotreatment processes, including bacterial activated carbon (BAC) filtration treatment, bacterial zeolite filtration treatment and membrane bioreactor (MBR), were employed in our experiments. In the mean time, application prospects of the two biotreatments, BAC filtration and MBR, were contrasted from angles of economic and technical.
     The results demonstrated that the efficiency of ammonia removal on bacterial zeolite filtration was higher than 90% during the start-up, along with the running time extension, the removal rate of ammonia decreased gradually, due to the adsorption and biodegradation of ammonia by bacterial, the removal rate kept at 20~30% after two-month running; the average removal rate on the permanganate index and styrene were 17.04% and 74.3%, respectively; there was almost no nitrobenzene removal rate on bacterial zeolite filtration. The removal rate of ammonia on BAC filtration kept at 40% around; compared to the bacterial zeolite filtration, BAC filtration had higher removal rate of permanganate index, styrene and nitrobenzene.
     Nitrite accumulation was studied in this paper. Influent NH4+-N concentration, pH value, and dissolved oxygen are three important influencing factors for nitrite accumulation. This paper will discuss the trends of nitrite generation affected by each of the three factors: when pH value is over 7.6, nitrite concentration increases in the column along the water-flow direction, and nitrite concentration arrives at the maximum value when pH is up to 8.0; nitrite accumulation could be observed obviously when NH4+-N concentration is higher than 4mg/L; in air-water cocurrent fashion, with the decrease of influent dissolved oxygen, the nitrite accumulation becomes gradually obvious, while in
引文
1. 索丽生. 我国可持续发展水资源战略. 中国科协 2001 年学术年会特邀报告, 2001.
    2. 刘 毅, 董 藩. 中国水资源管理的突出问题与对策. 中南民族大学学报(人文社会科学版). 2005, 25(1):112~118.
    3. 黄仲杰. 我国城市供水现状、问题与对策. 给水排水. 1998, 24(2):18~20.
    4. 肖羽堂, 许建华, 张东. 我国水资源与水工业的可持续发展. 长江流域资源与环境. 1999, 8(1):50~52.
    5. 国家环境保护总局. 2004 年中国环境状况公报.
    6. 王颖. 松花江水污染状况与对策. 黑龙江水专学报. 2005, 32(3):81~82.
    7. 2004 年黑龙江省环境统计年报.
    8. 哈尔滨市环境保护局. 哈尔滨市 2004 年环境状况公报.
    9. 马健, 刘玉萍, 刘继永等. 水源有机污染对饮用水质的影响研究. 北方环境. 2005, 30(1):30~33.
    10. 肖羽堂, 张晶晶, 吴鸣, 刘辉, 张东, 许建华. 我国水资源污染与饮用水安全性研究. 长江流域资源与环境. 2001, 10(1):51~59.
    11. H. P. Chu, J. H. C. Wong, X. Y. Li. Trihalomethane Formation Potentials of Organic Pollutants in Wastewater Discharge. Wat. Sci. Tech. 2002, 46(11):401~406.
    12. R. P. Galapate, E. Agustiani, A. U. Baes, K. Ito, M. Okada. Effect of HRT and MLSS on THM Precursor Removal in the Activated Sludge Process. Wat. Res.1999, 33(1):131~136.
    13. R. P. Galapate, A. U. Baes, K. Ito, K. Iwase, M. Okada. Trihalomethane Formation Potential Prediction Using Some Chemical Functional Groups and Bulk Parameters. Wat. Res. 1999, 33(11):2555~2560.
    14. 岳舜琳. 给水中的氨氮问题. 净水技术. 2001, 20(2):12~15.
    15. 叶 辉, 许建华. O3-BAC工艺处理高氨氮原水的问题探讨. 水处理技术. 2001, 27(5):300~302.
    16. 李 田, 严煦世. 固定膜光催化氧化反应器深度净化自来水研究. 中国给水排水. 1996,12(3):7.
    17. Mohhamed S Siddiqui. Factors Affecting DBP Formation during Pzone BromideReactions. AWWA. 1993, (12):63~72.
    18. 申石泉, 叶恒朋, 陆少鸣, 许超伟, 林浩添, 毛卫兵. “三氮”在深度处理中的去除与转化. 中国给水排水. 2004, 20(1):53~54.
    19. 地面水污染与居民恶性肿瘤死亡关系调查. 卫生研究. 1989, 18(4):20~23.
    20. 郑相宇, 张太平, 刘志强, 潘伟斌. 水体污染物“三致”效应的生物监测研究进展. 生态学杂志. 2004, 23(4):140~145.
    21. 朱惠刚. 水中有机致突变物综合评价指标探讨. 上海环境科学. 1994, 14(10):44~46.
    22. 龙德环. 我国生活饮用水的水质状况与管理思路. 中华预防医学杂志. 1996, 30(1):3~5.
    23. 农清清, 覃倩萍, 张志勇, 等.南湖水质富营养化现状及致变性研究. 广西医科大学学报. 2002, 19(1):58~59.
    24. 张力图, 张丽生, 郭丽霞, 等. 肝癌高发区饮用塘水浓缩物诱发人肝细胞非程序 DNA 合成的研究. 癌变·畸变·突变. 1997, 9(2):90~92.
    25. 王琳, 杨玉楠, 王宝贞. 饮用水中致突变性去除效果的研究. 中国环境科学. 2001, 21(4):306~308.
    26. 唐明德, 陈律, 易义珍. 某饮用水氯化消毒前后不同阶段水样的致突变性研究. 癌变·畸变·突变. 2000, 12(3):151~153.
    27. 胡斌, 段昌群, 李琴等. 昆明盘龙江水质的突变性研究. 重庆环境科学. 1997, 19(6):14~18.
    28. 危险品档案库主页. http://www.ep.net.cn/msds/chinese.htm
    29. 邱志群 , 舒为群 . 环境内分泌干扰物浅析 . 重庆环境科学 . 2001 , 23(5):67~69.
    30. 刘先利, 刘 彬, 邓南圣. 环境内分泌干扰物研究进展. 上海环境科学. 2003, 22(1):57~63.
    31. 任仁, 黄俊. 哪些物质属于内分泌干扰物. 安全与环境工程. 2004,11(3):7~10.
    32. 世界资源研究所, 联合国环境规划署, 联合国开发计划署等编. 世界资源报告—环境变化与人体健康(1998~1999). 北京: 中国环境科学出版社. 1999,3.
    33. J. W. Cook, E. C. Dodds, C. L. Hewtt. A Synthetic Oestrus-exciting Compound Nature. 1933, 131:56~57.
    34. E. C. Dodds, W. Lawson. Synthetic Oestrogenic Agents without the Phenanthrene Nucleus. Nature. 1936, 137: 996.
    35. 中国化工商务网. 全球苯乙烯市场需求增长[EB/OL] .http://www.tradenet.cn/html/2004/07/20040705101156, 2004.
    36. 李铭慧. 苯乙烯储运条件研究. 南京工业大学硕士论文. 2005.
    37. 王占生,刘文君. 微污染饮用水处理. 北京: 中国建筑工业出版社. 1999.
    38. 王华, 吕锡武. 饮用水处理技术现状及研究进展. 江苏环境科技. 2004, 17(2):41~42.
    39. 邵涛. 饮用水中有机物的危害及对策. 江西化工. 2005, 3:55~56.
    40. 于洪斌, 丁蕴铮. 活性炭在水处理中的应用方法研究与进展. 工业水处理. 2002, 3(8).12~15.
    41. 黄晓东, 谭为民, 曹天洪, 方俊峰, 王占生. 自来水厂亚硝酸盐问题及处理方法的试验研究. 给水排水. 1998, 24(12):23~25.
    42. 叶辉, 陈翼孙. O3-BAC深度处理黄浦江污染原水中试研究. 给水排水. 2000, 26(12):18~22.
    43. 张捍民, 王宝贞, 王琳. 颗粒活性炭柱与淹没式中空纤维膜过滤装置联用的试验研究. 给水排水. 2001, 27(5): 33~37.
    44. S. Villaverde, F. Fdz-Polanco, P. A. Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters. Start-up Influence. Wat. Res. 2000, 34(2):602~610.
    45. 中国科学院地质研究所. 沸石矿物与应用研究. 北京: 科学出版社, 1979.
    46. O. Lahav, M. Green. Bioregenerated Ion-exchange Process: the Effect of the Biofilm on Ion-exchange Capacity and Kinetics. Water S A. 2000, 26(1): 51~57.
    47. B. Gisvold, H. Odegaard, M. Follesdal. Enhancing the Removal of Ammonia in Nitrifying Biofilters by the use of a Zeolite Containing Expanded Clay Aggregate Filtermedia. Wat. Sci. Tech. 2000, 41(9): 107~114.
    48. O. Martin, S. Ivan. Multipurpose Filters with Ion-exchanger for the Equalization of Ammonia Peaks. Wat. Sci. Tech. 1995, 32(7):199~206.
    49. B. Beler-Baykal. Clinoptilolite and Multipurpose Filters for Upgrading Effluent Ammonia Quality under Paek losds. Wat. Sci. Tech. 1998, 37(9):235~242.
    50. B. Beler-Baykal, O. Martin, S. Ivan. Rapid Communication Post Equalization of Ammonia Peaks. Wat. Res. 1994, 28(9): 2039~2042.
    51. 邵刚. 膜法水处理技术及工程实例. 北京: 化学工业出版社, 2002.
    52. 周云, 何义亮. 微污染水源净水技术及工程实例. 北京: 化学工业出版社, 2003.
    53. 许保玖. 给水处理理论. 北京: 中国建筑工业出版社. 2000.
    54. Boris Lesjean, Regina Gnirss, Christian Adam. Process Configurations Adapted to Membrane Bioreactors for Biological Phosphorous and Nitrogen Removed. Desalination. 2002, 149: 217~224.
    55. Tatsuki Ueda, J. Nigel, Horan. Fate of Indigenous Bacteriophage in a Membrane Bioreactor. Wat. Res. 2000, 34(7): 2151~2159.
    56. E. B. Müller, A. H. Stouthamber, H. W. Verseveld, D. H. Eikelboom. Aerobic Demostic Wastewater Treatment in a Pilot Plant with Complete Sludge Retention by Crossflow Filtration. Wat. Res. 1995, 29: 1179~1189.
    57. Alfieri Pollice, Giuseppe Laera, Massimo Blonda. Biomass Growth and Activity in a Membrane Bioreactor with Complete Sludge Retention. Wat. Res. 2004, 38: 1799~1808.
    58. 黄显怀, 王占生等. 巢湖原水生物接触氧化预处理的研究. 给水排水. 1996, 22 (8):15~18.
    59. Hirotaka Fujita, Jun Izumi, Masaki Sagehashi, Takao Fujii, Akiyoshi Sakoda. Adsorption and Decomposition of Water-dissolved Ozone on High Silica Zeolites. Wat. Res. 2004, 38:159~165.
    60. M. Rozic, S. Cerjan-Stefanovic, S. Kurajica, V. Vancina and E. Hodzic. Ammoniacal Nitrogen Removal From Water by Treatment with Clays and Zeolites. Wat. Res. 2000, 34(14):3675~3681.
    61. Ori Lahav, Michal Green. Ammonium Removal Using Ion Exchange and Biological Regeneration. Wat. Res. 1998, 32(7):2019~2028.
    62. Michal Green, Adriaan Mels, Ori lahav, Sheldon Tarre. Biological-ion Exchange Process for Ammonium Removal from Secondary Effluent. Wat. Sci. Tech. 1996, 34(1~2):449~458.
    63. A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. Inhibition of Nitrification by Ammonia and Nitrous Acid. J.W.P.C.F. 1976, 48(5): 835~852.
    64. J. E. Alleman. Elevated Nitrite Occurrence in Biological Wastewater Treatment Systems. Wat. Sci. Tech. 1984, 17: 409~419.
    65. S. Villaverde, P. A. Garcia, F. Fdz-Polanco. Influence of pH over Nitrifying Biofilm Activity in Submerged Biofilters. Wat. Res. 1997, Vol. 31(5):1180~1186.
    66. U. Abe1ing, C. F. Seyfried. Anaerobic-aerobic Treatment of High-strength Ammonium Wastewater Nitrogen Removal via Nitrite. Wat. Sci. Tech. 1992, 26(5~6):1007~1015.
    67. J. E. Alleman. Elevated Nitrite Occurrence in Biological Wastewater Treatment Systems. Wat. Sci. Tech. 1984, 17:409~419.
    68. J. M. Garrido, W. A. J. van Benthum, M. C. M. van Loosdrecht, J. J. Heijnen. Influence of Dissolved Oxygen Concentration on Nitrite Acumulation in a Biofilm Airlift Suspension Reactor. Biotechnol. Bioeng. 1997, 53:168~178.
    69. 张东, 许建华, 刘辉. 微污染原水的生物接触氧化预处理研究. 中国给水排水, 2000, 16(12):6~9.
    70. H. Tanaka, I. J. Dunn. Kinetics of Biofilm Nitrification. Biotechnol. Bioeng. 1982, 24: 669~689.
    71. J. H. Hunik, J. Tramper, R. H. Wijffels. A Strategy to Scale up Nitrification Processes with Immobilized Cells of Nitrosomonas Europaea and Nitrobacter Agilis. Bioprocess Eng. 1994, 11: 73~82.
    72. C. Picioreanu, M. C. M. van Loosdrecht, J. J. Heijnen. Modelling the Effect of Oxygen Concentration on Nitrite Accumulation in a Biofilm Airlift Suspension Reactor. Wat. Sci. Tech. 1997, 36(1):147~156.
    73. 钱易. 现代废水处理新技术. 北京: 中国科学技术出版社, 1993.
    74. 邓慧萍, 吴国荣, 张玉先. 沸石和活性炭除氨氮、有机物的互补作用. 中国给水排水. 2004, 20(5):50~52.
    75. Francisco Villaca?as, Manuel Fernando R. Pereira, José J.M. órf?o, José L. Figueiredo. Adsorption of Simple Aromatic Compounds on Activated Carbons. Journal of Colloid and Interface Science. 2006, 293:128~136.
    76. Philipp Bergauer, Pierre-Alain Fonteyne, Nicole Nolard, Franz Schinner, Rosa Margesin. Biodegradation of Phenol and Phenol-related Compounds by Psychrophilic and Cold-tolerant Alpine Yeasts. Chemosphere. 2005, 59:909~918.
    77. 吴献花, 孙石, 邵丹等. 苯乙烯微生物降解机理的研究进展. 生物技术. 2004, 14(6):79~82.
    78. 郑金来, 李君文, 晁福寰. 苯胺、硝基苯和三硝基甲苯生物降解研究进展. 微生物学通报. 2001, 28(5):85~88
    79. X. Y. Li, H. P. Chu. Membrane Bioreactor for the Drinking Water Treatment of Polluted Surface Water Supplies. Wat. Res. 2003, 37(19): 4781~4791.
    80. L. S. Bell, J. F. Devlin, R. W. Gillham, P. J. Binning. A Sequential Zero Valent Iron and Aerobic Biodegradation Treatment System for Nitrobenzene. Journal of Contaminant Hydrology. 2003, 66:201~217.
    81. Dong Soo Lee, Sang Do Park. Decomposition of Nitrobenzene in Supercritical Water. Journal of Hazardous Materials. 1996, 51:67~76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700