实验用小型猪种群净化技术及其不同模型的建立和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国缺乏标准化的实验用猪和系统的生物安全控制体系成为制约实验猪用于病原致病性研究、人类疾病模型的培育,作为生物反应器参与人类重要蛋白的生产、以及作为人类异种器官/组织/细胞移植供体等的研究开发、应用工作。因此,开展我国特有实验用小型猪生物安全控制技术研究,培育小型猪净化种群,提出我国实验用小型猪微生物学质量标准,对于完善我国实验用小型猪的理论与技术体系,满足生物医学研究对标准化实验用小型猪的需求具有重要意义。
     本研究对巴马小型猪进行系统的微生物学质量控制技术研究,用获得的SPF小型猪进行了猪的疾病人工感染模型和人肠道菌群相关性仔猪模型的建立和应用研究。
     1、实验用小型猪微生物学质量控制技术研究
     实验用小型猪安全控制方法的研究试验群体为20头母猪规模,年存栏350头左右,规定控制的疾病为慢性传染性、疫苗不易控制的疾病,主要包括:猪喘气病(猪肺炎支原体)、猪传染性萎缩性鼻炎(支气管败血波氏杆菌)、猪伪狂犬病(猪伪狂犬病病毒)、猪传染性胃肠炎(猪传染性胃肠炎病毒)、猪痢疾(猪痢疾密螺旋体)、猪流行性腹泻(猪流行性腹泻病毒)、猪蓝耳病(猪繁殖与呼吸综合症病毒)、猪细小病毒病(猪细小病毒)、猪瘟(猪瘟病毒)、体外寄生虫等,控制的主要方法是种源控制(剖腹产引种)、环境控制、人员、车辆、物品控制、鼠鸟蚊蝇的控制、饲料饮水控制以及化验监测等,形成了一个人工屏障,实现适宜实验用小型猪繁殖生长的生物安全环境。试验期3年,实验猪1016头,成活965头,总成活率95.0%,接近世界先进水平,除未发生规定控制的七种特定病原外,也杜绝了其它二十几种急慢性传染病的发生。试验表明,只要认真坚持小型猪的安全防疫措施,实验用小型猪的安全保护是完全可以做到的。
     2、实验用小型猪病原微生物、寄生虫等级及监测标准的制定
     2001年8月29日国家技监局批准的2个国家标准《实验动物微生物学等级及监测》(GB14922.2 2001)和《实验动物寄生虫学等级及监测》(GB14922.1-2001)主要适用于小鼠、大鼠、兔、豚鼠、地鼠等。不适用于小型猪的微生物学等级划分和监测。鉴于目前国内多家小型猪生产和研究单位需要申报实验动物许可证,同时需要向生农医药各研究领域提供标准的实验用小型猪,而苦于没有国家标准可以参照。甚至找不到一个地方标准。已不适应目前实验用小型猪研究和应用的蓬勃发展,亟需制定小型猪微生物、寄生虫等级及监测国家或行业标准,以适应目前小型猪研究和应用的飞速发展。
     本人在查阅相关国家标准库和调研各地小型猪研发情况后,向国家技监局递交了相关提案,并完成标准草案。在本标准中,规定了实验用小型猪的定义、等级划分以及各级实验用小型猪的病原微生物、寄生虫监测规程等。
     3、SPF级小型猪全人工哺育技术研究
     实验1:小型猪剖腹取胎手术的研究:猪的剖腹取胎手术是获得无菌仔猪的途径。无菌仔猪的获得可采用子宫摘除手术或剖腹产手术两种方法。猪剖腹产手术效果与麻醉方法密切相关。实验2:SPF级小型猪的全人工哺育试验:为检验所研制的人工乳的的饲养效果,在隔离器饲养环境中探索小型猪的全人工哺育技术,并与自然哺乳的仔猪的生长性能、存活率、采食量、饲料转化率、腹泻率和血清生化指标进行比较;结果表明:用自行研制的人工乳配合科学管理,完全可以生产出合格的SPF级实验用小型猪。
     4、SPF仔猪肠道菌群结构分析
     目的:对SPF(Specific Pathogen Free)仔猪断奶前后的肠道菌群组成进行动态监测,并以普通饲养仔猪(自然分娩)为对照作相关分子微生物生态学分析。方法:利用剖腹取胎的方式将仔猪从母体子宫中取出放于屏障系统中饲养,于7日龄时进行补饲,14日龄断奶,分别于10日龄、16日龄和22日龄以及32日龄采集仔猪新鲜粪便样品。提取粪便样品中细菌总DNA,获得其ERIC-PCR指纹图谱,再将其中一个样品的ERIC-PCR产物以地高辛标记为混合探针通过杂交对指纹图谱上DNA条带序列的异同进一步比较。结果:SPF仔猪和普通仔猪在断奶后肠道菌群的组成发生较大变化,而且SPF仔猪的肠道菌群和普通仔猪有显著差异。
     5、SPF小型猪生长发育规律和血液生理生化指标变化
     选用50头10~150日龄的SPF巴马小型猪,从前腔静脉采血,测定血液常规指标、血浆激素水平和生化指标。结果表明,随着SPF巴马小型猪的生长和发育,血液中的激素水平及各项生理生化指标也发生相应的变化。具体如下:
     Ⅰ生长:SPF巴马小型猪早期的生长速度较快,后期较慢。
     Ⅱ激素水平:血浆中GH以10日龄最低,120日龄最高;T3前期较高,后期较低,20日龄最高;T4以60日龄最低,90日龄最高。TSH以80日龄、150日龄最高;Ins以30日龄、100日龄最高,40日龄最低;Glu在前期较高,之后逐渐下降,70日龄波动之后继续下降,100日龄达最低;Cor浓度上下波动。
     Ⅲ生化指标:血糖前期较高,后期较低,70日龄极显著高于10日龄、80~150日龄;BUN在30日龄时最高;GPT活性在70日龄、80日龄达到峰值。
     Ⅳ血液常规指标:RBC、Hb、HCT均在90日龄达最高值;40日龄的WBC极显著高于其它日龄;EOF最大抗力10~80日龄较为稳定,140日龄、150日龄高于其它日龄(P<0.01),10日龄、20日龄、140日龄和150日龄的最小抗力较大,均高于其它日龄(P<0.01);ESR速度后期比前期快。
     6、TGEV不同途径感染SPF仔猪后病毒消长规律的研究
     为确立TGEV的传染途径,定植部位以及猪感染后,病毒在猪各个脏器内的消长规律,将TGEV分别通过滴眼、气管注射和口服的方式对25日龄的SPF仔猪进行攻毒,至攻毒后24h起每天颈静脉放血致死仔猪一头,采取血液及胃、十二指肠、空肠、回肠、肺脏、肺淋巴结、肠道淋巴结、心脏、气管、扁桃体、肝脏和脾脏等组织,将组织制成冰冻切片进行免疫荧光抗体染色,在荧光显微镜下观测结果。同时取所有被检组织提取RNA,用RT-PCR方法检测病毒。另外,还用ELISA方法检测仔猪血液内抗体效价的变化。主要结果如下:
     Ⅰ经眼粘膜攻毒:攻毒后仔猪表现正常,剖检除肺脏表现苍白外,其他组织器官均无肉眼可见的病理变化,免疫荧光试验结果均为阴性;RT-PCR只在第30天的肺和空肠检测到病毒,其它组织则均为阴性;ELISA检测攻毒后前20天仔猪血液抗体效价一直为可疑,OD值最低为0.21,最高为0.30,但到第22天抗体效价开始升高,第30天升至0.82。
     Ⅱ经呼吸道攻毒:攻毒后24h实验猪出现呼吸道症状,三天后耐过,但均未出现消化道症状。剖检可见不同程度的肺部病理变化。攻毒后24h气管(持续8天)和肺脏样品(持续30天)的IFA呈阳性,肺淋巴结(5-30天)和脾脏(2-5天))样品也为阳性。RT-PCR结果与IFA结果基本一致。抗体效价至第4天(0.40)开始随着时间的延长而增高,最高升至1.41。IFA和RT-PCR在消化道系统中始终未检出TGEV。
     Ⅲ经消化道攻毒:攻毒3天后四头仔猪即开始发生水样腹泻,粪便呈黄色并夹有未消化的凝乳块;分别于第6、9、17天死亡三头。剖检可见明显的肠道病变,其中3头有不同程度的肺脏病变。攻毒后48小时十二指肠、空肠、回肠以及肠系膜淋巴结样品的IFA即呈阳性,随着时间的延长,阳性反应程度增加,并持续存在。在扁桃体(2-15天)、脾脏(3-5天)、直肠(4-30天)、腹股沟淋巴结和颌下淋巴结(6-30天)、气管(15-18天)和肺脏(25-30天)中都可检测到阳性。RT-PCR检测结果与IFA结果一致。抗体效价至第4天(0.33)开始随着时间的延长而增高。最高升至1.54。结果显示口服TGEV后,病毒可在肠道、呼吸道、扁桃体中增殖。
     7、HFA仔猪模型建立研究
     建立人肠道菌群相关(HFA)动物模型,对研究肠道微生物和消化道健康及疾病关系、食品和药物安全评价等均有很重要意义。本研究以5窝SPF巴马小型猪为研究对象,初步探索了人肠道微生态相关仔猪模型(Human Flora-Associated miniature piglet model)的建立技术。
     对5头临产母猪进行无菌剖腹产手术,将新生仔猪放入屏障系统全人工哺育,手术成功率100%;新生仔猪前三天每日每头口服接种1ml供体菌悬液,第四天到第十天每隔一天接一次,于仔猪5日龄、9日龄、12日龄时收集仔猪粪便,-70℃冻存待检测。通过ERIC-PCR指纹图谱技术和微生物群落分子杂交实验表明,在屏障系统内,人肠道菌群能够部分定植于小型猪仔猪肠道内,并且在两周内保持相对稳定,个体间差异极小。
1. The study on the safety-control technology of SPF mini-pigThe study on the safety-control techniques of SPF mini-pig was carried out on a herd of the scale of 20 sows, with the amount of livestock on hand 350 a year. We basically aim to control the chronic infectious disease on which the vaccines have low effect, including: Mycoplasma Pneumonia of Swine, Atrophicrhintis, Swine dysentery, Pseudorabies, Transmissible gastroenteritis of pigs, etc. The main control method is through the control of the source (by Caesarean birth), environment, personnel, vehicles, articles, rodents, birds, flies and other insects, feeds and water, and the assay monitors. We realized the favourable environment of bio-security for the SPF mini-pig through setting up an artificial barrier. The experiment continued on three years with 1016 pigs, among which the total survival amount was 965 (the total survival rate is 95%). Moreover, we have eliminated two decades of acute or chronic infectious disease besides the 7 aimed specific pathogenies. The experiment indicates that as long as we strictly adhere to the safety epidemic preventive measures, the protection of SPF mini-pig is definitely reachable.2. Grade of pathogenic microorganism and parasite for experimental mini-pigs and its monitoring StandardsThe two national standards《The microorganism grading and monitoring for experimental animals》(GB14922.2 2001 ),and《The parasite grading and monitoring for experimental animals》(GB14922.1 - 2001) authorized by the National Technical Supervise Bureau on Aug, 29th, 2001 are mainly used with the aspect of rodents. However, the standards could not serve to the microorganism classification or monitoring for the mini-pig. Given that at present more and more domestic mini-pig producers or institutions require the experimental animal license to supply the standard experimental pigs but have no national standard to refer to, it is high time that we should constitute the specific standards or criterion for the mini-pig with the aspect of microorganism and parasite grading and monitoring.
     After looking up to the relevant national standards and making sound investigation of the research and development status of the mini-pig, we submit National Technical Supervise Bureau the overture and make the standard draft. In this standard, we prescribe the definition, grading of the experimental mini-pig and the monitoring regulation of the pathogenic microorganism and parasite for them.
     3. The entirely artificial nursing experiment of SPF mini-pig
     The caesarean operation is the route to obtain the sterile piglets. The effect of the operation is largely relevant to the anaesthesia methods.To verify the feeding effect of the artificial milk, we adopted an entirely artificial nursing technology for the mini-pig in isolated environment. We compared its growth performance, livability, feed intake and conversion efficiency, blood physiological and biochemical parameters with conventional natural delivery piglets. The result indicated that we could produce qualified experimental SPF mini-pig by using the artificial milk in the light of scientific managemen..
     4. Molecular Analysis of Intestinal Mieroflora of SPF Piglets
     Objective: To monitor and characterize the structural features of intestinal microbial communities in fecal samples of SPF( specific pathogen free) piglets and conventional piglets. Methods: The newborn piglets were transferred from the womb into a barrier system immediately after Caesarean operation.The genomic DNA of bacteria was extracted from each sample and ERIC-PCR amplification was then carried out. The PCR fingerprints were southern-blotted with a mixed dig-tagged probe from the labeled ERIC-PCR product of one sample. Results: The banding-patterns of samples of SPF piglets and conventional piglets elucidate poor similarities before, during and after weaning respectively. Simultaneously there really existed much difference in the aspect of the structural features of intestinal microflora between SPF piglets and conventional piglets on the DNA level.
     5. Growth, blood physiological and blochemical parameters of SPF mini-pig
     To investigate the growth and blood physiological and biochemical parameters in different age of BAMA SPF mini-pig, 50 pigs aging from 10~150 days were used in this experiment. The blood samples were collected via the superior vena cava, while the blood parameters, hormone contents and biochemical parameters in plasma were analyzed.
     Growth: BAMA mini-pig grew faster during the first 10~50 day. The RGR at day 20 was the highest, and it declined to the slowest on day 40.
     Hormone contents: The GH level was the lowest on day 10, and it reached its highest on day 120. The T_3 level during day 10~90 was higher than those on the other days, it was significantly the highest on day 20. The T_4 level was lowest at day 60. The TSH level on day 80 and day 150 were evidently higher than those on the other days; The Ins level climbed to its highest on day 30 and day 100, and dropped to the lowest on day 40; The Glu level was higher during day 10~60, it increased on day 70, then decreased gradually, and finally reached the lowest level on day 100, it was only 25%of day 10(p<0.05). The Cor level fiuctated during the whole experiment.
     Biochemical parameters: The Blood sugar level on day 10~80 was the highest. On day 70 the blood sugar was higher than those on day 10 and day 80~150. it reached its highest on day 30; The GPT level were significantly higher on day 70 and day 80 than those on the other days.
     Blood parameters: RBC, The Hb and HCT levels were the highest on day 90. The WBC level was higher on day 40 than those on the other days. The largest resistance of EOF on day 10~80 were stable, and they were observably greater on day 140 and day 150 than those on the other days. The smallest resistance of EOF on day 10, day 20, day 140 and day 150 were remarkably the higher. ESR on day 10~90 were lower than those on the rest days. The results indicated that hormone contents, physiological and biochemical parameters in blood are changed with the growth of the piglets.
     6. Profiling of In-vivo Waning and Waxing of Porcine Transmissible Gastroenteritis Virus Inoculated Via Different Passages
     This experimentation studied the waning and waxing of TGEV inoculated by ocular passage, tracheal passage and oral passage respectively.TGEV rejuvenated on the ST cell layer before inoculating via different passages in order to pinpoint viral replicative sites and in-vivo waning and waxing. 25 days old specific pathogen-free (SPF) piglets were inoculated via ocular, tracheal or oral passages respectively. One SPF piglet was killed every 24 hours after inoculation, and samples of tissues and blood were collected and detected by immunofluoescent antibody assay (IFA) and reverse-transcription PCR (RT-PCR). The tissues collected included stomach, duodenum, jejunum, ileum, lung, lymph node, heart, trachea, liver, spleen and tonsil. TGEV antibody titers of all piglets were measured by ELISA. The results are as follows:
     Ocular passage: None of the fifteen SPF piglets showed any clinical signs and lesions. The IFA results of all samples were negative, but the RT-PCR results of lung and intestine were positive 30 days after inoculation. OD value of antibody didn't increase on post inoculation days (PID) 1-20, of which the lowest OD value was 0.21 and the highest was 0.30, but suddenly boosted on PID 22. The result showed that TGEV couldn't replicate in vivo after inoculating ocularly. The virus exuded with tears, which caused the spread of TGEV in the environment after uptaking it. This study confirmed that TGEV could not be infected by ocular passage firstly.
     Tracheal passage: All 25-day old piglets developed respiratory symptoms 24 hours after inoculation, but eventually recovered. There were different lesions of the lungs. TGEV Antibody titers of all pigs were measured by ELISA. Therefore, there was age-dependent resistance to TGEV infection. IFA and RT-PCR results of samples of trachea (PID 2-10), lung (PID 2-30), and spleen (PID 2-5) were positive, while all samples of intestinal tract were negative. The result confirmed viral waning and waxing in the respiratory system.
     Oral passage: Four of thirty 25-day old piglets developed diarrhea on PID 3, and three died on PID 6, 9 and 17 respectively. There were significant lesions of intestines, three of which had the different lesions of lungs. IFA results of samples collected from intestinal tract and lymphatic node were positive 48 hours after inoculation, and the number of positive cells continuously increased. The IFA results of tonsil, spleen and systemic lymphatic nodes were also positive. The results of RT-PCR showed that spleen of 3-5 days was positive. The OD value of antibody boosted from 0.07 to 1.54. There is age-dependent resistance to TGEV infection. The result confirmed viral waning and waxing in the digestive and respiratory system, and oral passage was the main way resulting this diseases.
     TGEV in spleen could be detected on PID 2-5 by both tracheal passage and oral passage, which showed that TGEV could not replicate in spleen.
     7. Study on establishment of Human flora associated mini-piglet model and molecular analysis of SPF piglet's intestinal microbiota
     To investigate the availability of HFA piglet model, we selected five litters of Bama Xiang mini-pigs that were delivered by caesarean section. This study included two parts. On one hand, man-rearing procedures of caesarean piglets in barrier facility were optimized and colonizing status of donor' intestinal microbiota in the piglets' gut was evaluated by molecular methods as ERIC-PCR and microbial community molecular hybridization. On the other hand, the structural features of SPF piglets' intestinal microbiota were analyzed by the above techniques.
     Five litters of Bama mini-piglets were delivered by caesarean section and then man-reared in barrier facility. During the first three days, donor' fecal suspension was inoculated orally into piglets daily and then geared to once every other day until on 11~(th) day. On the 5~(th), 9~(th), 12~(th) day piglet's fecal samples were collected and frozed at -70℃. The results showed that human microbiota could be partly colonized and stabilized relatively in the piglets' gut by ERIC-PCR and microbial community molecular hybridization analysis while the difference between the piglets were negligible.
引文
1) 北京农业大学实验动物研究所.猪模型在生物医学研究中的应用.北京.北京农业大学出版社,1987.
    2) Lai L., Kolber-Simonds D.,Park K. W, et al. Production of alpha-1,3-galactosy Itransferase knockout pigs by nuclear transfer cloning. Science. 2002,295(5557):1089-1092
    3) 尹海芳,李宁.猪作为异种器官移植供体的研究进展.生物技术通讯,2001,12(4):35-38
    4) 张德福.小型猪研究的现状及其进展.国外畜牧学-猪与禽,1997,1:28—32
    5) 甘世祥.开发贵州香猪作为实验动物的研究.上海实验动物科学,1989,9(4):227
    6) 黄仁建.香猪的特点及其成因(综述).养猪,1994,(4):31-32.
    7) 王楚端,陈清明.小型猪生产新技术[M].北京:中国农业科技出版社,1999.
    8) 魏泓.医学实验动物学.成都:四川科学技术出版社,1998.
    9) 谢保忠,孟宪容.小型猪(香猪)用于实验研究的尝试.中国实验动物学杂志,1994,4(4):225~228
    10) Michael H. Qvist, Ulla Hoeck. Evaluation of Gottingen minipig skin for transdermal in vitro permeation studies. European Journal of Pharmaceutical Sciences. 2000, (11):59-68
    11) Svendsen. O.(Ed.). The minipig in toxicology. Scand. J. Lab. Anim. Sci., Suppl. Ⅰ., 1998,Vol 25
    12) Arnfred, S.M.; Lind, N.M.; Gjedde, A; Hansen, A.K. Scalp recordings of mid-latency AEP and auditory gating in the Gottingen minipig: a new animal model in information processing research. International Journal of Psychophysiology. 2004, 52 (3): 267-275
    13) 魏泓主编.医学实验动物学,成都,四川科学技术出版社,1998,206-211
    14) Xing, Q.F., Lin, S., Chien, Y.W. Transdermal testosterone delivery in castrated Yucatan minipigs: Pharmacokinetics and metabolism, J. Control. Release 52,89-98
    15) Touzios J.G., Schulte W. A hepatic Artery Infusion Model in Yucatan Minipigs. Journal of Surgical Research. 2004, 121 (2): 329
    16) Verhallen, Peter F.J., Werner, Matthias. Effect of low-dose estradiol on experimental atherosclerosis in male Yucatan minipigs. Atherosclerosis 1997, 134(1-2):303-304
    17) 张海明,严义坪,孙广慈等.小型猪的皮肤血管来源和构筑特点,中华整形烧伤外科杂志,1999,15(6),437-440
    18) 李效峰,帅守信,李海滨.小型猪某些免疫学新指标的测定,实验动物科学与管理,1994,12(1), 21-23
    19) 殷国庆,王兰,杜开和.小型猪急性免疫性肝炎的形态学研究,南京铁道学院学报,1994,13(1),8-11
    20) 鲁杏生,赵淑云,鲁德怀等.SPF小白鼠及小型猪睾丸实质内注射乙碘油对性行为和精子的影响,江苏农学院学报,1991,12(1),15-19
    21) 李爱华,朱模总,解庆宾.氯霉素在健康、沙门氏菌病和肝损害小型猪体内的药代动力学研究,江苏农学院学报,1990,11(1),55-59
    22) 韦克,谭毅,潘永金.从贵州原产地引种小型小型猪及其生物学特性的观察研究,四川动物,1996,15(2),86-88
    23) 腾可导,李维宙.小型猪颅内血管一些超微结构的观察,实验动物科学与管理,1995,12(3),21-23
    24) 刘军,徐刚,李凤山.血液稀释疗法对小型猪严重烧伤后氧供氧耗的影响,中国煤炭工业医学杂志,2004,7(8),727-728
    25) 屈正,安春雷,党海明.中国实验小型猪慢性心肌缺血模型的制备与研究,中华实验外科杂志,2001,18(3),281
    26) 芮荣,鲍世民.小型猪实验化及其在胚胎生物工程领域的应用前景,四川农业大学学报,1999,17(2),230-233
    27) 李纪平,钱学敏.SPF猪规模化生产的防疫措施,中国兽医杂志,2003,39(5),60-61
    28) 任占伟,李明,李纪平.SPF猪生产技术在我国现代化养猪业中的应用,动物科学和动物医学,2001,18(4):56-58
    1) (日)前岛一淑,柏崎首,上村文雄编著.实验动物的无菌技术.北京:科学技术出版社,1983,118~132
    2) 王金法.小型香猪血液生化值动态研究.畜牧与兽医,1989,21(3):107
    3) 王金法.小型香猪血液生化值动态研究.畜牧与兽医,1989,(3):107~109
    4) 王金法,薛建平.香猪血清蛋白的动态观察与分析.养猪,1989,(4):22~24
    5) 王金法,薛建平,周开泉.香猪血清蛋白的动态观察与分析.养猪,1989,(4):22~24
    6) 甘世祥.开发贵州香猪作为实验动物的研究.上海实验动物科学,1989,9(4):227
    7) 余健秋,钟顺隆,李光汉等.大熊猫人工育幼研究.应用与环境生物学报,1997,3(1):36~40 张牧,崔恒宓.香猪生长发育规律初探.上海实验动物科学,1992,12(1):31
    8) 张牧,经荣斌,崔恒宓.香猪的生长发育、繁殖特性及其实验动物化研究.养猪,1996(2):30~32
    9) 迟玉杰,阎丽波,高学军.香猪血清蛋白水平变化与分析.黑龙江畜牧兽医,1995,(10):10~11
    10) 范明普,郝艳红,刘哲洁.引入黑龙江省饲养的香猪某些血液值的动态变化.全国动物生理生化第三次学术会议论文摘要汇编,90
    11) 范明普,郝艳红,杨焕民.1—4月龄香猪血液值及其动态变化.黑龙江畜牧兽医,1994,(6)19~21
    12) 候书江,李明,虞桂萍.人工哺育初级SPF仔猪试验研究报告(初报).养猪,1996,(2):12~14
    13) 候蓉,黄祥明,李光汉等.大熊猫初生幼仔人工哺育初探.兽类学报,2000,20(2):146~150
    14) 梁冰.川金丝猴幼仔全人工哺育技术及其个体行为观察.野生动物,1996,(4):16~20
    15) 谢保忠,孟宪容.小型猪(香猪)用于实验研究的尝试.中国实验动物学杂志,1994,4(4):225~228
    1) 王秀利.SPF猪及其展望.当代畜牧,1994年,(2):6-7
    2) 任占伟,李明,李纪平.SPF猪生产技术在我国现代化养猪业中的应用.动物科学与动物医学,2001(4):56-58
    3) Chadwick RW, George SE, Claxton LD, Role of gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens and carcinogens[J]. Drug Metabolism Reviews, 1992, 24:425-92.
    4) 张达荣 主编.消化系统病与微生态.上海科学技术出版社:51-53
    5) Hooper LV. Gordon JI. Commensal host-bacteria relationships in the gut. Science 2001;292:1115-8
    6) Ward D W, Weller R. 16S rRNA reveals numerous uncultured microorganisms in a natural community. Nature, 1990,345:63-66
    7) Amman R I, Ludwig W. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Appl Enviorn Microbiol. 1995,59:143-169
    8) Versalovic J, Koeuth T, Lupski JR.Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Research, 1991,24:6823-6831.
    9) Hughes JB, Hellmann JJ, Ricketts T H, et al. Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. Appl Environ Microbiol, 2001,67(10):4399-4406
    10) L.zhao, P. Gao, et al. ERIC-PCR as a community fingerprinting technology for identification of functional components in activated sludge for waste treatment in coke industry. Proceedings of 101st Annual Meeting of American Society of Microbiology, Orlando, F L., 2001,600.
    11) Di Giovanni GD, Watrud LS, Seidler RJ.Comparison of Parental and Transgenic Alfalfa Rhizosphere Bacterial Communities Using Biolog GN Metabolic Fingerprinting and Enterobacterial Repetitive Intergenic Consensus Sequence-PCR (ERIC-PCR)[J]. Microb Ecol,1999,37:129-139.
    12) Hulton CS, Higgins CF, Sharp.ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria[J]. Molecular Microbiology, 1991,5:825-834.
    13) Di Giovanni, GD, Watrud LS, Seidler RJ, Fingerprinting of mixed bacterial strains and BIOLOG gram-negative (GN) substrate communities by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR)[J]. Curr Microbiol, 1999, 38:217-23.
    14) Wei G, Pan L,Du H.ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts[J]. J Microbiol Methods,2004,59:91-108.
    15) 高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势菌群的能力.微生物学报,2003,43(2):264-270
    16) 李亮,魏桂芳,童耕雷,赵立平.用PCR指纹图5.谱技术分析焦化废水接触氧化池中悬浮污泥和生物膜的微生物种群组成差异.中国微生态杂志,2004,16(1):8-9,12
    17) 潘莉,杜惠敏等.腹泻儿童肠道菌群结构特征的ERIC-PCR指纹图5.谱分析.中国微生态杂志,2003,15(3):141-143
    18) 马梦琳,赵德明.仔猪断奶期间腹泻及肠道酶肠道菌群的变化.中国兽医杂志,2000,26(10):39-40
    19) Zoetendal E G, Akermans ADL, TGGE analysis from human fecal samples reveal stable and host-specific communities of active bacteria. Appl Enviorn Microbiol,1998,64
    20) Simpson J M ,etc. DGGE analysis of 16S rDNA amplicons to monitor changes in fecal bacterial populations of weaning pigs. Appl Enviorn Microbiol,2000,66:4705-4714
    1) 殷震,刘景华主编.动物病毒学(第二版)[M].北京:科学出版社,1997:681-688.
    2) Moon H. W., Kemeny L. J., Lambert G., et al. Age dependent resistance to transmissible gastroenteritis virus of swine. Ⅲ. Effects of epithelial cell kinetics on coronavirus productio and an atrophy of intestinal villi[J]. Vet. Pathol, 1975(12):434-445.
    3) Moon H. W. Mechanisms in the pathogenesis of diarrhea: a review[J].J. Am. Vet. Med. Assoc, 1978(172):443-448.
    4) 斯特劳,阿莱尔,蒙加林等.猪病学[M].北京:中国农业大学出版社,2000:316-319.
    5) 倪艳秀,林继煌,何孔旺等.猪流行性腹泻研究概况[J].畜牧与兽医,2001,33(1):38-40.
    6) 王继科,马思奇,王明等.猪流行性腹泻与猪传染性胃肠炎病毒的电镜和免疫电镜观察[J].中国预防兽医学报,1999,21(3):192-194.
    7) 冉智光,王玉春.猪传染性胃肠炎病毒分子生物学新进展[J].天津畜牧兽医,1998:4-6.
    8) Noda M., Koide F., Asagi M., et al. Physicochemical properties of transmissible gastroenteritis virus hemagglutinin[J]. Arch. Virol, 1988(99): 163-172.
    9) Noda M., Yamashita H., Koide F., et al. Hemagglutination with transmissible gastroenteritis virus[J]. Arch. Virol, 1987(96):109-115.
    10) 冉智光,王玉春,刘晓滨等.猪传染性胃肠炎病毒的血凝作用[J].中国兽医科技,1997,27(9):3-4.
    11) Schultze B., Kpempl C., Herrler G., et al. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity[J].Journal of Virology, 1996,8(70):5634-5637.
    12) 苏万国,唐永兰,邹勇等.猪传染性胃肠炎病毒在PK15和ST细胞上的增殖特性比较[J].上海畜牧兽医通讯,2000,3:40.
    13) 何孔旺,林继煌,钱永清等.猪传染性胃肠炎病毒弱毒株STC_3细胞培养特性及致病性研究[J].中国兽医科技,2001,31(8):8-9.
    14) sirinarumitr T., Paul R. S., Kluge J. P., er al. In situ hybridization technique for the detection of swine enteric and respiratory coronaviruses,transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV), in formalin-fixed paraffin-embedded tissues[J]. Journal of Virological Methods, 1996, 56(20): 149-160.
    15) Callebaut P., Correa I., Pensaert M., et al. Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus[J]. J. Gen. Virol, 1988(69):1725-1730.
    16) 覃健萍,曹永长,毕英佐.猪呼吸道冠状病毒(PRCV)研究概况[J].广东畜牧兽医科技,2004,29(2):15-16.
    17) Penzes Z., GonzalezJ. M., Calvo E., et al. Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster[J]. Virus Genes,2001(23): 105-118.
    18) Enjuanes L., Spaan W., Snijder E., et al. Nidovirales[J]. Academic Press, 2000:827-834.
    19) Hiscox J.A.; Cavanagh D.; Britton P. Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus[J]. Virus Research,1995,36(2):119-130.
    20) Mendez A., Smerdou C., Enjuanes L., et al. Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes:Packaging and heterogeneity[J]. Virology,1996(217):495-507.
    21) Delmas B., Gelfi J., Laude H., et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV[J]. Nature (London), 1992(357):417-420.
    22) Delmas B., Gelfi J., Laude H., et al. Further characterization of aminopeptidase-N as a receptor for coronavirus, in Laude H. and Vautherot J. F. Coronaviruses: molecular biology and virus-host interactions[J]. Plenum Press, 1993: 293-298.
    23) Delmas B., Gelfi J., Laude H., et al. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site[J].Journal of Virology, 1994,8(68):5216-5224.
    24) Weingartl H. M., Derbyshire B. Evidence for a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs[J]. Journal of Virology,1994, 11(68):7253-7259.
    25) 张净,夏谦,高晓燕等.用阻断酶联免疫吸附试验检测猪的传染性胃肠炎病毒抗体和猪呼吸道冠状病毒抗体[J].中国兽医科技,1996,12:24-26.
    26) Krempl C., Schultze B., Herrler G., et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus[J].Journal of Virology, 1997,4(71):3285-3287.
    27) Ballesteros M. L., Sanchez C. M., Enjuanes L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism[J]. Virology,1997,227(2):378-388.
    28) Theresa A. B., John L. V., Linda J.S., et al. Cellular immune responses of pigs after primary inoculation with porcine respiratory coronavirus or transmissible gastroenteritis virus and challenge with transmissible gastroenteritis virus[J]. Veterinary Immunology and Immunopathology, 1995(48):35-54.
    29) Lanza I., Shoup D. I., Saif L. J. Lactigenic immunity and milk antibody isitypes to transmssible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy[J]. Am. J. Vet.Res., 1995(56): 739-748.
    30) Sirinarumitr T., Paul P. S., Halbur P. G., et al. An overview of immunological and genetic methods for detecting swine coronaviruses, transmissible gastroenteritis virus, and porcine respiratory coronavirus in tissues[J]. Adv Exp Med Biol, 1997(412):37-46.
    1) 郭贵海,王崇文.临床内科杂志,2002;19(2):88-90
    2) Par R Ducluzeau.消化道微生态学.中国微生态学杂志,1991,3:1
    3) Savage DC. Mucosal microbiota. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee J, editors. Mucosal immunology. New York: Academic Press; 1999. P.19-30.
    4) Wilson M, McNab R, Henderson B, editors. Bacterial disease mechanisms. Cambridge: Cambridge University Press; 2002
    5) 金红芝,李堃宝.人肠道微生态系统的研究进展.自然杂志,2003,26(2):88-91
    6) Conway PL.1994. Trans. Huang J. 1997. The Proceedings of the VI International Symposium for Digestion and Physiology of Pigs. Chengdu: Sichuan Science and Technology Press. 233-242
    7) 秦云,潘淑惠,猪肠道内乳酸杆菌的自然分布的研究.贵州畜牧兽医,1994,18(3):1-3
    8) 王军,蔡永峰,乳酸杆菌在畜禽生产中的应用效果.Animal Science and Veterinary Medicine.Vol 18:62-64
    9) hulz AGM, Van Alelsont JMM, Beynen AC.J. Nutr.1993;123(10):1724-1731
    10) Braun OH, Heine WE. KLIN Padiatr,1995;207(1):4-7
    11) Noda H, Akasaka N, Ohsugian M. J Nutr. 1994;40(2): 181-188
    12) Gibson GR, Wang X. J Appl Bacterial, 1994;77(4):412-420
    13) Wang X, Gibson GR. J Appl Bacrerial 1993; 75(4):373-380
    14) Chauvieve G, Coconnier MH. J Gen Microbiol,1992;138(4)1689-1696
    15) 郭信,杨振动等,乳酸杆菌制剂对鸡大肠杆菌病的防治.中国畜禽传染病,1996,3,32-34
    16) 张欣萍,王金络等,添加乳糖和乳酸杆菌对鸡肠炎沙门氏菌感染的防治效果.中国农业 大学学报.1998,3(3):82-86
    17) 郭延军.乳酸杆菌LB-9703制剂对雏鸡白痢预防实验的研究.兽药与饲料添加剂.2000,5(3):5
    18) Metchnikoff, E (1908)Prolongation of life: Optimistic Studies. Putnam's Sons, New York.
    19) Kraehebuhl, J.P. and Ricciardi-Castagoli, P. Dendritic cells express tight juntion protein and penetrate gut epithelial monolayers to sample bacteria .Nat.Immunol. (2001) 2. 361-367
    20) Cleveland, M.G. Gorham, J.D., Murphy, T.L., Tuomanen, E, and Murphy, K.M. Lipoteichoic acid preparation of Gram-positive bacteria induce interleukin-12 through a CD-14-dependant pathway.Infect.Immune,64.(1996)1906-1912
    21) Yoshimura, A, Lien e, Ingalls,R.R. Tuomanen, E, Dziarski, R. and Golenbock, D. Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via tolllike receptor.J. Immune. 1999,164,3733-3740
    22) Miettinen, M. Lehtonen, A Julkunen, I and Matikainen, S.Lactobacilli and streptococci active NF-κB and STAT sigaling pathways in human macrophages. J. Immunol.2000,164,3733-3740
    23) Miettinen, m, Vuopio-Varkila, J. and Varkila, K, Production of human tumor necrosis factor alpha. Interleukin-6,and interleukin-10 is induced by lactobacilli.Infect. Immune, (1996)64,5403-5405
    24) Miettinen, M, Matikienenm s. Vuopio-varkila, J. pirohonen, J, Varkila,.Lactobacilli and Streptococci Induce interleukin-12,Interleukin-18 and gamma-interferon production in human peripheral blood mononuclear cells, Infect Immun.1999,66,6058-6062
    25) Von der weid, T, Bulliard, C. and Schiffrin, EJ. Induction by a lactobacillus of a population of CD4 T cells with low proliferation capactity that produce transforming growth factor beta and interleukin-10. clin.Diagn lab. Immunl.(2001)8, 695-701
    26) Christensen, H.R. Frokiaer H. and Pestka, JJ. Lactobacilli differently modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168,171-178
    27) Berg, R.D.Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995, 3, 149-154
    28) Gill HS, Darragh AJ, Cross MI. Optimizing immunity and gut function in the elderly .J Nutr Health Aging.2001,5:80-91
    29) Gill HS ,Cross ML.Dietry probiotic supplement enhances natural killer cell activity in the Iderly.J Clin. Immunol.2001, 21: 264-271
    
    30) Shanahan F.Gastroenterol,2001;120(3):622-635
    
    31) Campieri M et al. Gastroenterol, 1999; 116(5): 1246-1248
    
    32) Sartor RB. Microbial factors in the pathogenesis of Crohn's disease, ulcerative colitis, and experimental intestinal inflammation. In:Kirsner JB (ed.) Inflammatory bowel disease. WB. Saunders Company Philadelphia. London. New York St Louis Syd, 2000;P153-178
    
    33) Hooper LV. Gordon JI. Commensal host-bacteria relationships in the gut. Science 2001;292:1115-8
    
    34) Ward D W, Weller R. 16S rRNA reveals numerous uncultured microorganisms in a natural community. Nature, 1990,345:63-66
    
    35) Amman R I, Ludwig W. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Appl Enviorn Microbiol. 1995,59:143-169
    
    36) Harmsen H.J.M. et al. Appl. Environ. Microbiol.,2002;68(6):2982-2990
    
    37) Langendijk P.S., et al. Appl. Environ. Microbiol., 1995; 61(8):3069-3075
    
    38) Fischer, S. G., and L. S. Lerman. 1983. DNA fragments differing by single base-pair subsititutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579-1583
    
    39) Lerman L.S., S.G. Fischer, I. Hurley, K. Silverstein, and N. Lumelsky. 1984 , equence-determined DNA separations. Annu Rev Bioeng 13:399-423
    
    40) Myers, R.M., S.G. Fischer, L.S. Lerman, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel elctrophoresis. Nucleic Acids Res 13:3131-3145
    
    41) Myers, R.M., S. G. Fischer, T. Maniatis, and L.S. Lerman.1985. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3111-3129
    
    42) Muyzer ,G., E. C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16s rRNA . Appl. Environ Microbiol 59:695-700
    43) Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317-322
    44) Muyzer G, and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-141-
    45) Favier C. F., et al. Appl. Environ. Microbiol. 2002;68(1):219-226
    46) 陆德如,陈永青编著.基因工程.北京:化学工业出版社,2002:27—29
    47) Mangin L., et al. Appl. Environ. Microbiol.1994;60:1451
    48) [48]Hulton,C.S., C. F.Higgins,and P. M. Sharp.1991. ERIC sequence: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5:825-834
    49) Versalovic,J., T. Koeuth, and J.R. Lupski.1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19:6823-6931.
    50) Di Giovanni, G D., Watrud, L.S., Seidler, R.J., Widmer, F.,1999. Fingerprinting of mixed bacterial strains and BIOLOG Gram-negative (GN) substrate communities by enterobacterial tepetitive intergenic consensus-PCR(ERIC-PCR). Curr Microbiol 38,217-223
    51) Gillings, M., and M. Holley. 1997. Repetitive element PCR fingerprinting (REP-PCR)using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC Elements. Lett. Appl. Microbiol 25:17-21.
    52) Gillings M., and M. Holley. 1997. Amplification of anonymous DNA ??gments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to generate variation. Electrophoresis 18:1512-1518
    53) 潘莉,杜惠敏,赵立平等.腹泻儿童肠道菌群结构特征的ERIC-PCR指纹图分析.中国微生态杂志,2003,15(3):141-143
    54) L.Zhao, P. Gao, et al. ERIC-PCR as a community fingerprinting technology for identification of functional components in activated sludge for waste water treatment in coke industry. Proceedings of 101st Annual Meeting of American Society of Microbiology, Orlando,F L.,2001.600.
    55) Wei, G. F., L. Pan, H.M. Du, J.Y. Chen, and L.P. Zhao.2004. Eric-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J. Microbiological Methods.
    56) 高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势菌群的能力.微生物学报,2003,43(2):264-270
    57) 郭兴华主编.益生菌基础与应用.北京:北京科学技术出版社,2002:45-65
    58) 萧树东.胃肠道菌群和菌群失调.上海:上海科学技术出版社.2001:115-116
    59) Agnes Perrin-Guyomard, Sylvie Cottin, Denis E. Corpet, Jacques Boisseau, Jean Michael Poul. Evaluation of Residual and Therapeutic Doses of Tetracycline in the Human Flora-Associated (HFA) Mice Model. Regulatory Toxicology and Pharmacology, 2001,34:125-136
    60) Denis E. Corpet. Model Systems of Human Intestinal Flora, to Set Acceptable Daily Intakes of Antimicrobial Residues. Microbial Ecology in Health and Disease. 2000,12 Supplement 1:37-41
    61) Motoi Tamura, Kazuhiro Hirayama, Kikuji Itoh, Kazuki Shinohara. Effects of Human Intestinal Flora on Plasma and Caecal Isoflavones,and Effects of Isoflavones on the Composition and Metabolism of Flora in Human Flora-Associated (HFA) Mice Microbial Ecology in Health and Disease.2004, 16 (1): 18-22
    62) Andrea Wilcks, Angela H.A.M. van Hock, Ruth G. Joosten, Bodil B.L.Jacobsen. Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation.Food and Chemical Toxicology,2004,42:493-502
    63) CDER(Center for Drug Evaluation and Research, U.S. Food and Drug Administration) 2000. Guidance for Industry. E11. Clinical Investigation of Medicinal Products in the Pediatric Population(http://www.fda.gov/cder/guidance//index.htm)
    1.殷震,刘景华主编.动物病毒学(第二版)[M].北京:科学出版社,1997:681-688.
    2.常国权,杨盛华.冠状病毒垂直传播途径的发现[J].中国畜禽传染病,1996,2:27.
    3. Zhang J., Lou J., Ma Z., et al. A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China[J]. Applied Mathematics and Computation, 2005,162(2): 909-924.
    4.斯特劳,阿莱尔,蒙加林等.猪病学[M].北京:中国农业大学出版社,2000:316-319.
    5. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus.Ⅱ. Domains in the peplomer protein[J]. J. Gen. Virol, 1986(67):1405-1418.
    6.何孔旺,林继煌,钱永清等.猪传染性胃肠炎病毒弱毒株STC3细胞培养特性及致病性研究[J].中国兽医科技,2001,31(8):8-9.
    7. Britton P., Page K. W, Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus[J]. Virus Res., 1990,18(1):71-80.
    8. Penzes Z., GonzalezJ. M., Calvo E., et al. Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster[J]. Virus Genes,2001(23):105-118.
    9.李军,林继煌,陆承平等.RT-PCR检测猪传染性胃肠炎病毒[J].中国兽医学报,2001,21(3):246-248.
    10.邹勇,钱永清,唐永兰等.猪流行性腹泻、猪传染性胃肠炎和猪轮状病毒RT-PCR鉴别诊断技术研究[J].上海农业学报,2003,19(2):82-84.
    11. Lilly K., Yuen W., Catton M. G., et al. Heminested Multiplex Reverse Transcription-PCR for Detection and Differentiation of Norwalk-Like Virus Genogroups 1 and 2 in Fecal Samples[J]. Journal of Clinical Microbiology. 2001(39):2690-2694.
    12. Kwonil Jung, Junghyum Kim, Okjin Kim,et al. Differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in formalin-fixed paraffinembedded tissues by multiplex RT-nested PCR and comparison with in situ hybridization[J]. Journal of Virological Methods 2003(108):41-47.
    13. Jung K., Kim J., Kim O.,et al. Differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in formalin-fixed paraffinembedded tissues by multiplex RT-nested PCR and comparison with in situ hybridization[J]. Journal of Virological Methods, 2003(108):41-47.
    1) Agnes Perrin-Guyomard, Sylvie Cottin, Denis E. Corpet, Jacques Boisseau, Jean Michael Poul.Evaluation of Residual and Therapeutic Doses of Tetracycline in the Human Flora-Associated (HFA) Mice Model. Regulatory Toxicology and Pharmacology, 2001,34: 125-136
    2) Denis E. Corpet. Model Systems of Human Intestinal Flora, to Set Acceptable Daily Intakes of Antimicrobial Residues.Microbial Ecology in Health and Disease. 2000,12 Supplement 1:37-41
    3) Motoi Tamura, Kazuhiro Hirayama, Kikuji Itoh, Kazuki Shinohara. Effects of Human Intestinal Flora on Plasma and Caecal Isoflavones, and Effects of Isoflavones on the Composition and Metabolism of Flora in Human Flora-Associated (HFA) Mice Microbial Ecology in Health and Disease.2004, 16(1):18-22
    4) Andrea Wilcks, Angela H.A.M. van Hoek, Ruth G. Joosten, Bodil B.L.Jacobsen. Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation.Food and Chemical Toxicology,2004,42:493-502
    5) CDER(Center for Drug Evaluation and Research, U.S. Food and Drug Administration) 2000. Guidance for Industry. E11. Clinical Investigation of Medicinal Products in the Pediatric Population(http://www.fda.gov/cder/guidance//index.htm)
    6) Wei, G. F., L. Pan, H.M. Du, J.Y. Chen, and L.P. Zhao.2004.Eric-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J. Microbiological Methods.
    7) 杨景云主编,医学微生态学,中国医药科技出版社,1997
    8) Rodney D. Berg. The indigenous gastrointestinal microflora. Trends in microbiology, 1996, 4(11):430-435
    9) 詹纯列,徐本法,李建军,李权超等,小型猪剖腹产人工哺乳净化,中国实验动物学杂志,2000,10(4):213-216
    10) Atlas, R.M., R. Bartha. 1993. Microbial Ecolgy, Fundamentals and applications, 3rd Edition ed.Benjamin/Cummings Menlo Park, CA
    11) Boreman, J.,P. W. Skroch, K. M. O'Sullivan, J.A. Palus, N.G..Rumjanck, J. L.Jansen, J.Niechuis, and E. W.Triplett. 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935-43
    12) C.L.Roose-Amsaleg, E.Gamier-sillam, and M.harry. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Applied Soil Ecology 18:47-60
    13) 赵立平,庞小燕等,2004年全国微生物分子生态学研究技术培训班实验讲义,11-16
    14) 赵立平,肖虹,李艳琴,张峰,ERIC-PCR:一种快速鉴别环境细菌菌株的方法,应用与环境生物学报,1999,5(Suppl):30-33
    15) 陈敏,赵立平,焦化废水处理系统中不同培养基分离的细菌种群多样性,微生物学报,2003,43(3):366-371
    16) Hazenberg, M. P., Bakker, M. and Verschoor-Buerggraaf, A. 1981. Effects of the human intestinal flora on germ-free mice. J. Appl. Bacteriol. 50:95-106
    17) Hirayama, K., Kawamura, S. and Mitsuoka, T. 1991. Development and stability of human faecal flora in the intestine ofex-germ-free mice. Microbial Ecol. Health Dis. 4:95-99
    18) Raiboud, P., Ducluzeau, R., Dubos, F. Hudault, S.. Bewa. H., and Muller. M. C. 1980. Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am. J. Clin. Nutr. 33:2440-2447
    19) Benno. Y. and Mitsuoka, T. 1986. Development of intestinal microflora in human and animal. Bifidobacteria Microflora 5:13-25
    20) Mitsuoka, T. and Hayakawa, K. 1972. Die Darmflora bei Menschen. I. Mitteilung. Die Zusammensetzung der Faekalflora der Verschiedennen Altersgruppen. Zbl. Bakt. Hyg. I Abt. Org. A 233:333-342
    21) Hirayama K, Miyaji K, Kawamura S, Itoh K, Takahashi E, Mitsuoka T. 1995 Development of intestinal flora of human-flora-associated (HFA) mice in the intestine of their offspring. Exp Anim.Jul;44(3):219-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700