南黄海辐射沙脊群小庙洪潮流通道晚更新世以来的沉积环境演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南黄海辐射沙脊群是晚第四纪长江、黄河沉积物受潮流作用改造形成的巨型陆架地貌单元,是海陆交互作用的典型产物。小庙洪潮流通道位于沙脊群区最南部,也是深槽距岸最近的一条大型滨岸潮流通道,作为该地区继承古河谷性质的潮流通道的典型代表,研究小庙洪水道晚更新世以来沉积环境的长周期演变以及近10年来的悬沙浓度变化,对于了解该水道乃至辐射沙脊群南部地区的成因机制、动态发展趋势和古长江下切河谷的发育具有重要意义。
     2008年2月在江苏吕泗港岸外小庙洪潮流通道的牡蛎礁上(32°8.988'N,121°32.821'E)实施07SR11孔的野外施工,钻孔总进尺70.9m,实际取得岩芯51.2m,取芯率达到了72%。之后在室内进行钻孔描述和编录工作,并采集样品进行粒度、磁化率、有孔虫、粘土矿物及地球化学元素的测试和分析,结合同位素测年及其它环境替代性指标,对小庙洪潮流通道的长周期演变和成因机制进行综合分析。同时运用遥感手段对1999~2010年间27景ETM+图像进行悬沙浓度的反演,分析在长江输沙量剧减的情况下该海域的悬浮物质含量变化,预测在物源减少的情况下小庙洪潮流通道及辐射沙脊群南翼地区未来可能的演变。
     小庙洪07SR11孔沉积物以粉砂和砂为主,平均含量为48.9%和47.2%,黏土含量较少,平均含量仅为3.9%,平均粒径在1.6~6.5Φ中之间波动,平均值为4.3Φ中,分选性较差。从整个钻孔来看,沉积物下粗上细,下部以细砂、中砂为主,向上粉砂、黏土含量增多。黏土矿物以伊利石为主,其次为高岭石、蒙皂石,绿泥石含量最少,根据黏土矿物可以判断该地主要以长江物质为主,但在钻孔底部和顶部,可能有少量黄河物质掺混影响。
     根据沉积构造、粒度特征、古生物特征等,将该孔自上而下划分为5个沉积单元:
     (1)河床相(33.71-70.9m),沉积物以细砂、中砂为主,黏土含量很少,沉积物中几乎没有有孔虫,在底部见咸淡水双壳类化石混杂堆积,推测该河流环境受到一定的潮水影响。
     (2)河漫滩相(23.05-33.71m),沉积物以砂质粉砂和粉砂质砂为主,发育粉砂—黏土互层的水平层理、微波状层理和爬升交错层理,有较多的粉砂质透镜体,未见有孔虫,个别层位有铁锈斑和暴露标志。
     (3)硬黏土层(22.25-23.05m),中黄棕色粉砂与黏土,已硬结,见很多红褐色的铁锈斑、黑色的碳质斑点以及淋溶淀积形成的钙质结核。属于全球低海平面时期(MIS2)暴露环境下形成的陆相沉积,广泛分布于长江三角洲地区,与上覆地层有明显侵蚀界面。
     (4)河口湾浅海沉积相(4.02-22.25m),沉积物以粉砂和砂质粉砂为主,黏土与粉砂交互成层,多发育水平或波状层理,多沙斑透镜体,生物扰动明显,有孔虫丰度整体上较高,以广盐型属种为主。属于全新世海侵层序。
     (5)潮控滨岸相(0-4.02m),发育为以泥质沉积为主的沙泥互层,具向上变细的沉积序列。发育波状交错层理,夹有厚层砂质透镜体,生物扰动作用明显,含有大量的牡蛎壳。有孔虫组合面貌与下覆地层类似。粒度分析显示,跳跃组分多呈双跳跃特征,显示出双向水流特征,与潮流通道中往复流特点一致。该段沉积显示潮流通道充填沉积的特点。
     小庙洪潮流通道长周期演化显示它是沿袭长江古河道,并在此基础上发育而来。晚更新世大约60-70ka前(相当于氧同位素4期),古长江由此入海,形成下切河谷,在氧同位素3期的海侵过程中(当时最高海平面要比现在低50-60m),古切谷相继充填河床相→河漫滩相沉积,总厚度达47.86m,占整个钻孔的67.5%。在氧同位素2阶段(14-29ka cal B.P.),随着海平面下降,该地广泛暴露,发育标志性的硬黏土层。暗示此时古长江已离开研究区,南迁到现在的长江三角洲区域。进入全新世,随海平面上升,该地被淹没成为古长江河口湾(鼎盛时期的顶点在镇江—扬州)的一部分,发育河口湾—浅海相沉积。直至距今2000-3000年,随着河口湾淤积速度的加快,至唐宋年间古长江北支淤塞,形成了古三余湾,伴随着海堤的逐步完善及黄河南泛带来的大量泥沙,古三余湾逐渐淤积成如今的形态,该地最终由河口湾变为潮控滨岸环境,原残留古河道在潮流作用改造下逐渐发育为现今的潮流通道。
     通过对该地区1999-2010年27景遥感图像进行悬沙浓度的反演表明,该地区悬沙浓度平均值基本上是冬半年明显大于夏半年,岸滩、沙脊附近大于深槽,近岸大于外海。长江的输沙量与海区夏季悬砂浓度的平均值之间呈正相关关系,在三峡大坝修建后长江输沙减少,势必会减少该地区的物质来源,有可能会加剧沙脊群南翼沙洲与岸滩的侵蚀以及槽道的刷深。
The South Yellow Sea radial sand ridge system is a giant geomorphic unit on the Yellow Sea shelf, coused by the tidal influent on the sediment accumulation body of the Yangtze River and the Yellow River since the Late Quaternary, and is a typical product of the sea and land interactions. The Xiaomiaohong tidal channel located at the most south of the sand ridges area, north of the Yangtze River delta. Also, the distance from the shore to the deep channel is nearest. As a typical which inherited the ancient river valley, study on the sedimentary environment changes in a long time and the SSC in1999-2010of the Xiaomiaohong tidal channel is of great significance to understanding the genesis and development of channel and even the southof the radial tidal sand ridge systems and the acent Yangtze River valley.
     We got the corel at the February2008, located on an oyster reefs in the Xiaomiaohong tidal channel, Lvsi Port offshore. The bottom of the hole is70.9m, but only got51.2m sediments; the rate is about72%. Then the core was logged in lab, and then series of analys such as clay minerals, grain size, geochemical elements, paleontological and so on were carried out. Combined with datings and other environmental indicators, the formation and long term evolution of the tidal channel was analyzed. Meanwhile we used27ETM+images between1999and2010to get the changes of the suspended sediment concentration, under the background of the Yangtze River's sediment discharge sharply declined. Forecast the evolutions of the Xiaomiaohong tidal channel and even the south of the radial sand ridge areas under the background of the sand source reduction.
     The results have shown that the size distribution is dominated by sand and silty, with the average of48.9%and47.2%, clay only with the average of4.0%. The mean size changed between1.6-6.5φ, average of4.3φ, with poor sorting. From the all of the corel colums, partical size is fine and have more clay and silty at the upper, but the lower part is corse, mainly of fine sand and medium sand. X-ray diffraction has shown the lllite has the highest content, followed by kaolinite, smectite and chlorite, shown that the sediments mainly from the Yangtze River, but in the bottom and top of the corel the Yellow River materials may impact the areas, and mixed in the sediments.
     Five sedimentary faces have been distinguished:
     (1) River bed deposits (33.71-70.9m):it consists of fine sand and medium sand,with little clay. In the sediments there are almost no foraminifera, but at the bottom salt and fresh water shells mixed together, the tidal may impact the river at that time.
     (2) Floodplain (23.05-33.71m):composed of sandy silt and silty sand, Horizontal laminations, small ripple beddings and climb staggered bedding are common in this interval by silty and clay. There are many silty lenses, but no foraminifera, only at2315cm, we found a shell fossil, and called Turbonillanonlinearis Wang some, at some layers iron rust and expose signs can be found.
     (3)Paleosol (22.25-23.05m):composed by hard yellow-brown silt and clay. There are many reddish-brown iron rusts, black carbon spots and calcareous nodules in this layer. The palesol formed under oxidizing conditions in MIS2when the global sea level was very low, paleosol are widely distributed in the Yangtze River Delta region. There is an erosion interface at the top.
     (4) Shallow marine estuaries (4.02-22.25m):mainly of silty and sand silty, which formed in MIS1and is s transgressive sequence. There are mainly horizontal laminations and wavy beddings with clay and silty interval, have many sandy lensse and bioturbation. In the sediments foraminiferal is abundant, mainly to the wide salt type.
     (5) Littoral facies controlled by tidal (0-4.02m):the particle generally top-down coarsening, mainly of sand and mud interbedded, formed wavy cross-beddings. There are many sandy lenses and bioturbation. The particle size analysis shows that the jump was a double jump characteristics, reprenst two-way flow characteristics which is similar in the channel. At the top of the corel there are many oyster shells, the foraminiferas ware similar to the overlying strata. The sedimentary shows that the tidal channel has a filling deposited features.
     The long term sedimentary environment evolution shows that Xiaomiaohong tidal channel fllowed the ancient Yangtze River valley. In Late Pleistocene the region, about60-70ka B.P.(MIS4) the Ancient Yangtze River into the sea at Xiaomiaohong, and formed the incised valley, but durning MIS3transgression when the highest sea level was50-60m lower than today, the valley had been experienced the Yangtze River bed and floodplain sediments,the thickness up to48m(the length of the corel is70.9m). Then in MIS2(14-29ka cal B.P.), the sea level is very low, the land exposed and developed paleosol which means that the Acent Yangtze River had go away to the south where is the Yangtze delta now. After entering the Holocene, the sea level rised rapidly, the channel became part of the ancient Yangtze River estuary which the mouth was at Zhenjiang and Yangzhou City at its heyday, and developed shallow marine estuaries sediments. But from2000-3000aBP the speed of estuarine siltation accelerated, until Tang ang Song dynasties the north branch of the ancient Yangtze River blockaged, became the ancent Sanyu Bay. Along with the building of seawall and the Yellow River brought a lot of sediment after1128AD especially after1592AD, Sanyu Bay gradually filled, and became littoral environment controlled by tidal from marine estuaries, the residued river bed developed into the modern tidal channel under the impact of tidal fluents.
     We used27ETM+images between1999and2010to get the suspended sediment concentration, shown that SSC mainly lower in summer half year, higher in winter half year, near shore and sand ridges mainly higer than deep sea. The aveage of SSC in summer have a positive correlation with the Yangtze River's sediment discharge. After the Sanxia Dam was built, the Yangtze River's sediment discharge sharply declined, the Xiaomiaohong tidal channel and even the south of the radial sand ridge areas may be sesiously erased under the background of the sand source reduction.
引文
A Morel L. Prieur. Analysis of variation in ocean color [J].Limmol Oceanogr, 1977,22:709-722.
    Blott S., Pye K.. GRADISTAT:grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surfaces Proesses and Landforms,2001,26,1237-1248.
    Cann J.H., Murray-Wallace C.V., Belperio A.P., et al. Evolution of Holocene coastal environments near Robe, southeastern South Australia [J]. Quaternary International,1999,56:81-97.
    Caston, G..F.. Potential gain and loss of sand by some sand banks in the southern North Sea off northeast Norfolk[J]. Marine Geology,1981,41.239-250.
    Caston, V. N. D., Stride, A. H.. Tidal sand movement between some linear sand banks in the North Sea off northeast Norfolk [J]. Marine Geology,1970,9: 38-42.
    Caston, V. N. D.. Linner sand banks in the southern North Sea [J]. Sedimentology, 1972,18:63-78.
    Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996.Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep-sea oxygen isotope records. Earth and Planetary Science Letters 141,227-236.
    clinoform deposit in the East China Sea. Continental Shelf Research 26 (2006) 2141-2156.
    Collins, M.B., Shimwell, S.J., Gao S., et at.. Water and sediment movement in the vicinity of linear sandbank:the Nofolk Banks[J], southern North Sea. Marine Geology,1995,123:125-142.
    Edwards J.H., Harrison S.E., Locker S.D., et al. Stratigraphic framework of sediment-starved sand ridges on a mixed siliciclastic/carbonate inner shelf; west-central Florida [J]. Marine Geology,2003,200::195-217.
    Fenies H., Tastet J.P.. Facies and architecture of an estuarine tidal bar(the Trompeloup bar, Gironde Estury, SW France) [J]. Marine Geology,1998, 150:149-169.
    Folk R.L., Ward W.C. Brazos river bar:a study in the signification of grain size parameters. Journal of Sedimentary Petrology,1957,27,3-27.
    Gordon H R, Morel A. Remote assessment of ocean color for interpretation of satellite visible imagery[J].A review, lecture notes on costal and estuarine studies, Barter R T, Mooers N K, Bowman M J, Zeitzschel B(eds.), Springer-Verlag, New York,1983.
    Han Z., Jin Y.Q., Yun C.X..Suspended sediment concentration in the Yangtze River estuary Retrieved from the CMODIS data [J]. International Journal of Remote Sensing,2009,27 (18):4329-4336.
    Houbolt, J.J.H.C.. Recent Sediments in the a southern bight of the North Sea[J]. Geologie en Mijnbouw,1968,47:245-273.
    Imbrie,J.,Hays,J.D.,Martinson,D.G..,Mcintyre,A.,Mix,A.C.,Morley,J.J.,Pisias,N.G.,Pr ell,W.L.,Shackleon,N.J.,1984.The orbital theory of Pleistocene climate:Support from a revised chronology of the marine deltal8 O record. In:Berger, A.L.(eds), Milankovitch and Climate,Vol.l.D.Reidel Publishing Co, Norwell, MA, 269-305.
    J.P. Liu,, A.C. Li, K.H. Xu, D.M. Velozzi, Z.S. Yang,J.D. Millimanc, D.J. DeMastera,2006. Sedimentary features of the Yangtze River-derived along-shelf
    Jin J H, Chough S K. Partitioning of transgressive deposits in the southeastern Yellow Sea:a sequence stratigraphic interpretation. MarinGeology, 1998(149):79-92.
    Katsuto U, Yoshiki S.Late Quaternary evolution of the Yellow East China Sea tidal regime and its impactson sediments dispersal and seafloor morphology. Marine Geology,2003(162):25-38.
    Li Congxian, ZHANG Jiaqiang, FANG Daidu, et al. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China[J].Marine Geology,2001,73:97-120.
    Mark W., Hounslow M.W., Mather B.A. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J]. Journal of Geophysical Research,1999,104,5047-5061.
    Marsset T, Tessier B, Reynaud J Y, et al. The Celtic Sea banks:an example of sand body analysis from very high-resolution seismic data [J].Marine Geology, 1999,158:89-109.
    McLaren P. An interpretation of trends in grain-size measurements. Sedimentary Petrology,1981,51,611-624.
    Off, T.. Rhythmic linear sand bodies caused by tidal currents [J]. Bull. AA PG, 1963,47(2):324-341.
    Parker, G.., Lanfredi, N.W., Swift, D.J.P.. Seafloor response to flow in southern Hemisphere sand ridge field:Argentine Inner shelf [J]. Sedimentary Geology, 1982,33:195-216.
    Potter,P.E.,etal.,Geochim-cosmochim Acta,27(1963).669-694
    Sahu,B.K. Depositional mechanisms from the size analysis of clastic sediments [J].J.sedim.Petro.,1964,34:73-83
    Stride, A.H.. Indications of long term, tidal control of net sand loss or gain by European Coasts [J]. Estuarine and coastal Marine Science,1974 (2):27-36.
    Swift, D.J.P., Field, M.E.. Evolution of a classic sand ridges field:Maryland sector, North American inner shelf[J]. Sedimentology,1981,28:461-482.
    Tanner W.F.. Origin of beach ridges and swales [J]. Marine Geology,1995,129: 149-161.
    Twichell D., Brook S.G., Gelfenbaum G, et al. Sand ridges off Sarasota, Florida:A complex facies boundary on a low-energy inner shelf environment [J]. Marine Geology,2003,200:243-262.
    Visher, G. S. Grain size distributions and depositional processes [J].J.Sedim.Petro.,1969,39:1074~1106.
    Wang Ying. The coastal environment of China. Ecosystem and Environment of Tidal Flat Coast Effected by human Being's Activities.Nanjing University Press, 1988:1~7.
    Wangying, ZhuDakui, YouKunyuan, et al. Evolution of radioactive sand ridge field of South yellow sea and its sedimentary characteristics [J].Science in china(series D).1999,42(1):97~12.
    Yang C S. Active moribund tidal sand ridges in the East China Sea and the southern Yellow Sea.Marine Geology,1989 (88):97~116.
    Yang Changshu, Sun Jiasong. Tidal sand ridge of the East China Sea Shelf. In:PL de Boer et al. eds. Tidal-Influenced Sedimentary Environments and Faces. D. Reidel Publishing Company,1998:23~29.
    Ying Wang. The mudflat of China. Fisheries and Ocean, Canada.1983 (40): 160~170.
    Zhu Dakui. The mudflat coast of Jingsu Province, China. Ecosystem and Environment of Tidal Flat Coast Effected by human Being's Activities [M].Nanjing University Press,1988:123~126.
    安凤桐,高善明,李元芳.用微量元素分析法研究滦河三角洲沉积环境[J].海洋与湖沼通报,1982(2):24-31.
    渤海湾西岸几种地球化学的环境指标[J].地质学报,2011,85(7):1239-1250.
    陈报章,李从先,业治铮.冰后期长江三角洲北翼沉积及环境演变[J].海洋学报,1995,17(1):64-75.
    陈报章,李从先,业治铮.冰后期长江三角洲北翼沉积及其环境演变[J].海洋学报,1995,17(1):64-75.
    陈吉余,徐海根.三峡工程对长江河口的影响[J].长江流域资源与环境,1995,4(3):242-246.
    陈君,王义刚,蔡辉.江苏沿海潮滩剖面特征研究[J].海洋工程,2010,28(4):90-96.
    陈君,王义刚,张忍顺,林祥.江苏岸外辐射沙脊群东沙稳定性研究[J].海洋工 程,2007,25(1):105-113.
    陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50-54.
    陈庆强,李从先.长江三角洲地区晚第四纪古土壤发育的阶段性[J].科学通报,1998a,43(23):557-559.
    陈庆强,李从先.长江三角洲地区晚更新世硬黏土层成因研究[J].地理科学,1998b,18(1):53-57.
    成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].成都:地质出版社,1978.
    程珺,高抒,汪亚平,闵凤阳.苏北近岸海域表层沉积物粒度及其对环境动力的响应[J].海洋地质与第四纪地质,2009,29(1):7-12.
    褚裕良.南黄海辐射沙脊群动力特征研究[D].2003,南京:河海大学博士论文.
    范德江,杨作升,毛登,郭志刚.长江与黄河沉积物中粘土矿物及地化成分的组成[J].海洋地质与第四纪地质,2001,21(4):7-12.
    方习生,石学法,王国庆.长江水下三角洲表层沉积物粘土矿物分布及其影响因素[J]海洋科学进展,2007,25(4):419-427.
    冯士笮,李凤歧,李少菁.海洋科学导论[M].1999,北京:高等教育出版社.
    冯卫兵,王义刚.三峡工程对长江口岸滩的影响[J].河海大学学报,1995,23(5):14-19.
    冯义.三余湾海岸的形成及其演变[J].海洋通报,1993,12(4):77-82.
    傅克忖,荒川久幸,曾宪模.悬砂水体不同波段反射比的分布特征及悬砂量估算实验研究[J].海洋学报,1999,21(3):134-140.
    傅命佐,朱大奎.江苏岸外海底沙脊群的物质来源[J].南京大学学报(自然科学版),1986,22(3):536-544.
    高抒,朱大奎.江苏淤泥质海岸剖面的初步研究[J].南京大学学报,1988,24(1),75-84.
    葛宗诗.南黄海QC_2孔磁化率研究[J].海洋地质与第四纪地质,1996,16(4):35-42.
    耿秀山,万延森,李善为,张耆年,徐孝诗.苏北海岸带的演变过程及苏北浅滩 动态模式的初步探讨[J].海洋学报,1983,5(1):62-70.
    哈长伟,陈沈良,张文祥,谷国传.江苏吕四海岸沉积动力特征及侵蚀过程[J].海洋通报,2009,28(3):53-61.
    韩震,金亚秋,恽才兴.神舟三号CMODIS数据获取长江口悬浮泥沙含量的时空分布[J].遥感学报,2006,10(3),381-386.
    何报寅,丁超,杨小琴,梁胜文.Landsat7 ETM+SLC-OFF数据的修复及其在武汉东湖水质反演中的应用[J].长江流域资源与环境,2011,20(1):90-95.
    何华春,邹欣庆,李海宇.江苏岸外辐射沙脊群烂沙洋潮流通道稳定性研究[J].海洋科学,2005,29(1):12-16.
    何梦颖,郑洪波,黄湘通,贾军涛,李玲.长江流域沉积物黏土矿物组合特征及物源指示意义[J].沉积学报,2011,29(3):544-551.
    何小燕,胡挺,汪亚平,邹欣庆,施晓钟.江苏近岸海域水文气象要素的时空分布特征[J].海洋科学,2010,34(9):44-54.
    胡炜,刘永学,李满春,陈洁丽,毛鹍.基于局部相关分析法的ETM+影像修复方法研究[J].地理与地理信息科学,2011,27(5):29-32.
    化学特征及古地理意义[J].热带海洋.1988,7(4):62-68.
    黄海军,李成治.南黄海海底辐射沙洲的现代变迁研究[J].海洋与湖沼,1998,29(6):640-645.
    黄海军.南黄海辐射沙洲主要潮沟的变迁[J].2004,24(2):1-8
    姜乃煌.我国陆相原油的钒镍含量和钒镍比探讨[J].石油与天然气地质,1988,9(1):73-76.
    蓝先洪,马道修,徐明广,周青伟,张光威.珠江三角洲地区第四纪沉积物地球化学特征及古地理意义[J].热带海洋.1988,7(4):62-68.
    蓝先洪,马道修,徐明广,周清伟,张光威.珠江三角洲若干地球化学标志及指相意义[J].海洋地质与第四纪地质,1987,7(1):39-49.
    蓝先洪,张宪军,刘新波,李日辉,张志殉.南黄海表层沉积物黏土矿物分布及物源[J].海洋地质与第四纪地质,2011,31(3):11-16.
    蓝先洪,张志殉,李日辉,丁东.南黄海NT2孔沉积物物源研究[J].沉积学报,2010,28(6):1182-1179.
    李成治,李本川.苏北沿海暗沙成因的研究[J].海洋与湖沼,198112(4):321-331.
    李成治,李本川.苏北沿海暗沙成因的研究[J].海洋与湖沼,1981,12(4):321-331.
    李从先,杨守业,范代读,赵娟.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响[J].第四纪研究,2004,24(5):495-500
    李从先,赵娟.苏北弦港辐射沙洲研究的进展和争论[J].海洋科学,1995(4):57-60
    李丛先,汪品先.长江晚第四纪河口地层学研究[M].北京:科学出版社,1998.
    李道季,李军,陈吉余,陈西庆,陈邦林.长江河口悬浮颗粒物研究[J].海洋与湖沼,2000,31(3):295-301.
    李海宇,王颖.GIS与遥感支持下的南黄海辐射沙脊群现代演变趋势分析[J].海洋科学,2002,26(9):61-65.
    李进龙,陈东敬.古盐度定量研究方法综述.油气地质与采样率.2003,10(5):1-3.
    李婧,高抒,汪亚平.长江口水域悬砂含量时空变化卫星遥感定量研究方法探讨[J].海洋学报,2009,31(4):167-175.
    李婧.长江河口与邻近海域悬砂浓度分布模型的遥感研究[D].2010,南京:南京大学博士论文.
    李玲,郑洪波,赵良,周斌,贾军涛,何梦颖.中新世以来长江下游和黄土高原地区黏土矿物的时空变化及古气候意义[J].古地理学报,2011,13(3):355-362.
    李明,杨世伦,李鹏,刘哲,戴仕宝,郜昂,张经.长江来沙锐减与海岸滩涂资源的危机[J].地理学报,2006,61(3):280-286.
    李四海,恽才兴,唐军武.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究[J].海洋学报,2002,24(2):51-58.
    李延军,殷勇,朱大奎.中国沿海深水港现状及发展趋势[J].港工技术,2010,47(6):10-13.
    李玉环,王静,吕春燕,张继贤.基于TM/ETM+遥感数据的地面相对反射率反演 [J].山东农业大学学报(自然科学版),2005,36(4):545-551.
    刘家驹等.吕四小庙洪水道建港条件分析[J].河海大学学报.1993(3).
    刘群.南黄海辐射沙脊群苦水洋东侧沙脊晚更新世以来沉积环境演变[D].2011,南京:南京大学硕士论文.
    刘振夏,夏东兴.中国近海潮流沉积沙体[M].北京:海洋出版社,2004.
    刘振夏.潮流脊的初步研究[J].海洋与湖沼,1983,14(3):286-296.
    刘志飞,A. Trentesaux, S.C.Clemens,汪品先.南海北坡ODP1146站第四纪粘土矿物记录:洋流搬运与东亚季风演化[J].中国科学(D辑:地球科学),2003,33(3):271-280.
    刘志飞,Colin C, Trentesaux A, D. Blamart.南海南部晚第四纪东亚季风演化的黏土矿物记录[J]中国科学(D辑:地球科学),2004,34(3):272-279.
    刘志国,周云轩,蒋雪中,沈芳.近岸Ⅱ类水体表层悬浮泥沙浓度遥感模式研究进展[J].地球物理学进展,2006,21(1):321-326.
    陆培东.潮汐汉道系统及环境响应[D].2002,南京:南京师范大学博士论文.
    梅安新,彭望琭,秦其明,刘慧平.遥感导论[M].北京:高等教育出版社,2001.
    孟庆勇,徐方建,周晓静,李传顺.东海内陆架EC2005孔沉积物磁化率与粒度组分的相关性研究[J].科技导报,2009,27(10),32-36.
    南京大学海洋研究中心.射阳港建港可行性研究报告[R].1988.
    南京大学,河海大学.江苏省洋口港建港预可行性研究报告[R].1989.
    秦蕴珊,李凡,徐善民.南黄海海水中悬浮体的研究[J].海洋与湖沼,1989,20(2),101-111.
    秦蕴珊,李凡,郑铁民,徐善民.南黄海冬季海水中悬浮体的研究[J].海洋科学,1986:10(6),1-7.
    任美锷,张忍顺,杨巨海,章大初.风暴潮对淤泥质海岸的影响——以江苏省淤泥质海岸为例[J].海洋地质与第四纪地质,1983,3(4):1-24.
    任美锷主编.江苏省海岸带与海涂资源综合考察报告[M],北京:海洋出版社,1986.
    史忠生,陈开远,史军,柳保军,何胡军,刘刚.运用锶钡比判定沉积环境的可行性分析[J].断块油气田,2003,10(2):12-18.
    孙庆峰,陈发虎,Christophe Colin,张家武.粘土矿物在气候环境变化研究中的应用进展[J].矿物学报,2011,31(1):146-152.
    孙顺才.长江三角洲全新世沉积特征[J].海洋学报,1981,3(1):97-113.
    覃军干,郑洪波,李从先.长江三角洲及邻近海域第1硬质黏土层的生物化石标志[J].海洋地质与第四纪地质,2004a,24(3):11-18.
    覃军干,郑洪波.从孢粉、藻类化石组合看长江三角洲第1硬质黏土层的成因及其古环境意义[J].第四纪研究,2004b,24(5):547-554.
    同济大学地质系.海陆相地层辨认标志[M].北京:科学出版社,1980.
    万延森,张耆年.江苏近海辐射状沙脊群的泥沙运动与来源[J].海洋与湖沼,1985,16(5):392-399.
    王爱华.不同形态锶钡比的沉积环境判别效果比较[J].沉积学报,1996,14(4):168-173.
    王建,柏春广,徐永辉.江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J].沉积学报,2006,24(4):562-569.
    王建,赵梅,白世彪,龚晓辉,张茂恒,吴艳红,萧家仪.黄海南部海门近岸牡蛎礁发育的物质基础与环境背景[J].地理研究,2009,28(5):1170-1178.
    王建.磁化率与粒度、矿物的关系及其古环境意义.地理学报,1996,51(2):155-163.
    王腊春,陈晓玲,储同庆.黄河、长江泥沙特性对比分析[J].地理研究.1997,16(4):71-79.
    王敏芳,黄传炎,徐志诚,程锦翔,杨赏.综述沉积环境中古盐度的恢复[J].新疆石油天然气,2006,2(1):9-13.
    王涛.近7000年来南通地区环境演变及人类活动影响[J].长江流域资源与环境,2010,19(Z2):193-202.
    王艳姣,张培群,董文杰,张鹰.悬浮泥沙反射光谱特性和泥沙量估算试验研究[J].泥沙研究,2007(5):36-41.
    王益友,郭文莹,张国栋.几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J].同济大学学报,1979(2):51-60.
    王益友,吴萍.江浙海岸带沉积物的地球化学标志[J].同济大学学报,1983(4):
    李成治,李本川.苏北沿海暗沙成因的研究[J].海洋与湖沼,1981 12(4):321-331.
    李成治,李本川.苏北沿海暗沙成因的研究[J].海洋与湖沼,1981,12(4):321-331.
    李从先,杨守业,范代读,赵娟.三峡大坝建成后长江输沙量的减少及其对长江三角洲的影响[J].第四纪研究,2004,24(5):495-500
    李从先,赵娟.苏北弦港辐射沙洲研究的进展和争论[J].海洋科学,1995(4):57-60
    李丛先,汪品先.长江晚第四纪河口地层学研究[M].北京:科学出版社,1998.
    李道季,李军,陈吉余,陈西庆,陈邦林.长江河口悬浮颗粒物研究[J].海洋与湖沼,2000,31(3):295-301.
    李海宇,王颖.GIS与遥感支持下的南黄海辐射沙脊群现代演变趋势分析[J].海洋科学,2002,26(9):61-65.
    李进龙,陈东敬.古盐度定量研究方法综述.油气地质与采样率.2003,10(5):1-3.
    李婧,高抒,汪亚平.长江口水域悬砂含量时空变化卫星遥感定量研究方法探讨[J].海洋学报,2009,31(4):167-175.
    李婧.长江河口与邻近海域悬砂浓度分布模型的遥感研究[D].2010,南京:南京大学博士论文.
    李玲,郑洪波,赵良,周斌,贾军涛,何梦颖.中新世以来长江下游和黄土高原地区黏土矿物的时空变化及古气候意义[J].古地理学报,2011,13(3):355-362.
    李明,杨世伦,李鹏,刘哲,戴仕宝,郜昂,张经.长江来沙锐减与海岸滩涂资源的危机[J].地理学报,2006,61(3):280-286.
    李四海,恽才兴,唐军武.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究[J].海洋学报,2002,24(2):51-58.
    李延军,殷勇,朱大奎.中国沿海深水港现状及发展趋势[J].港工技术,2010,47(6):10-13.
    李玉环,王静,吕春燕,张继贤.基于TM/ETM+遥感数据的地面相对反射率反演 洋潮流通道稳定性研究[J].地理研究,1998,17(1):10-16.
    喻国华,陆培东,吕泗小庙洪水道发育的继承性问题,地貌.环境.发展,中国环境科学出版社,1998.
    喻国华,陆培东.江苏吕四小庙洪淹没性潮汐汉道的稳定性[J].地理学报,1996,51(2):127-134.
    喻国华,施世宽.江苏省吕四岸滩侵蚀分析及整治措施[J].海洋工程,1985,3(3):26-36.
    岳军,Dong Yue,张宝华,牟林,王国明,陈安蜀,袁宝印,刘景兰,魏俊浩.
    张光威.南黄海陆架沙脊的形成与演变[J].海洋地质与第四纪地质,1991,11(2):25-35.
    张怀静,翟世奎,范德江,郭志刚,于增慧,曹立华,杨荣民,张晓东.三峡工程一期蓄水后长江口及其邻近海域悬浮物浓度分布特征[J].环境科学,2007,28(8):1655-1661.
    张强,姜彤,施雅风,苏布达,刘春玲.长江三角洲地区1万年以来洪水与气候变化的关系[J].海洋地质与第四纪地质,2003,23(3):11-15.
    张忍顺,陈才俊.江苏岸外沙洲演变和条子泥并陆前景研究[M].北京:海洋出版社,1992.
    张忍顺,陆丽云,王艳红.江苏海岸侵蚀过程及其趋势[J].地理研究,2002,21(4):469-478.
    张忍顺,王艳红,张正龙,蒋姣芳.江苏小庙洪牡蛎礁的地貌特征及演化[J].海洋与湖沼,2007,38(3):259-265.
    张忍顺.江苏小庙洪牡蛎礁的地貌——沉积特征[J].海洋与湖沼,2004,35(1):1-7.
    张忍顺.苏北黄河三角洲及滨海平原的成陆过程[J].地理学报,1984,39(2):173-184.
    张宪军.南黄海中西部全新世沉积特征及物源分[D].2008,青岛:中国海洋大学硕士论文.
    赵梅黄海中部海岸末次冰盛期第1硬质黏土层的粒度分维特征及其环境意义[J].海洋地质动态,2008,24(10):8-14.
    赵松龄,于洪军,李官保等.晚更新世末期东海北部古冬季风盛衰变更的地质记录[J].地质力学学报,2001(4):290-295.
    赵松龄,于洪军.晚更新世末期黄渤海陆架沙漠化环境的形成[J].第四纪研究,1996,16(1):43-47.
    赵松龄.苏北浅滩成因的最新研究[J].海洋地质与第四纪地质,1991,11(3):105-112.
    赵永胜,宋振亚,温景萍,孙庭金.保山盆地湖相泥岩微量元素分布与古盐度定量评价[J].海洋与湖沼,1998,29(4):409-415.
    郑荣才,柳梅青.鄂尔多斯盆地长6油层组古盐度研究[J].石油与天然气地质,1999,20(1):20-25.
    郑祥民.长江三角洲及海域风尘沉积与环境[M].上海:华东师范大学出版社,1999:161-168.
    周长振,孙家淞.讨论苏北岸外浅滩的成因[J].海洋地质研究,1981,1(1):83-92.
    朱大奎,傅命佐.江苏岸外辐射沙洲的初步研究.江苏省海岸带东沙滩综合调查报告[M].北京:海洋出版,1986.
    朱大奎.江苏岸外沙脊群西洋水道的稳定性研究[J].海洋通报,1994,5:36-43.
    朱晓东,任美锷,朱大奎.南黄海辐射沙洲中心沿岸晚更新世以来的沉积环境演变[J].海洋与湖沼,1999,30(4):427-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700