湖南南岭山区公路典型路堑边坡处治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速公路的快速发展,越来越多的高速公路不断往山区延伸和发展,在山区复杂的地形、地貌和地质条件下建设技术标准要求高的公路,路基工程中势必会存在大量的深挖路堑工程。山区公路高边坡失稳问题关系着人的生命安全、财产安全和公路的修建效率以及通车后公路的正常通车、运营效率。虽然边坡坡体在自然状态下一般处于稳定状态,但是在雨水或人类活动等外界其他因素的影响下,边坡会发生失稳破坏,所以为了人们的生命安全和财产安全,在边坡刚发生失稳或者失稳之前必须采取可靠的处治措施,以阻止失稳破坏的继续发展。因此,进行山区公路路堑边坡处治研究意义重大。
     本文针对南岭山区地形条件变化大、地层岩性和地质结构复杂的地质特点,开展了典型路堑边坡滑坡处治研究。通过实地调查和相关文献资料的查找总结了南岭山区的工程地质条件,实地调查南岭山区已建和在建的公路路堑边坡,分析了在该地区修建公路路堑边坡的特点;以在建的湖南炎汝高速公路为依托,选取了K19+190~K19+320段右侧高边坡和K127+800~K127+900段右侧高边坡两个典型滑坡边坡,分析了边坡的滑坡特征以及滑坡产生的原因;结合南岭山区的工程地质情况、路堑边坡的特点以及施工条件等提出了适合南岭山区边坡滑坡处治的包括刷方减载、强支护、弱支护,并与坡面防护、排水措施和坡体灌浆等相结合的综合处治措施,并对炎汝高速公路两个典型路堑边坡滑坡提出了详细的处治方案。最后用FLAC3D软件对K19+190~K19+320段右侧高边坡进行了滑坡处治前后的数值模拟分析和对K127+800~K127+900段右侧高边坡的两种处治方案进行了数值模拟分析,分析结果为:K19+190~K19+320段右侧高边坡的安全系数由滑坡处治前的0.57提高到了滑坡处治后的1.50,处治后最大位移明显减小;K127+800~K127+900段右侧高边坡的两种处治方案都能满足边坡稳定性要求,而且最大位移也基本相等,所以从经济性、施工工艺等方面来比较两种处治方案,方案一比方案二节省费用241.7万元,施工可操作性方面方案一也优于方案二,所以最终选择了方案一进行处治。
     目前,K19+190~K19+320段右侧高边坡已经施工完了抗滑桩和锚索地梁支护,K127+800~K127+900段右侧高边坡已经基本卸载完成,从施工现场和监测数据可以看出这两个边坡现处于稳定状态,说明处治效果良好。
With rapid development of our country’s expressways, more and moreexpressways continuously extended to mountain areas. There will certainly existplenty of deep digging cutting engineering in roadbed engineering if we want to buildsome roads at a high level under so complex topography, landforms and geologyconditions in mountain areas. The high-slop instability of roads in mountain areas isclosely related to life safety, property safety, construction efficiency and operationefficiency. Although the slope is stable under natural conditions, the stability of theslope will be damaged by other external factors such as rainwater and humanactivities. In order to keep people’s life and property safe, some treatment measuresmust be taken before or just after the instability so that we can stop the consequencesof instability from keeping on expanding. Therefore, carrying out researches intothe treatment of the slope’s instability has a great significance.
     This paper does researches into the treatment of the typical road slope in the lightof geological characteristics such as changeable topography, rock stratum andcomplex geology structure. This paper summarizes the geology condition according toexperimental analysis and document data, investigates the road slope having built orbeing built and analyzes the characteristics of the road slope in this area. SinceK19+190~K19+320 and K127+800~K127+900 are parts of Hunan Yanru Expressway;what’s more, these two parts are typical landslides. Therefore, both of them areselected to be studied to analyze the characteristics of the landslide and the causes ofthe slide. The paper poses the comprehensive treatments contain cutting slope andreducing load, strong supporting, short supporting and them combined with slopeprotection, drainage measure, slope grouting and so on for the cutting slopes inNanling as well as the detailed ways for the above two mentioned typical cuttingslopes, which is based on the characteristics of geological conditions in Nanling andconstruction requirements. This paper does a pre-numerical-simulation analysis and apost-numerical-simulation analysis for K19+190~K19+320 and two treatmentschemes analysis for K127+800~K127+900 respectively. The results are safety factorincreased to 1.50 after treatment from 0.57 and the displacement reduces obviously ofK19+190~K19+320. The two treatment schemes can meet the requirements ofstability and the maximum displacement are almost equal of K127+800~K127+900. So compared with the two treatment schemes from economy and constructiontechnology, etc. Compared with the second scheme, the first scheme can save 2.417million yuan, construction technology also better. Therefore, this paper chooses thefirst program.
     Anti-slide pile and anchor rope ground beam retaining have been constructed ofK19+190~K19+320 at present. Earthwork have already unloaded of K127+800~K127+900. Now the two slope are at the state of stability from construction site andmonitoring data. So we can think that the treatment results are well.
引文
Contour of X-DisplacementContour of Z-Displacement
    Magfac = 0.Ma--22..78510402ee--000000220 ettoo+ 0--220.07500e-002--g22f..a24c55 00=06 ee0-.000020 eto+ 0-20.02500e-002--22..25500000ee--000022 ttoo -2..25500000ee--000022--12..7050000e--000022 ttoo --12..70500000ee--000022--12..70500000ee--000022 tto --12..70500000ee--000022--11..250000ee--000022 ttoo --11..25500000ee--000022--11..25500000ee--000022 too --11..25500000ee--000022--71..50000000ee--0002 ttoo --71..50000000ee--000032----2571.0050000ee--000022 ttoo --71..50000000ee--000032...505000000000eee---000000333 tttooo --025...050000000000eee+--000000330--25..50000000ee-00033 ttoo --25..50000000ee--000033Inte0r.v0a0l0 =0 e2+.050e0-0 t0o3 1.1001e-003Inte0r.v0a0l0 =0 e2+-0.00503e0 -0 tto0o 3 01..01010505ee+-000050
    MItainsnceaa Cpoonliss,u MltinNg GUSroAup, Inc.MItainsnceaa Cpoonliss,u MltinNg GUSroAup, Inc.图5.13处治后X轴方向位移云图图5.14处治后Z轴方向位移云图
    Contour of X-DisplacementContour of Z-Displacement
    Ma-g1f.a6c0 4=6 e0-.000030 et+000Ma--11..46000000ee--000033 too --11..46000000ee--000033--g22f..a00c09 07=2 e0-.000030 eto+ 0-20.00000e-003--11..02000000ee--0003 ttoo --11..02000000ee--000033--11..575000ee--000033 ttoo --11..57050000ee--000033--68..00000000ee-00043 ttoo --68..00000000ee--000044---711.2500000ee--000033 ttoo --11..02050000ee--000033..50000000ee--000043 ttoo --57..05000000ee--000044--24..0000000e--000044 ttoo --24..00000000ee--000044--Inte0r.v0a0l0 =00 ee2+-0.00004e0 -0 tto0o 4 01..08050200ee+-000050025...050000000000eee+--000000440 tttooo - 022...055000000000eee+-0-00000440Inte2r.v5a0l0 =0 e2-0.50e4- 0to0 43.8937e-004
    MItainsnceaa Cpoonliss,u MltinNg GUSroAup, Inc.MItainsnceaa Cpoonliss,u MltinNg GUSroAup, Inc.图5.20方案一X轴方向位移云图图5.21方案一Z轴方向位移云图
    [1]王恭先.面向21世纪我国滑坡灾害防治的思考[A].兰州滑坡泥石流学术研讨会文集.兰州:兰州大学出版社,1998:l~8
    [2]崔政权,李宁.边坡工程一理论与实践最新发展[M].北京:中国水利水电出版社,1999
    [3]严利娥.岩质高边坡稳定性评价研究[D]:[广西大学硕士学位论文].南宁:广西大学,2006
    [4]黄润秋,许强等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002
    [5]王念秦.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005
    [6]唐建新,魏作安,万玲等.高等级公路中的边坡工程问题[J].公路交通技术,2003(2):3~5
    [7]百度百科:南岭原文:http://baike.baidu.com/view/122278.htm
    [8]邹新特,刘朝晖等.南岭山脉地区边坡特点及防护措施[J].交通信息与安全,2012,30(增1):101~104
    [9]覃慕陶,刘师先.南岭花岗岩型和火山岩型铀矿床[M].北京:地质出版社,1998
    [10]陈祖煜,汪小刚,杨健等.岩质边坡稳定性分析[M].北京:中国水利水电出版社,2005
    [11]加拿大矿物和能源技术中心.边坡工程手册[M].北京:冶金工业出版社,1984
    [12]E.Hoek,J.W.Bray.岩石边坡工程[M].北京:冶金工业出版社,1983
    [13]李涛. G205国道西坑口边坡稳定性评价及施工监测分析[D]:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2010
    [14]Bishop,A.W. The use of the slip circle in the stability analysis of slopes[J].Geotechnique,London,1955,5(1):43~57
    [15]Janbu,N. Earth pressure and bearing capacity calculations by generalizedprocedure of slices[J]. Proceedings of the fourth international conference onsoil mechanics and foundation engineering,1957(2):108~111
    [16]王江.潭衡西线高速公路路堑边坡稳定性评价与监测方案研究[D]:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2008
    [17]Lowe,J. and Karafiath,L. Stability of earth dams upon draw down.proc[M].Mexico:1st panrm.cof.on soil mech and Found.Engrg,1960
    [18]Spencer,E.A. Method of analysis of the stability of embankments assumingparallel interslice forces[J]. Geotechnique,London,1967,17(1):87~92
    [19]王兰生,张倬元.斜坡变形破坏的地质力学模式[M].北京:地质出版社,1970
    [20]Heok E,&Bray J.W.,Rock slope engineering,Rebised second edition [M].London:Institution of mining and metallurgy,1977
    [21]Morgenstern N R&Price V E. The analysis of the stability of general slipsurfaces[J]. Geotechnique,1965,15(1):79~93
    [22]Sarma,S.K. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23(3):423~433
    [23]张倬元,王兰生,王世天.工程地质分析原理(第二版)[M].北京:地质出版社,1994
    [24]Goodman R E. Methods for Geological Engineering in Discontinuous Rock [M].United States:West Publishing Company, 1994
    [25]中国科学院武汉岩体士力学研究所.岩质边坡稳定性的试验研究与计算方法[M].北京:科学出版社,1981
    [26]孙君实.条分法的提法及数值计算的最优化方法[J].水力发电学报,1983(1):52~64
    [27]李天斌,王兰生.岩质工程搞边坡稳定性及其控制[M].北京:科学出版社,2008
    [28]王兰生.斜坡稳定问题的工程地质研究[J].水文工程地质,1989(4):27~29
    [29]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983,2(1):67~76
    [30]黄润秋.高边坡稳定性的系统工程地质研究[D]:[成都理工大学硕士学位论文].成都:成都理工大学,1988
    [31]Shi.G.H. Discontinous deformation analysis a new numerical model for thestaticand dynamics of deformable block structures[J]. Engineering Computation,1992,9(2):157~168
    [32]王惠勇.基于鸡爪沟地形路基变形规律和路堑边坡稳定评价[D]:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2004
    [33]邓卫东等.公路边坡稳定技术[M].北京:人民交通出版社,2006
    [34]陈谦应,蒋树屏,柴贺军等.山区公路路基稳定理论与实践[M].北京:人民交通出版社,2005
    [35]Cundall, P.A.A computer model for simulating progressive large scalemovement in blocky system[J]. Proc.Symp.Int.Soci.Rock mech,1971(1): 8~11
    [36]陈昌伟.离散单元法及其在岩质高边坡稳定分析中的应用[D]:[清华大学硕士学位论文].北京:清华大学,1992
    [37]姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176~178
    [38]张卫中.向家坡滑坡稳定性分析及动态综合治理研究[D]:[重庆大学博士学位论文].重庆:重庆大学,2007
    [39]卓家寿,赵宁.不连续介质静、动力分析的刚体-弹簧元法[J].河海大学学报,1993,21(5):34~43
    [40]郭春丽.赣南崇义一上犹地区与成矿有关中生代花岗岩类的研究及对南岭地区中生代成矿花岗岩的探讨[D]:[中国地质大学博士学位论文].武汉:中国地质大学,2010
    [41]刘继鹏.南岭南坡剥蚀速率研究[D]:[华南师范大学硕士学位论文].广州:华南师范大学,2007
    [42]百度文库:南岭地区地质特征原文:http://wenku.baidu.com/view/1665a028647d27284b7351f4.html
    [43]梁国昭,许自策.加速开展东江流域综合开发治理研究[J].热带物理,1990,10(1):1~8
    [44]胡浩.山区公路滑坡灾害的研究与防治[D]:[中南大学硕士学位论文].长沙:中南大学,2010
    [45]章勇武,马惠民.山区高速公路滑坡与高边坡病害防治技术实践[M].北京:人民交通出版社,2007
    [46]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008
    [47]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2008
    [48]孙书伟,林杭,任连伟. FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011
    [49]史博,袁光明.基于FLAC强度折减法的边坡稳定性分析[J].中国矿业,2010,19(8):92~94
    [50]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,24(13),3381~3389
    [51]林杭,曹平,周正义. FLAC3D模拟全长注浆锚杆的作用效果[J].岩土力学,2005,26(增),167~170
    [52]魏继红,吴继敏,孙少锐. FLAC3D在边坡稳定性分析中的应用[J].勘察科学技术,2005(2):27~30
    [53]JTG D30-2004.公路路基设计规范[S].北京:人民交通出版社,2004
    [54]章勇武,马惠民.山区高速公路滑坡与高边坡病害防治技术实践[M].北京:人民交通出版社,2007
    [55]段海澎.山区高等级公路高边坡稳定性及动态设计的地质工程研究[D]:
    [成都理工大学博士学位论文].成都:成都理工大学,2007
    [56]苏少青,李应顺.浅谈京珠高速公路粤境北段特殊岩土路堑边坡的防护与加固[J].广东公路交通,2001(3):52~54
    [57]秦四清,张悼元,黄润秋.非线性工程地地学导引[M].成都:西南交通大学出版社,1993
    [58]张子新,孙钧.分形块体力学及其在三峡船闸高边坡岩土工程中的应用[J].同济大学学报,1996,24(5):552~557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700