新疆西天山查岗诺尔铁矿地质特征与矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西天山是中亚造山带的重要组成部分,经历了复杂的增生造山过程。西天山成矿带是我国重要的铁-铜-金多金属成矿带。自2004年以来,西天山阿吾拉勒成矿带的矿产勘查取得突破性进展,相继勘查或发现了数个大中型的铁矿床。查岗诺尔大型磁铁矿床位于西天山北缘阿吾拉勒东段,赋矿围岩系石炭系大哈拉军山组火山岩,可能是早石炭世末期准噶尔洋向南俯冲于伊犁板块之下的大陆边缘岛弧的产物。该矿床主要由Fe Ⅰ和Fe Ⅱ两个矿体组成,其中主矿体Fe Ⅰ底盘夹一个透镜状大理岩,主要为层状、似层状、透镜状,受NW、NWW、NE断裂及环形断裂构造控制,矿化发生在围岩中的各种层间裂隙或断裂中。围岩蚀变主要呈现为石榴石化、阳起石化,绿帘石化以及绿泥石化等。本文在野外地质调研和室内矿相学研究的基础上,利用电子探针、电感耦合等离子体质谱、同位素质谱和显微测温等技术手段,开展了矿物学、微量元素地球化学、稳定同位素、流体包裹体和Sm-Nd年代学等研究,并将查岗诺尔铁矿与其它典型矿床进行类比研究,分析成矿物质来源,探讨矿床成因,构建成矿模式,为深入总结阿吾拉勒成矿带中铁矿床的成矿机制和成矿规律提供依据。取得的主要认识有:
     (1)矿体赋存于大哈拉军山组中-上部的火山碎屑岩和火山熔岩中,发育石榴石、透辉石、方柱石、阳起石、绿帘石、绿泥石、钾长石等脉石矿物,矿石矿物主要为磁铁矿,伴有少量的赤铁矿、黄铁矿和黄铜矿。矿石构造主要为角砾状、斑点状、斑杂状、豹纹状、块状、浸染状、条带状等,矿石结构以它形-半自形粒状结构、交代结构、填隙结构、包含结构、共生边结构等较为常见。
     (2)矿床的蚀变分带具有热液矿床的特点。根据矿石组构和矿物共生特征,可以划分为岩浆期和热液期(包括矽卡岩亚期和石英-硫化物亚期)两个成矿期,进一步可以细分为磁铁矿-透辉石阶段、绿泥石-黄铁矿阶段、磁铁矿-石榴石-阳起石阶段、青磐岩化阶段、硫化物阶段和石英-碳酸盐化阶段6个成矿阶段。
     (3)利用电子探针对石榴石和辉石的端元组分的研究表明,矿床发育以钙铁榴石-钙铝榴石和透辉石-钙铁辉石为组合的钙质矽卡岩,与国内外的典型矽卡岩型铁矿的石榴石和辉石的端元组分具有相似性。在磁铁矿和赤铁矿的Ca+Al+Mn vs Ti+V图解中,多数的样品落入矽卡岩型铁矿的区域;磁铁矿的TiO2-Al2O3-MgO图解中,多数的样品落入沉积变质-接触交代磁铁矿趋势区。
     (4)岩浆期的磁铁矿∑REE很低,稀土配分模式大致呈轻、重稀土较富集而中稀土亏损的U型,富Ti、V、Cr,表明铁质可能来自安山质岩浆的结晶分异作用;矽卡岩亚成矿期的磁铁矿∑REE极低,略微富集LREE,其它稀土元素亏损强烈,贫Ti、V,略富集Ni、Co和Cu。矽卡岩亚期的含矿和无矿矽卡岩中的石榴石的稀土配分模式类似,∑REE含量相对较高,呈HREE富集、LREE亏损、弱正Eu异常的分布型式,显示了交代成因石榴石的特征,暗示与其共生的磁铁矿也是通过热液流体与围岩地层的交代反应生成的,铁质来自围岩。
     (5)磁铁矿氧同位素显示,从岩浆期到矽卡岩期,δ18O具有降低的趋势,反映了围岩蚀变等热液活动对成矿流体的改变。岩浆成矿期和矽卡岩期硫同位素主要显示岩浆来源,但岩浆期可能有少量围岩地层硫或海水硫的混入。成矿晚期阶段的方解石δ13CPDB-δ18OSMOW呈正相关,指示可能存在不同类型NaCl浓度混合或流体-围岩之间的水岩反应,大理岩为成矿作用提供了部分的成矿物质。
     (6)成矿晚期方解石中的流体主要为NaCl-H2O体系,包裹体主要为气液两相包裹体。流体包裹体均一温度-盐度的相关性表明,在随着成矿作用的逐渐进行,晚期流体的盐度逐渐降低,可能经历了等温混合作用以及不同温度、盐度的流体的混合过程。
     (7)与磁铁矿关系密切的石榴石Sm-Nd等时线年龄为316.8±6.7Ma,指示了高温热液蚀变的时间,表明主要的磁铁矿体形成时代为早石炭世晚期,成矿作用及其高温热液蚀变不是矿区二叠纪岩体侵入携带的岩浆热液与大理岩发生的矽卡岩化所导致的,可能是大哈拉军山组火山岩喷发后的岩浆期后热液与下伏大理岩发生的接触交代反应所引起的。
     (8)结合矿床地质特征、矿石组构特征、稳定同位素和典型矿物的稀土微量分布型式,并将查岗诺尔铁矿的地质地球化学特征与典型的矽卡岩型铁矿和火山岩型(包括岩浆型)铁矿进行对比,认为查岗诺尔铁矿可能是岩浆型和矽卡岩型(主要)的复合叠加矿床,矽卡岩化对铁成矿有重要的贡献。
As one of the important components of the Central Asian Orogenic Belt, Western Tianshan Mountains experienced complex accretionary orogenic process, and Western Tianshan metallogenic belt is also one of the famous Fe-Cu-Au poly-metallic regions. From2004on, great progress has been achieved in iron exploration in the Awulale metallogenic belt of Western Tianshan Mountains due to the discovery of several medium to large-size Fe deposits. Located in the eastern Awulale metallogenic belt, north side of Western Tianshan Mountain, the large-scale Chagangnuoer iron de-posit is hosted in the volcanic rock termed by Carboniferous Dahalajunshan Formation, which may be the product on the continental arc created by the subduction of the Junggar Ocean southward beneath the Yili plate in the late Early Carboniferous. This iron ore consists of two predominate ore bodies named as Fe I and Fe II, with one lentoid marble as footwall rock beneath the main ore bodies Fe I which exhibit as lamellar, stratoid and lenticular, controlled by NW, NWW, NEE strike faults and circular faults. Mineralizations take place along fissures and fractures in the wall rocks. Wall rock alterations chiefly exhibit garnetization, actinolitization, chloritization, epidotization and so on. On the basis of field geological survey and indoor ore microscopy, using by these tec-hnical means of electron microprobe, inductively coupled plasma mass spectrometry, isotope mass spectrometry and mircothermometry, doing some studies included mineralogy, trace element geoch-emistry, stable isotope, fluid inclusion and Sm-Nd geochronology etc., and compared geological ch-aracteristics of the Chagangnuoer iron deposit with those of other typical iron deposits, to search ore-forming source, to explore ore genesis, and to build metallogenic model, in order to further summarize mineralization mechanism and metallogenic regularity of iron ores in the Awulale Belt, this thesis has proposed several points as follows.
     (1) This iron deposit is hosted in the upper-middle sections of andesite and andesitic volcanic-lastics of Carboniferous Dahalajunshan Formation. Ore minerals are mainly consisted of magnetite, and subordinately pyrite and chalcopyrite while the gangue minerals are composed of garnet, actin-olite, chlorite, epidote, tremolite, and calcite et al. Ore structures mainly occur as brecciated,spotted and mottled,"leopard pattern", massive, disseminated and banded, whereas ore textures dominantly display as anhedral, allotrio-hypidiomorphic, metasomatic, filling and intersertal.
     (2) The alteration zonation is similar with typical hydrothermal deposits. According to ore fab-ric and mineral paragenesis, this deposit can be divided into two ore-forming stages, which are magmatic stage and hydrothermal stage (included prograde sub-stage and quarts-sulfide sub-stage), and could be further subdivided into magnetite-diopside phase, chlorite-pyrite phase and magnetite-garnet-actinolite phase, propylitic phrase, sulfide phase and quartz-carbonate phase.
     (3)Electron microprobe analyses show that componential characteristics of garnet and pyroxene are quite similar with those in calcic skarn from the major large iron deposits, and probably are resulted from skarnization. In the Ca+Al+Mn vs Ti+V discriminant diagram showing spot analyses of magnetite and hematite, almost of data from the Chagangnuoer ore are fall into the district of skarn type of iron deposit. In addition, in the ternary plots of TiO2-Al2O3-MgO of magnetite, many data from the Chagangnuoer ore are seated in the sedimentary metamorphogenic and contact meatasomatic trending region while less amount of those dropping into magmatic mafic-ultramafic trending region.
     (4) In the magmatic stage, REE in magnetite is very low, rich in LREE and HREE but depl-eted in MREE with a U type pattern. This kind of magnetites has a higher Ti, V, Cr, indicating that Fe might come from the crystallization differentiation of andesitic magma. On the other hand, in the prograde sub-stage, magnetites have a lower REE content, a bit rich in LREE but other REE strongly depleted. Compared with the magnetites in magmatic stage, these magnetites are po-or in Ti, V but a bit abundant in Ni, Co and Cu content. Garnets in barren and ore-bearing skarn distribute the same REE patterns, having a relatively high REE content, enriched in HRRE but depleted in LREE, and with a not pronounced positive Eu anomaly, which displays the feature of garnet with metasomatic origin in the calcic skarn. And this hints that the magnetites, which have a paragenesis relationship with ore-bearing garnets, should be also a product of hydrothermal fluid replacement with wall rocks, and most of the mineralizing materials (Fe) probably are derivate fr-om andesitic strata.
     (5) Oxygen isotopes of magnetite show that the818O values display a decreasing trend, which reflects that wall alteration may change the ore-forming fluid. Both the sulfur isotope components between magmatic stage and prograde stage mainly distribute the magmatic feature, yet certain mi-nor strata sulfur or oceanic sulfur might be mixed in the former. In the late ore-forming stage, the δ13CPDB-δ18Osmow ratios of calcite show a positive linear correlation, probably attributing to the mixture of different concentrations of NaCl fluid or the water-rock reaction between ore-forming fluid and wall rocks, and marble may contribute to partial mineralization materials.
     (6)In the late ore-forming stage, fluid inclusions in the calcite are chiefly gas-liquid two phase type, indicating that ore-forming fluids may belong to NaCl-H2O system. Plot showing homogeni-zation temperature versus salinity of fluid inclusions in calcite provides the information that the sa-linity of late ore-forming fluids decreased with the reaction of mineralization, and that this process might be related with the isothermal mixing and mixture of various fluids with different temperat-ures and salinities.
     (7) Garnet, which has a closely paragenesis relationship with magnetite, yields the Sm-Nd iso-chron age with316.8±6.7Ma, which represents the formation epoch of high hydrothermal alteration. This result indicates that magnetite intergrown with garnet formed at the late stage of Early Carb-oniferous. Therefore, the iron metallogeny and high hydrothermal alteration should result from the metasomatism between the post-magmatic hydrothermal derivated from eruption of Dahalajunshan Formation volcanics and the underlying marble, rather than the skarnization caused by the magmat-ic hydrothermal from Permian intrusion with marble in ore district.
     (8) In combination the ore deposit geology, ore fabric features with mineralogy of typical mi-nerals, stable isotopes, and rare element chemistry, compared with typical skarn iron deposits and volcanic iron deposits (included magmatic type), conclusions have been drawn that the Chagangnu-oer iron ore is one polygenetic deposit with the skarn type (predominated) superposition upon the magmatic type, and that skarnizations would play an quite important role on the deposition of this iron deposit..
引文
①李厚民.2010.中国铁矿成因类型、预测类型和典型矿床式
    ②李凤鸣.2010.新疆阿吾拉勒铁矿带找矿突破
    ②李凤鸣.2010.新疆阿吾拉勒铁矿带找矿突破
    ③新疆维吾尔族自治区地质调查院.2008.新疆西天山查岗诺尔-备战一带铁铜矿资源评价报告.
    ③新疆维吾尔自治区地质调查院.2008.新疆西天山查岗诺尔-备战—带铜铁矿资源评价报告.
    ④新疆地质矿产勘查开发局地质研究所.1998.新疆西天山查岗诺尔地区矿床成矿系列和成矿模式研究报告.
    ⑤新疆地质矿产局.1993.新疆维吾尔自治区区域地质志.中华人民共和国地质矿产部,地质专报,区域地质,第32号,北京:地质出版社,1-841.
    [1]Allen M B, Windley B F and Zhang Chi.1992. Plalaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics,220:89-115.
    [2]Barker S L L, Bennett V C, Cox S F, Norman M D and Gagan M K.2009. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins:Implications for fluid-rock reaction and geochronology. Chemical Geology,268(1-2):58-66.
    [3]Bodnar R J.1993. Revised equation and stable for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,57:683-684.
    [4]Clayton, R.N., and Mayeda, T.K.,1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. et Cosmochim. Acta,27:43-52.
    [5]Cliff R., Rickard D., and Blake K.1990. Isotope systematics of the Kiruna magnetite ores, Sweden; Part 1, Age of the ore. Economic Geology,85(8):1770-1776.
    [6]Clout, J M F.2006. Iron formation-hosted iron ores in the Hamersley Province of Western Australia. Applied Earth Science:IMM Transactions section B,115(4):115-125.
    [7]Dupuis C. and Beaudoin G.2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita,46:319-335.
    [8]Einaudi M. T and Burt D. M.1982. Introduction-terminology, classification, and composition of skarn deposits. Economic Geology,77:745-754.
    [9]Einaudi M. T., Meinert L.D., and Newberry R. J.1981. Skarn deposits. Economic Geology,75th Anniv., 317-391.
    [10]Friedman I and O'Neil J R.1977. Complication of stable isotope fraction factors of geochemical interest in data of geochemistry. In:Frleicher M, ed. Geological professional paper. U. S. Geological Survey.6th ed.440.
    [11]Frietsch D R.1973. The origin of the Kiruna iron ores. GFF,95(4):375-380.
    [12]Frietsch D R.1978. On the magmatic origin of iron ores of the Kiruna type. Economic Geology,73(4): 478-485.
    [13]Frietsch DR and Perdahl JA.1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews,9 (6):489-510.
    [14]Frutos J and Oyarzun J M.1975. Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Economic Geology,70(5):988-990.
    [15]Gao J., Long L., Klend R, et al.2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China:geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences,98(6):1221-1238.
    [16]Gaspar M, Knaack C, Meinert LD and Moretti R.2008. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et Cosmochimica Acta,72 (1):185-205.
    [17]Henriquez F and Martin R F.1978. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Canadian Mineralogist,17:581-589.
    [18]Henriquez F and Nystrom J O.1998. Magnetite bombs at El Laco volcano, Chile. GFF,120(3): 269-271.
    [19]Hitzman M W, Oreskes N and Einaudi M T.1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposit. Precambrian Research,58:241-287.
    [20]Hoefs J.2009. Stable isotope geochemistry.6th edition. Berlin:Spring Verlag,1-285.
    [21]Hou T., Zhang Z. and Kusky T.2011. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China:Hydrothermal or Kiruna-type? Ore Geology Review,43:333-346.
    [22]Kamvong T. and K. Zaw.2009. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand:Evidence from fluid inclusion and sulfur isotope studies. Journal of Asian Earth Sciences,34(5):624-633.
    [23]Kisvarsanyi G and Proctor P D.1967. Trace-element content of magnetites and hematites, southeast Missouri metallogenetic province, USA. Economic Geology 62(4):449-471.
    [24]Lascelles D. F.2006. The Genesis of the Hope Downs Iron Ore Deposit, Hamersley Province, Western Australia. Economic Geology,101(7):1359-1376.
    [25]Li X H, Liu D Y, Sun M, Li W X, Liang X R and Liu Y.2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine,141(2):225-231.
    [26]Liegeois JP, Navez J, Hertogen J and Black R.1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos,45 (1-4):1-28
    [27]Long L., Gao J., Klend R, et al.2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen:Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos,126:321-340.
    [28]Lu Huangzhang, Liu Yimao, Wang Changlie, et al.2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology,98: 955-974.
    [29]Ludwig KR.2003. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no.4,1-77.
    [30]Mao J., Xie G., Duan C., Pirajno F., Ishiyama D. and Chen Y.2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Review,43:294-314.
    [31]McCrea M.1950. The isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys., 18:849-857.
    [32]Meinert L D.1998. A review of skarn that contain gold. In:Lentz D R, ed. Mineralized intrusion-related skarn systems. Quebec:short Course Series,26:359-414.
    [33]Meinert L. D.1992. Skarns and skarn deposits. Geoscience Canada,19:145-162.
    [34]Meinert, L.D., Dipple, G.M., and Nicolescu, S.,2005. World skarn deposits. Economic Geology 100th Anniversary Volume,100:299-336.
    [35]Misra K.C.2000. Understanding Mineral Deposit Dordrecht, the Netherlands:Kluwer Academic Publishers.
    [36]Nystrom J O and Henriquez F.1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Economic Geology,89(4):830-839.
    [37]Nystrom J O, Billstrom K, Henriquez F, Fallick A E and Naslaud H R.2008. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF,130(4):177-188.
    [38]Oberthur T, Melcher F, Henjes-Kunst F, Gerdes A, Stein H, Zimmerman A and Ghorfi M E.2009. Hercynian age of the Colbalt-Nickel-Arsenide-(Gold) ores, Bou Azzer, Anti-Atlas, Morocco:Re-Os, Sm-Nd, and U-Pb age determinations. Economic Geology,104:1065-1079.
    [39]Ohlander B, Billstrom K and Haglenius E.1989. Geochemistry of the Proterozoic wolframite-bearing greisen veins and the associated granite at Rostberget, northern Sweden. Chemical Geology,78: 135-150.
    [40]Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon. In:Barnes HL(ed.). Geochemistry of hydrothermal ore deposits. New York:John Wiley & Sons,509-567.
    [41]Parak T.1975. Kiruna iron ores are not" intrusive-magmatic ores of the Kiruna type". Economic Geology,70(7):1242-1258.
    [42]Parak T.1991. Volcanic sedimentary rock-related metallogenesis in the Kiruna-Skellefte belt of northern Sweden. Economic Geology Monograph,8:20-50.
    [43]Park C. F.1961. A magnetite "flow" in northern Chile. Economic Geology,56(2):431-436.
    [44]Pastor T B, Schauwecker D D S and Haskin L A.1974. The behavior of some trace elements during solidification of the Skaergaard layered series. Geochimica et Cosmochimica Acta,38:1549-1577.
    [45]Pearce J and Gale G.1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications 7(1): 14-24.
    [46]Pearce JA.1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In:Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Shiva, Cheshire, U.K,230-249
    [47]Philpotts A.1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology,62(3): 303-315.
    [48]Qian Q., Gao J., Klend R, He G., Song B., Liu D. and Xu R.2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen:constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences,98(3):551-569.
    [49]Rubatto D.2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology,184 (1-2):123-138.
    [50]Schock H H.1979. Distribution of rare-earth and other trace elements in magnetites. Chemical Geology,26(1-2):119-133.
    [51]Sillitoe R. H.2003. Iron oxide-copper-gold deposits:an Andean view. Mineralium Deposita 38(7): 787-812.
    [52]Sillitoe RH and Burrows DR.2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Economic Geology,97 (5):1101-1109.
    [53]Tang G.., Wang Q., Wyman D A., Sun M., Li Z., Zhao Z., Sun W., Jia X. and Jiang Z.2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China):Evidence for a tectonic transition from arc to post-collisional setting. Lithos,119(3-4):393-411.
    [54]Taylor S R and Mclenann SM.1985. The continental crust:its composition and evolution. Blackwell: Oxford Press,1-32.
    [55]Taylor. H.P. Jr.1967. Oxygen isotope studies of hydrothermal mineral deposits. In:Barnes HL(ed.): Geochemistry of hydrothermal ore deposits. New York:John Wiley & Sons,109-142.
    [56]Thorne, W. S., Hagemann S. G., Barley M.2004. Petrographic and geochemical evidence for hydrothermal evolution of the North Deposit, Mt Tom Price, Western Australia. Mineralium Deposita, 39(7):766-783.
    [57]Vander Auwera J and Andre L.1991. Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources:evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy). Contributions to mineralogy and Petrology,106(3):325-339.
    [58]Xia L Q, Xu X Y, Xia Z C, Li X M, Ma Z P, Wang L S.2004. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China. Geological Society of America Bulletin,116:419-433.
    [59]Xiao WJ, Windley B, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL.2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences,98 (6):1189-1217
    [60]Xu L., M. J., Yang F., Danial H., and Zheng J.2010. Geology, geochemistry and age constraints on the Mengku skarn iron deposit in Xinjiang Altai, NW China. Journal of Asian Earth Sciences,39(5): 423-440.
    [61]Yasuhiro Kato.1999. Rare earth elements as an indicator to origin of skarn deposits:examples of the Kamioks Zn-Pb and Yoshiwara-sannotake Cu (-Fe) deposits in Japan. Resource Geology,49(4): 183-198.
    [62]Zhang X, Tian J, Gao J, Klemd R, Dong L, Fan J, Jiang T, Hu C and Qian Q.2011. Geochronology and geochemistry of granitoid rocks from the Zhibo syngenetic volcanogenic iron ore deposit in the Western Tianshan Mountains (NW-China):Constraints on the age of mineralization and tectonic setting. Gondwana Research (in press).
    [63]Zhang ZH, Hong W, Jiang ZH, Duan SG, Xu LG, LI FM, Guo XC and Zhao ZG.2012. Geological characteristics and zircon U-Pb dating of volcanic rocks from the Beizhan iron deposit in western Tianshan Mountains, Xinjiang, NW China:Implications for iron mineralization. Acta Geologica Sinica (English edition)(in press).
    [64]Zhao Z H, Xiong X L, Wang Q, Wyman DA, Bao ZW, Bai ZH and Qiao YL.2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos,102 (1-2):374-391.
    [65]Zheng Y F, and Hoefs J.1993. Carbon and oxygen isotopic covariations in hydrothermal calcites. Mineralium Deposita,28(2):79-89.
    [66]Zhou T., Wu M, Fan Y, Duan C., Yuan F, Zhang L., Liu J., Qian B., Pirajno F. and Cooke D.R.2011. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, Eastern China. Ore Geology Review,43:154-169.
    [67]Zhu Y F, Guo X, Song B, Zhang L F and Gu L B.2009. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society,166 (6):1085-1099.
    [68]Zhu Y F, Zhang L F, Gu L B, Guo X and Zhou J.2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rock s in western Tianshan Mountains. Chinese Science Bulletin,50 (19):2201-2212.
    [69]安芳,朱永峰.2008.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究.岩石学报,24(12):2741-2748.
    [70]车自成,刘良,刘洪福,罗金海.1996.论伊犁古裂谷.岩石学报,12(3):478-490.
    [71]陈光远.1987.成因矿物学与找矿矿物学.重庆:重庆出版社.
    [72]陈骏,Halls C, Stanley C J.1994柿竹园矽卡岩型钨锡钼铋矿床主要造岩矿物中REE的分布特征及成岩意义.地球化学,23(增刊):84-92.
    [73]陈文,万渝生,李华芹,张宗清,戴幢谟,施泽恩,孙敬博.2011.同位素地质年龄测定技术及应用.地质学报,85(11):1917-1947.
    [74]陈文革,张海军,刘铭锋.2011.新疆和静县查岗诺尔铁矿FeI矿体围岩蚀变特征.中国矿业,20(增刊):145-150.
    [75]程裕淇,赵一呜,陆松年.1978.中国几组主要铁矿类型.地质学报,52(4):1-13.
    [76]储雪莲,陈锦石,王守信.1986.罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究.地质科学,3:276-289.
    [77]褚克南.1981.梅山——我国的古“拉科式”铁矿——梅山铁矿床成因的再讨论.华东冶金地质,7(1):43-54.
    [78]段超,李延河,袁顺达,胡明月,赵令浩,陈晓丹,张成,刘佳林.2012.宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约.岩石学报,28(1):243-257.
    [79]段超,周涛发,范裕,等.2009.庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义.矿床地质,28(5):643-652.
    [80]冯金星,石福品,汪邦耀,胡建明,王江涛,田敬全.2010.西天山阿吾拉勒成矿带火山岩型铁矿.北京:地质出版社,1-92.
    [81]福建地质八队.1982.福建龙岩马坑铁矿矿床地质特征及其成因探讨.福建地质,1:2-31.
    [82]高俊,钱青,龙灵利,等.2009.西天山的增生造山过程.地质通报,28(12):1804-1816.
    [83]高俊,肖序常,汤耀庆,等.1995.西南天山构造地层学初步研究.地层学杂志,19(2):122-128.
    [84]韩发,葛朝华.1983.马坑铁矿——一个海相火山热液-沉积型矿床.中国科学(B辑),(5):438-446.
    [85]韩松,黄忠祥,贾秀勤,董金泉.1993.云南个旧打磨山钙质夕卡岩及石榴石的稀土元素地球化学特征.岩石学报,9(2):192-198.
    [86]何国琦,成守德,徐新,等.2004.中国新疆及邻区大地构造图(1:2500000)说明书.北京:地质出版社,1-65.
    [87]侯可军,袁顺达.2010.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报,26(3):888-902.
    [88]姬金生,李华芹,张连昌,杨兴科,丰成友.1999.东天山晚古生代火山岩区磁铁矿绿泥石建造金矿床Sm-Nd和Rb-Sr同位素年龄.科学通报,44(4):439-442.
    [89]贾群子.1991.从磁铁矿的标型特征论天湖铁矿的成因.西北地质,12(1):19-25.
    [90]姜常义,吴文奎,张学仁,崔尚森.1995.从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据.岩石矿物学杂志,14(4):289-300.
    [91]蒋宗胜,张作衡,侯可军,洪为,王志华,李凤鸣,田敬全.2012.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义.岩石学报(已接收).
    [92]瞿泓滢,王浩琳,裴荣富,等.2008.鄂东南地区与铁山和金山店铁矿有关的花岗质岩体锆石LA-ICP-MS年龄和Hf同位素组成及其地质意义.岩石学报,2012(1):147-165.
    [93]李凤鸣,彭湘萍,石福品,周昌平,陈建中.2011.西天山石炭纪火山-沉积盆地铁锰矿成矿规律浅析.新疆地质,29(1):55-60.
    [94]李福东,修泽雷,高栋丞,等.1982.从磁铁矿特征论铜厂铁矿床的成因.中国地质科学院西安地质矿产研究所所刊,5(1):1-17.
    [95]李华芹,路远发,王登红,陈毓川,杨红梅,郭敬,谢才富,梅玉萍,马艳丽.2006.湖南骑田岭芙蓉矿田成矿时代的厘定及其地质意义.地质论评,52(1):113-121.
    [96]李华芹,谢才富,常海亮,蔡红,朱家平,周肃.1998.新疆北部有色金属矿床成矿年代学.北京:地质出版社,10-25.
    [97]李继磊,钱青,高俊,苏文,张喜,刘新,江拓.2010.西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征、时代和构造环境.岩石学报,26(10):2913-2924.
    [98]李继磊,苏文,张喜,等.2009.西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义.地质通报,28(12):1852-1862.
    [99]李九玲,张桂兰,苏良赫.1986.与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究.中国地质科学院矿床地质研究所文集(18),197-204.
    [100]李立兴,李厚民,陈正乐,王登红,陈伟十.2010.河北承德黑山铁矿床热液成矿特征及流体包裹体研究.岩石学报,26(3):858-870.
    [101]李永军,李注仓,周继兵,高占华,高永利,佟黎明,刘静.2009.西天山阿吾拉勒一带石炭系岩石地层单位厘定.岩石学报,25(6):1332-1340.
    [102]李志红,朱祥坤,唐索寒,李津,刘辉.2010.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义.现代地质,24(5):840-846.
    [103]梁婷,王登红,李华芹,黄惠明,王东明,于萍,蔡明海.2011.广西大厂石榴石REE含量及Sm-Nd同位素定年.西北大学学报(自然科学版),41(4):676-681.
    [104]林师整.1980.梅山铁矿矿浆成矿的例证.华东冶金地质,5(1):51-67.
    [105]林新多.1999.岩浆-热液过渡型矿床.武汉:中国地质大学出版社,1-139.
    [106]刘宏英.1982.海南石碌铁矿硫、氧同位素组成特征及矿床成因分析.冶金工业部地质研究所所报,1:133-138.
    [107]刘家军,何明勤,李志明,等.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1-10.
    [108]刘建明,刘家军,顾雪祥.1997.沉积盆地中的流体活动及其成矿作用.岩石矿物学杂志,16(4):341-352.
    [109]刘友梅,杨蔚华,高计元.1994.新疆特克斯县林场大哈拉军山组火山岩年代学研究.地球化学,23(1):99-104.
    [110]龙灵利,高俊,钱青,熊贤明,王京彬,王玉往,高立明.2008.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境.岩石学报,24(4):699-710.
    [111]卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.科学出版社,1-485.
    [112]马芳,蒋少涌,蒋耀辉,等.2006.宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究.岩石学报,22(10):2581-2589.
    [113]毛景文,余金杰,袁顺达,等.2008.铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状与找矿勘查.矿床地质,27(3):267-278.
    [114]毛景文,段超,刘佳林,等.2012.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例.岩石学报,28(1):1-14.
    [115]毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,21(2):121-128.
    [116]毛景文,李红艳,宋学信,等.2006.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京地质出版社,1-215.
    [117]毛景文,王志良,李厚民,等.2003.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示.地质论评,49(6):610-615.
    [118]毛景文,张作衡,余金杰,等.2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到的启示.中国科学(D辑):地球科学,2003,33(4):289-296.
    [119]倪若水,吴其切,汪祥云,等.1994.安徽庐江龙桥铁矿层新资料及成矿作用多阶段演化模式.地质论评,40(6):565-575.
    [120]宁芜研究项目编写小组.1978.宁芜玢岩铁矿.北京:地质出版社,1-196.
    [121]钱青,高俊,熊贤明,龙灵利,黄德志.2006.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境.岩石学报,22(5):1307-1323.
    [122]沈其韩,宋会侠,赵子然.2009.山东韩旺新太古代条带状铁矿的稀土和微量元素特征.地球学报,30(6):693-699.
    [123]宋学信,陈毓川,盛继福,艾永德.1981.论火山-浅成矿浆铁矿床.地质学报,55(1):41-54.
    [124]孙景贵,胡受奚,沈昆,姚凤良.2001.胶东金矿区矿田体系中基性-中酸性脉岩的碳、氧同位素地球化学研究.岩石矿物学杂志,20(1):47-56.
    [125]覃永军,曾键年,曾勇,等.2010.安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报,29(6):851-862.
    [126]田敬全,胡敬涛,易习正,李明,董全宏,刘兴忠.2009.西天山查岗诺尔-备战一带铁矿成矿条件及找矿分析.西部探矿工程,8:88-91.
    [127]涂光炽.1981.地质学中的若干思维方法.地质与勘探,7:1-5.
    [128]汪邦耀,胡秀军,王江涛,邵青红,凌锦兰,郭娜欣,赵彦锋,夏昭德,姜常义.2011a.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究.矿床地质,30(3):385-402.
    [129]汪帮耀,姜常义.2011b.西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因.地质科技情报,30(6):18-27.
    [130]王博,舒良树,Cluzel D.,等.2006.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义.中国地质,33(3):498-508.
    [131]王莉娟,岛崎英彦,王京彬,等.2001.黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用.中国科学(D辑),31(7):553-562.
    [132]王莉娟,王京彬,王玉往,岛崎英彦.2002.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学.岩石学报,18(4):575-584.
    [133]王庆明,林卓斌,黄诚,等.2001.西天山查岗诺尔地区矿床成矿系列和找矿方向.新疆地质,19(4):263-267.
    [134]王文斌,王润华,季绍新,邢文臣.1982.从铁矿的某些特征看闽西南地区马坑式铁矿的成因.地质论评,28(3):118-125.
    [135]夏换,陈根文,刘群,罗勇.2011.西天山吐拉苏盆地大哈拉军山组火山岩地球化学特征及构造意义.大地构造与成矿,35(3):429-438.
    [136]夏林圻,夏春祖,徐学义,李向民,马中平,王立社.2004.天山石炭纪大火成岩省与地幔柱.地质通报,23(9-10):903-910.
    [137]谢桂青,毛景文,李瑞玲,等.2008.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探.岩石学报,24(8):1917-1927.
    [138]徐国凤,邵洁涟.1979.磁铁矿的标型特征及其实际意义.地质与勘探,3:30-37.
    [139]徐林刚,毛景文,杨富全,等.2007a.新疆蒙库铁矿床矽卡岩矿物学特征及其意义.矿床地质,26(4):455-463.
    [140]徐林刚,杨富全,李建国,等.2007b.新疆富蕴县蒙库铁矿地质地球化学特征.岩石学报,23(10):2653-2664.
    [141]徐祖芳.1984.新疆查铁矿主体矿赋矿岩石的成因探讨.新疆地质,2(2):30-47.
    [142]杨富全,毛景文,徐林刚,张岩,刘峰,黄成林,周刚,刘国仁,代军治.2007.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,23(10):2443-2456.
    [143]杨富全,毛景文,柴凤梅,等.2008a.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用.矿床地质,27(6):659-680.
    [144]杨富全,毛景文,闫升好,等.2008b.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义.地质学报,82(4):485-499.
    [145]杨金中,赵玉灵,王永江,姜晓玮.2003.新疆西天山大哈拉军山组的沉积环境与成矿的关系.地质与勘探,39(2):1-5.
    [146]余金杰,毛景文.2002.宁芜玢岩铁矿钠长石40Ar-39Ar定年及意义.自然科学进展,12(10):1059-1063.
    [147]袁家铮,张峰,殷纯嘏,邵宏翔.1997.梅山铁矿矿浆成因的系统探讨.现代地质,11(2):170-176.
    [148]袁家铮.1990.梅山铁矿矿石类型及成因:高温实验结果探讨.现代地质,4(4):77-84.
    [149]翟伟,孙晓明,高俊,贺小平,梁金龙,苗来成,吴有良.2006.新疆阿希金矿床赋矿围岩-大哈拉军山组火山岩SHRIMP锆石年龄及其地质意义.岩石学报,22(5):1399-1404.
    [150]翟裕生,石准立,林新多,熊鹏飞,王定域,姚书振,金振民.1982.鄂东大冶式铁矿成因的若干问题.地球科学-武汉地质学院学报,18(3):239-251.
    [151]张承帅,苏慧敏,于淼,等.2012.福建龙岩大洋-莒舟花岗岩锆石U-Pb年龄和Sr-Nd-Pb同位素特征及其地质意义.岩石学报,2012(1):225-242.
    [152]张芳荣,程春华,余泉,楼发生.2009.西天山乌苏山一带大哈拉军山组火山岩LA-ICP-MS锆石U-Pb定年.新疆地质,27(3):231-235.
    [153]张家菁,梅玉萍,王登红,李华芹.2008.赣北香炉山白钨矿床的同位素年代学研究及其地质意义.地质学报,82(7):928-931.
    [154]张志欣,杨富全,罗五仓,刘峰,柴凤梅,吕书君,欧阳刘进,姜丽萍.2011.新疆阿尔泰乌吐布拉克铁矿床矽卡岩矿物特征及其地质意义.矿物岩石学杂志,30(2):276-280.
    [155]张作衡,王志良,左国朝,等.2008.新疆西天山地质构造演化及铜金多金属矿床成矿环境.北京:地质出版社,1-251.
    [156]赵斌,赵劲松,刘海臣.1999.长江中下游地区若干Cu(Au),Cu—Fe(Au)和Fe矿床中钙质夕卡岩的稀土元素地球化学.地球化学,28(2):113-125.
    [157]赵斌,Barton M.D.1987接触交代矽卡岩型矿床中石榴石和辉石成分特点及其与矿化的关系.矿物学报,7(1):1-8.
    [158]赵斌,李统锦,李昭平,等.1982.我国一些矽卡岩中石榴石的研究.矿物学报,2(4):296-304.
    [159]赵劲松,邱学林,赵斌,涂湘林,虞珏,卢铁山.2007.大冶-武山矿化夕卡岩的稀土元素地球化学研究.地球化学,36(4):400-412.
    [160]赵劲松,Newberry R.J1996.对柿竹园矽卡岩成因及其成矿作用的新认识.矿物学报,16(4):442-449.
    [161]赵劲松,夏斌,邱学林,等.2008.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义.岩石学报,24(1):149-160.
    [162]赵劲松,赵斌,张重泽,王冉.2003.大冶-城门山夕卡岩矿床石榴子石和辉石中熔融包裹体成分研究.地球化学,32(6):540-550.
    [163]赵一鸣.2004.中国铁矿资源现状、保证程度和对策.地质论评,50(4):396-396.
    [164]赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床.北京:地质出版社,1-351.
    [165]赵一鸣,林文蔚,毕承思,等.2012.中国矽卡岩矿床.北京:地质出版社,1-411.
    [166]赵一鸣,张轶男,林文蔚,等.1997.我国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系.矿床地质,16(4):318-329.
    [167]赵振华,白正华,熊小林,梅厚钧,王一先.2004.西天山北部晚古生代火山-浅侵位岩浆岩40Ar/39Ar同位素定年.地球化学,32(4):317-327.
    [168]真允庆,马丽华,李中生.1984.鞍山式铁矿与邯邢式铁矿的可能联系.武汉地质学院学报,27(4):71-80.
    [169]郑建民,谢桂青,刘珺,等.2007a.河北省南部邯郸-邢台地区西石门矽卡岩型铁矿床金云母40Ar-39Ar定年及意义.岩石学报,23(10):2513-2518.
    [170]郑建民.2007b.冀南邯邢地区矽卡岩铁矿成矿流体及成矿机制.中国地质大学(北京)博士学位论文,1-108.
    [171]郑永飞.2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,20(001):57-70.
    [172]周振华,刘宏伟,常帼熊,等.2011a.内蒙古黄岗铁矿床夕卡岩矿物学特征及其成矿指示意义.矿物岩石学杂志,30(1):97-112.
    [173]周振华,王挨顺,李涛.2011b.内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究.矿床地质,30(5):867-889.
    [174]朱永峰,张立飞,古丽冰,郭璇,周晶.2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究.科学通报,50(18):2004-2014.
    [175]朱永峰,周晶,宋彪,张立飞,郭璇.2006.新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案.中国地质,33(3):487-497.
    [176]朱永峰.2009.中亚成矿域地质矿产研究的若干重要问题.岩石学报,25(6):1297-1302
    [177]左国朝,张作衡,王志良,等.2008.新疆西天山地区构造单元划分、地层系统及其构造演化.地质论评,54(6):731-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700