覆冰分裂导线的动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
架空输电线路在覆冰、风等载荷的作用下,往往会发生舞动。舞动是一种低频大振幅的自激振动,持续时间长,会对电力系统造成严重的危害。本文的目的就是利用非线性动力学的理论研究导线的振动特性,并通过建立输电线的有限元分析模型模拟舞动的过程,研究风速、线路结构、金具等对舞动的影响,提出防舞的优化方案。
     根据弹性力学的原理,建立了覆冰导线面内舞动的连续体动力学模型。利用Galerkin积分方法,将偏微分方程转化为常微分方程,并对方程进行一阶模态截断,得到导线面内的单自由度振动方程。采用平均法,求解方程的一阶近似解,得到导线面内振动的稳态振幅以及振幅、张力与系统非线性瞬态固有频率的关系。本文研究了导线的初始张力及舞动的幅值对固有频率的影响,给出了输电线覆冰舞动时系统的非线性固有频率与舞动幅值及导线初始张力的关系,对输电线路舞动中出现的频率飘移做了定性分析。
     采用三维空间梁单元建立了覆冰分裂导线的有限元模型,并对输电线进行了静力找形和模态分析,用ANSYS参数化设计语言编写了导线在气动力载荷作用下舞动的计算程序,得到输电线舞动的时间历程曲线。研究了风速、档距等对输电线舞动振幅以及动态张力的影响。发现同档距的输电线随着风速的增大,导线舞动幅值会增大,导线的动态张力会增大,并且静平衡位置的动态张力值会增大;在相同风速下随着档距的增大,导线舞动幅值及静平衡时的动态张力值增大。基于MATLAB软件,对有限元分析得到的导线舞动时程曲线进行了频谱分析,研究了风速及档距对输电线舞动频率的影响,分析结果与解析结果相吻合,进一步证明了输电线在舞动过程中舞动频率随风速和档距而变化。该研究对防舞器的设计具有重要的指导意义和很高的应用价值。
     用ANSYS软件建立了单相以及三相四分裂输电线的有限元模型,计算了现有相间间隔棒布局对导线舞动的影响,发现间隔棒的有些布局不具有防舞作用,其余布局虽有防舞作用,但由于间隔棒布局只是依据经验,缺乏针对性及理论分析,无法获得最佳的防舞作用。本文根据频谱分析以及导线舞动的位移矢量图得到导线舞动的主振型,根据导线舞动的主振型对相间间隔棒的布局提出了优化方案,并对不同风速下的防舞效果进行了计算,验证了本文优化布局的防舞效果较原来的布局明显提高。本研究成果为输电线的防舞设计提供了依据。
The overhead transmission lines are often in galloping under the action of the icing, windand other loading. The power system can be damaged seriously by galloping, which is a kindof vibration with large amplitude and low frequency and lasts long. The purpose in this paperis to study the vibration characteristics of transmission lines by nonlinear dynamics theory,and to simulate the galloping process, investigate the effect of wind velocity, line structureand electric power fittings on galloping through building the finite element model oftransmission lines, meanwhile, a optimization approach for preventing galloping is proposed.
     According to the principles of elasticity mechanics, a continuum dynamics model of icedtransmission line galloping in plane can be established. By Galerkin method, a set of partialdifferential equations are transformed to a set of ordinary differential equations which aresolvable, and the vibration equation of one degree-of-freedom in plane is obtained by makingthe first modal truncation to this equation. The steady amplitude and its relationship withnonlinear transient inherent frequency are obtained by average method to solve the equationsof the first order approximate solutions. The effect of initial tension and galloping amplitudeof the transmission line on the natural frequency is investigated deeply, proposing therelationship between nonlinear natural frequency and galloping amplitude during galloping oficed transmission line. A qualitative analysis is made towards frequency shift in galloping oftransmission line.
     Based on the finite element model of iced bundle conductors made by 3D beam elementin this paper, the static form-finding and modal analysis have been conducted. At the sametime, the time history curve of galloping transmission line is obtained by programming thecomputational code of transmission line under the action of aerodynamic load withemployment of ANSYS parametric design language. Through the investigation of effect ofwind velocity and span on the amplitude of transmission line and its dynamic tension, theresult shows that the galloping amplitude of transmission line with the same span and itsdynamic tension increase with the increasing of the wind velocity. A spectrum analysis basedon MATLAB software is done to the time history curve of the transmission line gallopingobtained by the finite element analysis, and the numerical results agree with the analyticalones. The results prove that the frequency of galloping of the transmission line during theprocess of galloping varies with the wind velocity and span.The study has important guidingsignificance and high value for anti-galloping design.
     The finite element model of the single-phase and three-phase quad-bundle conductor isestablished based on ANSYS software, analyzing the effect of existing interphase spacerlayout on transmission line galloping and effects of the preventing galloping, which werefound that some layouts can not prevent galloping, the others can prevent galloping. These layouts are based on experience, lack of relevance and theroretical analysis,can not get thebest effect of anti-galloping. The vibration mode is obtained based on spectral analysis andthe displacement vector of conductor galloping. Optimization scheme is proposed accordingto the vibration mode and the effect of anti-galloping under different wind speed is calculated.The effect of anti-galloping of optimization scheme is better than the original layouts. Thestudy provide a basis for anti-galloping of transmission line.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].中国电力出版社, 2003.
    [2]朱宽军,尤传永,赵渊如.输电线路舞动的研究与治理[J].电力建设, 2004,25(12):18-21.
    [3]张明升.架空线路单导线舞动与分裂导线舞动的异同[J].河北电力技术,1990,(1):29-33.
    [4]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力,1995,28(2):21-26.
    [5]王秀丽.输电线路覆冰浅论[J].水利电力科技,2008,34(2):14-26.
    [6]朱宽军,付东杰,王景朝.架空输电线路的舞动及其防治[J].电力设备, 2008,9(6):8-12.
    [7]郭应龙,恽俐丽,鲍务均.输电导线舞动研究[J].武汉水利电力大学学报,1995,28(5):506-509.
    [8]胡毅,胡建勋,刘庭.我国南方地区电网大范围覆冰灾害的特点分析与防治措施[J].电力设备,2008,9(6):1-4.
    [9]黄涛.大跨越高压输电线路非线性舞动理论研究[D].博士学位论文,华中科技大学,2007.
    [10]李庆峰,范峥,吴穹.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36.
    [11]赵作利.导线舞动因素分析.东北电力技术, 1994, (9): 12-15.
    [12] J. P. Denhartog. Mechanical vibration. New York: McGraw-Hill, 1956.
    [13] J. P. Den Hartog. Transmission Line Vibration due to sleet. T. AIEE, 1932, 51: 1074-1086.
    [14]王晓群,Den Hartog舞动机理在高压架空输电线路研究中的局限性初探[J].中国高新技术企业,2008,22:91-93.
    [15] Nlgol O, Clarke G J, Havard D G. Torsional stability of bundle conductors. IEEE, Transactionson Power Apparatus and Systems, 1977, 96(6): 1666-1674.
    [16] Nlgol O, Clarke G J. Conductor galloping and control based on torsional mechanism. IEEE Paper,1974, 16(2): 31-41.
    [17] Nigol O, Buchan P G. Conductor galloping partⅠ: Denhartog’s mechanism. IEEE, Transactionson Power Apparatus and Systems, 1981, 100(2): 699-720.
    [18] P.Yu, N.popplewell, A.H.Shah. Instability Trends of Inertially Coupled Galloping. PeriodicVibrations. Journal of Sound and Vibration, 1995, 183(4): 679-691.
    [19] P.Yu, A.H.Shah, N.Popplewell. Inertially Coupled Galloping of Iced Conductors. Journal ofApplied Mechanics-transactions of the ASME, 1992, 59(1): 140-145.
    [20] A.T.Edwards,A.Madeyski. Progress report on the investigation of galloping of transmission lineconductors [J]. Transactions of theAIEE,1956(75):666-686.
    [21] R.D.Blevins, W.D.Iwan.The Galloping Response of a 2-degree-of-freedom system [J]. Journal ofApplied Mechanics-ASME,1974,41:1113-1118.
    [22] A.S.Richardson.Dynamic analysis of lightly iced conductor galloping in two degrees offreedom[J].IEE PROC.1981,128(4):211-218.
    [23] Desai Y M,Yu P,Popplewell N,et al.Finite element modeling of transmission linegalloping[J].Computers&Structures, 1995, 57(3): 407-420.
    [24] Y.M.Desai,P.Yu,A.H.Shah et al.Perturbation-based Finite Element Analyses of TransmissionLine Galloping.Journal of Sound and Vibration,1996,191(4):469-489.
    [25] P.McComber,A.Paradis.A Cable Galloping Model for Thin Ice Accretions.AtmosphericResearch,1998,46(1998):13-25.
    [26] Zhang Q.Popplewell N,Shah AH.Galloping of bundle conductor.Journal of Sound andVibration.2000,234(1):115-134.
    [27] O.Chabart,J.L. Lilien. Galloping of electrical lines in wind tunnel facilities[J]. Journal of WindEngineering and Industrial Aerodynamics,1998,(74-76):967-976.
    [28] P.V.Dykea,A.Laneville. Galloping of a single conductor covered with a D-section on ahigh-voltage overhead test line[J]. Journal of wind Engineering and Industrial Aerodynamics,2008(96):1141-1151.
    [29]何锃,赵高煜,李上明.大跨越分裂导线的静力求解[J].中国电机工程学报,2001,21(11):34-37.
    [30]何锃,赵高煜.安装防振锤的分裂导线自由振动的有限元计算.工程力学,2003, 20(1):101-105.
    [31]赵高煜.大跨越高压输电线路分裂导线覆冰舞动的研究[D].博士学位论文,华中科技大学,2005.
    [32]于俊清,郭应龙,肖晓晖.输电导线舞动的计算机仿真[J].武汉大学学报,2002,35(1):39-43.
    [33]郭应龙.输电导线舞动及治理[J].武汉水利电力大学学报,1991,24:15-23.
    [34]于俊清,郭应龙.虚拟现实技术及其在输电导线舞动模拟中的应用[J].计算机应用,2001,21(1):6-7.
    [35]郭应龙.输电导线舞动机理及计算方法讨论[J].超高压输变电运行技术,1990(7):164-179.
    [36]蔡廷湘.输电线舞动新机理研究[J].中国电力,1998,31(10):62-66.
    [37]李万平,杨新祥,张立志.覆冰导线群的静气动力特性.空气动力学报,1995, 13(4):427-434.
    [38]李万平.覆冰导线群的动态气动力特性.空气动力学报,2000,18(4):413-420.
    [39]顾明,马文勇,全涌.两种典型覆冰导线气动力特性及稳定性分析[J].同济大学学报,2009,37(10):1328-1332.
    [40]王丽新,杨文兵,杨新华等.输电线路舞动的有限元分析[J].华中科技大学学报,2004,21(1):76-80.
    [41]杨新华,王丽新,王乘等.考虑多种影响因素的导线舞动三维有限元分析[J].动力学与控制学报,2004,2(4):84-89
    [42]王少华,蒋兴良,孙才新.覆冰导线舞动特性及其引起的导线动态张力[J].电工技术学报,2010,25(1):159-166.
    [43] DG.Havard,J.C. Pohlman. Five years field trials of detuning Pendulums for gallopingcontrol[J].IEEE Transactions on Power Apparatus and Systems,1984,13(2):318-327.
    [44]孙珍茂,楼文娟.覆冰输电导线舞动及防舞效果分析[J].振动与冲击,2010,29(5):141-146.
    [45]肖晓晖,郭应龙,吴晶.压重防舞器配置方案有效性的仿真计算[J].电力建设,1998(6):25-28.
    [46]叶久德.对500kV二自线(凉山段)间隔棒的探讨[J].西昌学院学报,2006, 20(2):45-46.
    [47]朱宽军,刘超群,任西春等.特高压输电线路放舞动研究[J].高电压技术,2007,33(11):61-65.
    [48]朱宽军,刘彬,刘超群等.特高压输电线路防舞动研究[J].中国电机工程学报,2008,28(34):12-20.
    [49]楼文娟,孙珍茂,吕翼等.扰流防舞器与气动力阻尼片的防舞效果[J].电网技术,2010,34(2):200-204.
    [50]楼文娟,孙珍茂,许福友等.输电导线扰流防舞器气动力特性风洞试验研究[J].浙江大学学报,2011,45(1):93-98.
    [51]胡德山,苑舜,陶文秋.阻尼失谐摆防舞器的研究[J].东北电力技术,2009,3:13-15.
    [52]孙利民,刘建彦.架空输电线防舞动阻尼器的模型试验[J].电线电缆,2000,1:39-41.
    [53]尤传永.导线舞动稳定性机理及其在输电线路上的应用[J].电力设备,2004,5(6):13-17
    [54] NAGAO F,UTSUNOMIYA H,UTSUN0MIYA M. Aero-dynamic properties of closely spacedtriple circular cylinders[J].Journal of Wind Engineering and IndustrialAerodynamics,2003,91(12):75-82.
    [55] NARITA N,YOKOYAMA K.Cable-stayed bridges:recent developments and theirfuture[C].Proceedings of the Seminar.Elsevier:Yokohama ,1991:257-278.
    [56]李万平,黄河,何锃.特大覆冰导线气动力特性测试[ J] .华中科技大学学报, 2001, 29( 8) :84-85.
    [57]樊社新.间隔棒对舞动的影响.[J].电力建设,1997,8:16-17.
    [58]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社, 2006
    [59]刘相新,孟宪颐. ANSYS基础与应用教程[M].北京:科技出版社, 2006
    [60] A S Veletsos, G R Darbre. Dynamic stiffness of parabolic cables[J]. Int.J. EarthquakeEngineering and Structural Dynamics. 1983, 11: 367-401.
    [61]刘习军,贾启芬.工程振动与测试技术[M].天津大学出版社, 1999.
    [62]胡德山,苑舜,陶文秋.阻尼失谐摆防舞器的研究[J].东北电力技术,2009,3:13-16.
    [63]胡景,严波,祖正华.一种新型防舞器及其机理研究[J].工程力学,2011,28(9):200-206.
    [64]马建国,金涛,谭章英.220 kV公笔线紧凑型线路导线舞动事故分析及其防治对策[J].电网技术, 2002,26(1): 81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700