无线传感器网络覆盖控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络技术作为多学科交叉的新型技术,由于其广阔的应用前景,得到了广泛的关注。要实现对分布区域内的各种环境或对象的感知与监测,首要的问题就是必须对监控区域进行有效的覆盖控制。国内外研究人员从覆盖能力、网络连通性、能量有效性与算法精确性等方面对无线传感器网络覆盖控制问题进行了研究,并取得了一些成果。但由于无线传感器网络本身的特殊性,再加上被监测环境的变化复杂,导致目前的覆盖算法在实际应用中具有很大的局限性。本文重点研究具有较大实用性的覆盖控制算法,解决能量受限、通信能力有限及复杂环境条件下的监控区域有效覆盖问题。
     在对现有节能覆盖方式分析的基础上,将多因素优化节能与多重覆盖节能方式相结合,提出了一种能量有效的多重物理覆盖算法,在保障覆盖与连通性的前提下,以能量、覆盖度为衡量指标,采用调度机制实现节点轮换活跃与休眠,有效地提高网络生存时间。仿真实验结果表明,与目前典型算法相比,提出的算法在网络生存时间、能量消耗与消亡节点数上具有显著的优势。
     分析了不规则区域物理覆盖的连通性问题,对关键区域覆盖控制进行了数学描述,提出了关键区域覆盖启发式优化算法。通过分配不同的权值创建感知区域图和终端集合,创建加权节点Steiner树,形成最少数量格点集并构建覆盖关键区域的传感器放置方法。理论分析证明提出的算法能以优化的传感器节点数量,实现关键区域完全覆盖功能。通过不同场景下、不同参数仿真结果表明,与现有的算法相比,在关键区域格点数、感知范围、发送范围和关键区域格点选择分布概率变化时,提出的算法具有更少的传感器布置数量。
     针对具有不同传输半径的不规则WSN的物理覆盖与广播数据信息转发,提出了最小单位圆集信息覆盖算法。该算法以覆盖范围的轮廓集为出发点,以时间复杂度O ( nlogn)有效的计算出覆盖范围的轮廓集,并以节点最少数量的邻居节点子集实现所有邻居节点的覆盖。通过理论分析证明该算法找到的最小单位圆覆盖集与其轮廓集是相等的。大量的仿真实验及与现有的覆盖算法的对比,表明了提出的算法在保证物理覆盖的同时,以最少数量的节点实现了全局信息覆盖。
     最后,给出了信息覆盖的数学描述,并从理论上证明覆盖敏感的信息覆盖问题为NP完全问题。针对该问题,提出了覆盖敏感的分布式信息覆盖算法。该算法在每个节点中运行,节点将通过本地选择最少数量的节点实现信息覆盖,该算法同时具有节能的特点。通过与现有的数据查询处理算法的对比,实验结果表明了提出的算法在充分考虑物理覆盖连通性前提下,不仅实现了信息覆盖,而且明显地降低了节点的能耗与数据查询能耗、提高了网络的生存时间。
As a new multi-knowledge technology, wireless sensor network has gained comprehensive attention for its extensive application prospect. In order to monitor and sense the environment and objects efficiently, covering the monitoring and sensing area fully is the first important problem. Many researchers have explored the coverage capacity, connectivity, power efficiency, accuracy of coverage problems of WSN. However, the effectiveness of the existing schemes degrades greatly in actual environment for the characters of WSN and the changeful environment. With the consideration of requirements of actual environment, this dissertation focuses on the coverage control problem in WSN, and designs more efficient coverage control algorithms from physical coverage and information coverage aspects.
     Based on analyzing current power-saving coverage scheme, and combining the multi-factor optimized power saving scheme and multi-level coverage power saving scheme, an efficient power multi-level coverage algorithm is presented. By measuring energy and coverage degree, it puts redundant sensor nodes to sleep mode to save energy while maintain the sensing field sufficient coverage degree with precondition of coverage and connective of WSN. Detailed simulation results and compared to existing schemes indicate that the proposed EPCA algorithm not only guarantees the network coverage degree, but also prolongs the network lifetime.
     Then the connectivity problem of physical irregular area coverage is analyzed. It gives the mathematical description of critical area coverage and proposes the critical area coverage heuristic optimization algorithm. By assigning different weight for critical grid points and common grid points to create the graph of sensing filed and terminal set, it establishes node-weighted Steiner tree to form critical areas coverage grids set with minimal number. Theoretic analysis proves that the proposed algorithms can fully cover all critical grids and form a WSN. Detailed simulation results and comparison with an existing algorithm indicate that the proposed algorithms obviously deploy fewer sensors with varying the number of critical grid points, sensing range, transmission range and the selection distribution probability of critical grid points.
     In order to deal with physical coverage and broadcasting data information forwarding problem in WSN with different transmission radius, a minimum unit disks set information coverage algorithm is proposed, which can calculate skyline set efficiently with the time complexity O ( nlogn). The proposed algorithm covers each node with minimum unit disk cover set, and the minimum unit disk cover set of a node is equivalent to its skyline set. Detailed simulation results and comparisons with existing algorithms indicate that the proposed algorithm not only covers all nodes with minimum nodes, but also prolongs the network lifetime.
     Finally, the description of information coverage is presented, and we prove that the information covering problem is a NP-complete problem. This paper proposes a coverage-aware data query algorithm, which maintains not only the physical coverage of WSN, but also logical data information coverage. It is executed by each sensor node to locally select the minimum number of k-neighboring nodes in order to achieve information coverage. Detailed experimental study and comparisons with existing algorithms indicate that the energy consumption of EHDQ is less, and the performance of EHDQ is much better in terms of query cost and network lifetime.
引文
[1] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: A survey. Computer Networks, 2002, 38(4): 393-422p
    [2]李建中,高宏.无线传感器网络的研究进展.计算机研究与发展, 2008, 45(1): 1-15页
    [3] Ghosh Amitabha, Das Sajal K. Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive and Mobile Computing, 2008, 4(3): 303-334p
    [4] Chi-Fu Huang, Yu-Chee Tseng. The coverage problem in a wireless sensor network. Mobile Networks and Applications, 2005, 10(4): 519-528p
    [5] Huang CF, Tseng YC. The coverage problem in a wireless sensor network. In: Sivalingam KM, Raghavendra CS, eds. Proc. of the ACM Int’l Workshop on Wireless Sensor Networks and Applications. New York: ACM Press, 2003. 115-121p
    [6] Pottie GJ, Kaiser WJ. Wireless integrated network sensors. Communications of the ACM, 2000, 43(5):51-?58p
    [7] Huang CF, Tseng YC. A survey of solutions to the coverage problems in wireless sensor networks. Journal of Internet Technology, 2005, 6(1):1-?8p
    [8] Ten emerging technologies that will change the world. MIT's Technology Review Magazine, February 2000.
    [9] Bereketli Alper, Akan Ozgur B. Communication coverage in wireless passive sensor networks. IEEE Communications Letters, 2009, 13(2): 133-135p
    [10] Xiang-Yang Li, Peng-Jun Wan, Frieder, O., Coverage in wireless ad hoc sensor networks. IEEE Transactions on Computers, 2003, 52(6): 753– 763p
    [11] Sami J., Habib. Modeling and simulating coverage in sensor networks. Computer Communications, 2007, 30(5): 1029-1035p
    [12] W.C. Ke, B.H. Liu, M. J. Tsai. Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 2007, 56(5): 710-715p
    [13] Andrea Bottino, Dipartimento di Automatica e Informatica, Corso Duca degli. A Nearly Optimal Sensor Placement Algorithm for Boundary Coverage. Pattern Recognition, 2008, 41(11): 3343-3355p
    [14]任丰原,黄海宁,林闯.无线传感器网络.软件学报, 2003, 14(7): 1282-1291页.
    [15] Pyun Sung-Yeop, Cho Dong-Ho. Power-saving scheduling for multiple-target coverage in wireless sensor networks. IEEE Communications Letters, 2009, 13(2): 130-132p
    [16] Zhang Chi, Zhang Yanchao, Fang Yuguang. Localized algorithms for coverage boundary detection in wireless sensor networks. Wireless Networks, 2009, 15(1): 3-20p
    [17] Soro Stanislava, Heinzelman Wendi B. Cluster head election techniques for coverage preservation in wireless sensor networks. Ad Hoc Networks, 2009, 7(5): 955-972p
    [18] Wang Bang, Fu Cheng, Lim Hock Beng. Layered Diffusion-based Coverage Control in Wireless Sensor Networks. Computer Networks, 2009, 53(7): 1114-1124p
    [19] Kim Hogil, Kim Eun Jung, Yum Ki Hwan. ROAL: A randomly ordered activation and layering protocol for ensuring K-coverage in wireless sensor networks. Journal of Networks, 2008, 3(1): 43-52p
    [20] Jin Yan, Wang Ling, Yang Xiaozong. Analysis of coverage problem under border effects in wireless sensor networks. High Technology Letters, 2008, 14(1): 61-66p
    [21] Israr N, Awan I. Coverage based inter cluster communication for load balancing in heterogeneous wireless sensor networks. Telecommunication Systems, 2008, 38(3-4): 121-132p
    [22] Akkaya K, Janapala S. Maximizing connected coverage via controlled actor relocation in wireless sensor and actor networks. Computer Networks, 2008, 52(14): 2779-2796p
    [23] Bai Xiaole, Xuan Dong, Yun Ziqiu, et al. Complete optimal deployment patterns for full-coverage andκ-connectivity (κ< 6) wireless sensor networks.9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2008, 401-410p
    [24] Wang Bang, Chua Kee Chaing, Srinivasan Vikra. Connected sensor cover for area information coverage in wireless sensor networks. International Journal of Communication Systems, 2008, 21(11): 1181-1203p
    [25] Yunquan Dong, Qingyi Quan, Jian Zhang. Priority-based energy aware and coverage preserving routing for wireless sensor network. IEEE Vehicular Technology Conference, 2008, 138-142p
    [26] Ammari Habib M, Das Sajal K. Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 2008, 57(10): 1423-1434p
    [27] Li Yingshu, Gao Shan. Designing k-coverage schedules in wireless sensor networks. Journal of Combinatorial Optimization, 2008, 15(2): 127-146p
    [28] Tezcan Nurcan, Wang Wenye. Self-orienting wireless multimedia sensor networks for maximizing multimedia coverage. IEEE International Conference on Communications, 2008, 2206-2210p
    [29] Noh Youngtae, Lee Saewoom, Kim Kiseon. Central angle decision algorithm in Coverage-Preserving Scheme for wireless sensor networks. IEEE Wireless Communications and Networking Conference, 2008, 2492-2496p
    [30] Guoping Zhang, Sivanand Krishnand, Chin Francois. Quality of service and coverage optimization in wireless sensor networks. IEEE Vehicular Technology Conference, 2008, 2824-2828p
    [31] Noh Youngtae, Lee Saewoom, Kim Kiseon. Basestation-aided coverage-aware energy-efficient routing protocol for wireless sensor networks. IEEE Wireless Communications and Networking Conference, 2008, 2486-2491p
    [32] Ying Tian, Shu-Fang Zhang, Ying Wang. A distributed protocol for ensuring both probabilistic coverage and connectivity of high density wireless sensor networks. IEEE Wireless Communications and Networking Conference, 2008, 2069-2074p
    [33] Liu Benyuan, Dousse Olivier, Wang Jie. Saipulla Anwar. Strong barrier coverage of wireless sensor networks. 9th ACM International Symposium onMobile Ad Hoc Networking and Computing, 2008, 411-419p
    [34] Fei Xin, Boukerche Azzedine. A performance evaluation of a coverage compensation based algorithm for wireless sensor networks. 11th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, 2008, 109-116p
    [35] Bai Xiaole, Yun Ziqiu, Xuan Dong, et al. Deploying four-connectivity and full-coverage wireless sensor networks. IEEE INFOCOM, 2008, 906-914p
    [36] Younis Ossama, Krunz Marwan, Ramasubramanian Srinivasan. Location-unaware coverage in wireless sensor networks. Ad Hoc Networks, 2008, 6(7): 1078-1097p
    [37] Lin Jenn-Wei, Chen Yi-Ting. Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 2008, 7(12): 4807-4812p
    [38] Wang Wei, Srinivasan Vikram, Wang Bang, Chua Kee-Chaing. Coverage for target localization in wireless sensor networks. IEEE Transactions on Wireless Communications, 2008, 7(2): 667-676p
    [39] Gupta H, Das SR, Gu Q. Connected sensor cover: Self-Organization of sensor networks for efficient query execution. In: Gerla M, ed. Proc. of the ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing. New York: ACM Press, 2003. 189-200p
    [40] P.-J. Wan, C.-W. Yi. Coverage by randomly deployed wireless sensor networks. IEEE Transactions on Information Theory, 2006, 52(6): 2658– 2669p
    [41] Ai, Jing, Abouzeid, Alhussein A. Coverage by directional sensors in randomly deployed wireless sensor networks. Journal of Combinatorial Optimization, 2006, 11(1): 21-41p
    [42] Yuh-Ren Tsai. Sensing Coverage for Randomly Distributed Wireless Sensor Networks in Shadowed Environments. IEEE Transactions on Vehicular Technology, 2008, 57(1): 556-564p
    [43] C. Liu, K. Wu, Y. Xiao, B. Sun. Random coverage with guaranteed connectivity: joint scheduling for wireless sensor networks. IEEETransactions on Parallel and Distributed Systems, 2006, 17(6): 562– 575p
    [44] O. Younis, M. Krunz, S. Ramasubramanian. Location-unaware coverage in wireless sensor networks. Ad Hoc Networks, 2008, 6(7): 1078-1097p
    [45]毛莺池,冯国富,陈力军,陈道蓄.与位置无关的无线传感器网络连通性覆盖协议.软件学报, 2007, 18(7): 1672?1684页
    [46] Megerian S, Koushanfar F, Potkonjak M, Srivastava MB. Worst and best-case coverage in sensor networks. IEEE Trans. on Mobile Computing, 2005, 4(1):84-92p
    [47] Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava MB. Coverage problems in wireless ad-hoc sensor network. In: Sengupta B, ed. Proc. of the IEEE INFOCOM. Anchorage: IEEE Press, 2001. 1380-1387p
    [48] G. Veltri, Q. Huang, G. Qu, M. Potkonjak. Minimal and maximal exposure path algorithms for wireless embedded sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Sensys’03, Los Angeles, CA, November 2003, 40–50p
    [49] Mihaela Cardei, Jie Wu. Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 2006, 29(4): 413-420.
    [50]王雪,马俊杰,王最.无线传感网络中覆盖能效动态控制优化策略.控制理论与应用, 2007, 24(6): 964-968页
    [51] Yi Zou, K. Chakrabarty. A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Transactions on Computers, 2005, 54(8): 978-991p
    [52] D. Wang, B. Xie, D. Agrawal. Coverage and Lifetime Optimization of Wireless Sensor Networks with Gaussian Distribution. IEEE Transactions on Mobile Computing, 2008, 7(12): 1444-1458p
    [53] Qun Zhao, Mohan Gurusamy. Lifetime Maximization for Connected Target Coverage in Wireless Sensor Networks. IEEE/ACM Transaction on Networking, 2008, 16(6): 1378-1391p
    [54] Yan Jin, Ju-Yeon Jo, Ling Wang, Yoohwan Kim, Xiaozong Yang. ECCRA: An energy-efficient coverage and connectivity preserving routing algorithm under border effects in wireless sensor networks. Computer Communications,2008, 31(10): 2398-2407p
    [55] Tao Shu, Marwan Krunz, Sarma Vrudhula. Power Balanced Coverage-Time Optimization for Clustered Wireless Sensor Networks. MobiHoc’05, 2005, 111-120p
    [56]刘明,曹建农,郑源,陈力军,谢立.无线传感器网络多重覆盖问题分析.软件学报, 2007, 18(1): 127?136页
    [57] Tian D, Georganas ND. A node scheduling scheme for energy conservation in large wireless sensor networks. Wireless Communications and Mobile Computing, 2003, 3(2): 271-290p
    [58] Li-Hsing Yen, Chang Wu Yu, Yang-Min Cheng. Expected k-coverage in wireless sensor networks. Ad Hoc Networks, 2006, 4(4): 636–650p
    [59] Qun Zhao, Mohan Gurusamy. Connected K-target coverage problem in wireless sensor networks with different observation scenarios. Computer Networks, 2008, 52(11): 2205-2220p
    [60] Meguerdichian S, Koushanfar F, Qu G, Potkonjak M. Exposure in wireless ad-hoc sensor networks. In: Rose C, ed. Proc. of the ACM Int’l Conf. on Mobile Computing and Networking (MobiCom). New York: ACM Press, 2001. 139-150p
    [61] Kelli Baumgartner, and Silvia Ferrari. A Geometric Transversal Approach to Analyzing Track Coverage in Sensor Networks, IEEE Transactions on Computers, 2008, 57(8): 1-16p
    [62] A. Howard, M. Mataric, G. Sukhatme. Mobile sensor network deployment using potential fields: A distributed scalable solution to the area coverage problem. In: Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems, DARS’02, Fukuoka, Japan, June 2002, 299–308p
    [63] S. Poduri, G.S. Sukhatme. Constrained coverage in mobile sensor networks. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA’04, New Orleans, LA, April–May 2004, 40–50p
    [64] Zou Y, Chakrabarty K. Sensor deployment and target localization in distributed sensor networks. ACM Trans. on Embedded Computing Systems,2004, 3(1):61?91p
    [65]李石坚,徐从富,吴朝晖,潘云鹤.面向目标跟踪的传感器网络布局优化及保护策略.电子学报, 2006, 34(1): 71?76页
    [66]陶丹,马华东,刘亮.基于虚拟势场的有向传感器网络覆盖增强算法.软件学报, 2007, 18(5): 1152?1163页
    [67] G. Wang, G. Cao, T. LaPorta. Movement-assisted sensor deployment. In: Proceedings of IEEE Infocom, INFOCOM’04, Hong Kong, China, March 2004, 80–91p
    [68] A. Howard, M. Mataric. Cover me! A self-deployment algorithm for mobile sensor networks. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA’02, Washington, DC, May 2002, 80–91p
    [69] A. Howard, M. Mataric, G. Sukhatme. An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots Special Issue on Intelligent Embedded Systems, 2002, 13 (2): 113–126p
    [70] Islam I. Hussein, Dusan M. Stipanovic. Effective Coverage Control for Mobile Sensor Networks with Guaranteed Collision Avoidance. IEEE Transactions on Control Systems Technology, 2007, 15(4): 642-657p
    [71] G. Wang, G. Cao, T. LaPorta. A bidding protocol for deploying mobile sensors. In: Proceedings of the 11th IEEE International Conference on Network Protocols, ICNP’03, Atlanta, GA, November 2003, 80–91p
    [72] W. Wang, V. Srinivasan, and K. C. Chua. Trade-offs between mobility and density for coverage in wireless sensor networks. In Proceedings of ACM MobiCom, 2007, 39–50p
    [73] Wei Wang, Vikram Srinivasan, Kee-Chaing Chua. Coverage in Hybrid Mobile Sensor Networks. IEEE Transactions on Mobile Computing, 2008, 7(11): 1374-1387p
    [74] S. Chellappan, W. Gu, X. Bai, D. Xuan, B. Ma, K. Zhang. Deploying wireless sensor networks under limited mobility constraints. IEEE Transactions on Mobile Computing, 2007, 6(10): 1142–1157p
    [75] You-Chiun Wang, Yu-Chee Tseng. Distributed Deployment Schemes for Mobile Wireless Sensor Networks to Ensure Multi-level Coverage. IEEETransactions on Parallel and Distributed Systems, 2008, 19(9): 1280-1294p
    [76] B.S. Manoj, Archana Sekhar, C. Siva Ram Murthy. On the use of limited autonomous mobility for dynamic coverage maintenance in sensor networks. Computer Networks, 2007, 51: 2126–2143p
    [77] B. Liu, P. Brass, O. Dousse, P. Nain, D. Towsley. Mobility improves coverage of sensor networks. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc’05, Urbana-Champaign, IL, May 2005.
    [78] N. Bisnik, A. Abouzeid, V. Isler. Stochastic event capture using mobile sensors subject to a quality metric. In: MobiCom’06: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, New York, NY, ISBN 1-59593-286-0, 2006, 98–109p
    [79] D. Ganesan, S. Ratnasamy, H. Wang, D. Estrin. Coping with irregular spatio-temporal sampling in sensor networks. ACM SIGCOMM Computer Communications Review, 2004, 34(1): 125–130p
    [80] A. Jindal, K. Psounis. Modeling spatially-correlated sensor networks data. SECON 2004. 162-171p
    [81] A. Jindal, K. Psounis. Modeling spatially-correlated data of sensor networks with irregular topologies. SECON 2005. 305-316p
    [82] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, S. Wicker. Complex behavior at scale: An experimental study of low-power wireless sensor networks. Technical Report CSD-TR 02-0013, UCLA, February 2002.
    [83] J. Zhao, R. Govindan. Understanding packet delivery performance in dense wireless sensor networks. In: SenSys’03: Proceedings of the 1st international conference on Embedded networked sensor systems, ISBN 1-58113-707-9, 2003, 1–13p
    [84] Azzedine Boukerche, Xin Fei. A coverage-preserving scheme for wireless sensor network with irregular sensing range. Ad Hoc Networks, 2007, 5: 1303–1316p
    [85] GaoJun Fan, ShiYao Jin. A simple coverage-evaluating approach for wireless sensor networks with arbitrary sensing areas. Information Processing Letters,2008, 106: 159–161p
    [86] S. Basu Roy, G. Das, S.K. Das. Computing best coverage path in the presence of obstacles in a sensor field. In: Proceedings of Workshop on Algorithms and Data Structures, WADS’07, Halifax, Canada, August 2007, 577–588p
    [87] T.L. Chin, P. Ramanathan, K.K. Saluja, K.C. Wang. Exposure for collaborative detection using mobile sensor networks. In: Proceedings of the 2nd IEEE Interational Conference on Mobile Ad hoc and Sensor Systems, MASS’04, Washington, DC, November 2005.
    [88] Shansi Ren, Qun Li, Haining Wang, Xin Chen, Xiaodong Zhang. Design and Analysis of Sensing Scheduling Algorithms under Partial Coverage for Object Detection in Sensor Networks, IEEE Transactions on Parallel and Distributed Systems, 2007, 18(3): 334-350p
    [89] I.F. Akyildiz, I.H. Kasimoglu. Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2004, 2(4): 351–367p
    [90] D.L. Weaire. The Kelvin Problem: Foam Structures of Minimal Surface Area. CRC Press, ISBN: 0748406328, 1996.
    [91] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, P. Corke. Data collection, storage, and retrieval with an underwater sensor network. In: SenSys’05: Proceedings of the 3rd international conference on Embedded networked sensor systems, New York, NY, 2005, 154–165p
    [92] S. Poduri, S. Pattem, B. Krishnamachari, G. Sukhatme. Sensor network configuration and the curse of dimensionality. In: Emnets’06: The Third IEEE Workshop on Embedded Networked Sensors, 2006.
    [93] N. Alam, Z.J. Haas. Coverage and connectivity in three-dimensional networks. In: MobiCom’06: Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, New York, NY, 2006, 346–357p
    [94] C.F. Huang, Y.C. Tseng, L.C. Lo. The coverage problem in three-dimensional wireless sensor networks. In: Globecom’04: Proceedings of the IEEE Global Telecommunications Conference, 2004, 3182–3186p
    [95] Ravelomanana V. Extremal properties of three-dimensional sensor networks with applications. IEEE Trans. on Mobile Computing, 2004, 3(3):246-257p
    [96] D. Tian and N. D. Georganas. A coverage-preserving node scheduling scheme for large wireless sensor networks. ACM Int’l Workshop on Wireless Sensor Networks and Applications, 2002
    [97] C.F. Huang, Y. C. Tseng. The coverage problem in a wireless sensor network. ACM Int’1 Workshop on Wireless Sensor Networks and Applications, 2003, 115-121p
    [98] Kar K, Banerjee S. Node placement for connected coverage in sensor networks [C]. In: Proc. of the Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. New Jersey: IEEE Press, 2003. 50-52p
    [99] Miorandi D, Altman E, Alfano G. The impact of channel randomness on coverage and connectivity of ad hoc and sensor networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(3): 1062-1072p
    [100] Cortes J, Martinez S, Karatas T, Bullo F. Coverage control for mobile sensing networks [J]. IEEE Trans. on Robotics and Automation, 2004, 20(2): 243?255p
    [101] Heo N, Varshney PK. Energy-efficient deployment of intelligent mobile sensor networks [J]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2005, 35(1): 78-92p
    [102] P. N. Klein, R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner tress [J]. Journal of Algorithms, 1995, 10(1): 104-115p
    [103] Bang Wang, Wei Wang, Vikram Srinivasan, and Kee Chaing Chua. Information Coverage for Wireless Sensor Networks, IEEE Communications Letters, 2005, 9(11): 967-969p
    [104] Bang Wang, Kee Chaing Chua, Vikram Srinivasan, and Wei Wang. Information Coverage in Randomly Deployed Wireless Sensor Networks, IEEE Transactions on Wireless Communications, 2007, 6(8): 2994-3004p
    [105] Shakkottai S, Srikant R, Shroff N. Unreliable sensor grids: Coverage, connectivity and diameter. Proceedings of the IEEE Infocom, 2003[C]. San Francisco: IEEE Press, 2003: 1073-1083p
    [106] Calinescu G, Mandoiu I, Wan P J, et al. Zelikovsky. Selecting Forwarding Neighbors in Wireless Sensor Network [J]. MONET, 2004, 9(2): 101–111p
    [107] G. He, R.Zheng, I. Gupta, L. Sha. A framework for time indexing in sensor networks. ACM Transactions on Sensor Networks, 2005, 1(1): 101-133p
    [108] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. Mobile Data Management, 2001, 3-14p
    [109] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks. SIGMOD Record, 2002, 31(3): 9-18p
    [110] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven data acquisition in sensor networks. Proceedings of the Thirtieth International Conference on VLDB, 2004, 588-599p
    [111] Y. Kotidis. Snapshot queries: Towards data-centric sensor networks. Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, 131-142p
    [112] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong. Max-min d-cluster formation in wireless ad hoc networks. INFOCOM, 2005, 32-41p
    [113] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700