无人海洋可控探测平台的智能观测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人海洋可控探测平台是指一类可控制、可扩展、运动的海洋传感器集成观测平台,其以脐带牵引、遥控、半自主和完全自主等不同方式运行,逐渐成为一种现阶段海洋观测的常用工具之一,也是未来支撑平台智能观测方式的一类重要载体。
     目前无人海洋可控探测平台的应用,大部分还需要人工参与制定海洋观测的相关参数,如采样频率、间隔等。所以针对这类平台的智能观测策略,即如何将“被动观测”升级为“主动观测”,是制约其未来应用和提升其观测能力的重要因素。按平台数目简单区分,其智能观测可以划分为单平台的自适应观测和多平台的协作观测。目前,单平台的观测常常因测量覆盖面积小,而无法完成一些自主的观测任务。对于多平台的协作观测,无论是编队控制,还是协作测量,其相关理论的建立都是目前的热点和难点。
     本文依托两种无人海洋可控探测平台——无人自动表面船和拖曳系统,开展其智能观测研究,主要包括无人自动表面船的研制,单拖曳系统与单自动表面船的自适应观测和多表面船的协作观测。本文的主要贡献如下,
     (1)研制了一套无人表面船水深测量系统(Unmanned Surface Bathymetry vehicle, USBv),作为本论文智能观测的基础研究平台之一。开展其水动力模型研究,通过与湖试、海试数据对比,验证了模型的直航、转弯运动特性。在此基础上,针对其矢量推进方式,完成了其自动控制功能,包括速度与航向反馈控制、位点跟踪,为其智能观测提供基础功能。
     (2)单平台的自适应观测:基于拖曳系统的水动力模型,利用拖曳系统的定深和剖面运动数据,构建了拖曳系统的半分析(半解析)运动模型,并用于自适应等温层追踪研究;基于前面建立的USBv水动力模型,使用振荡运动方式,开展其自适应等深线追踪研究。
     (3)多平台的协作观测:引入一种变速度的自推进粒子模型,通过设置航向和速度控制律,实现了沿轴向、沿运动方向和等距离沿运动方向的三种空间同步平行编队,并证明了相应控制律的收敛性,以此开展多表面船的协作编队。引用一种基于径向基函数回归观测场的方法,以平行编队方式开展多表面船的追踪水深极值区域的协作观测研究。
The unmanned marine controllalbe exploring vehicle is a class of integrated observing vehicle which can be controlled, extended and can move flexibly. They can be used as towed, manual, semi-autonomous and absolutely autonomous mode, which have been one of the usual ocean observing facilities, and the kind of these vehicles will be one of the most important vehicles for the future way of intelligent observation.
     Now the applications of the unmanned marine controllable exploring vehicle are usually used by manual mode to design the corresponding parameters for ocean observation, such as sampling frequency, interval and so on. So the intelligent observing strategy for these vehicles, and how to change“passtive observing”to“positive observing”, will be the important factor to restrict their application and improvement for their observing abilities. According to the vehicles’number, the ocean intelligent observation can be simply composed by a single vehicle’s adaptive observing and muti-vehicles cooperative observing. Since the coverage area of of a single vehicle’s adaptive observation was often small, and it could’t finish some autonomous observation. For muti-vehicles cooperative observing, not only formation control, but also cooperative measurement, the construction of corresponding theory is the hotspot and diffculty now.
     The research of intelligent observation is developed based on two kinds of the unmanned marine controllable exploring vehicles-Unmanned Surface Vehicle and Towed System, which contains USV’s construction, the adaptive observing of a towed system and an USBv, and cooperative observing of muti-USVs. Our contributions are as following,
     (1) An Unmaned Surface Bathymetry vehicle (USBv) is developed as one of basic vehicles for our intelligent observing. The USBv’s hydrodynamic model is developed and validated by contrasting with lake and sea trials which contain straight line’s movement and turning movement. Based on the result, some autonomous control charecters are completed using its vector propelled mode, such as velocity and heading control, waypoints tracking, which can supply the basis abilities for its intelligent observing.
     (2) A single vehicle’s adaptive observation: Based on the hydrodynamic model of towed system, the semi-analysis model is developed using its fixed depth and profile motion’s data, which is used in the isothermal layer’s adaptive tracking’s research; Based on the USBv’s hydrodynamic model, the oscillating motion is used in USBv’s adaptive isobath tracking.
     (3) The muti-vehicles’cooperative observing: An self-propelled particles’model for variable velocities is introduced, and three spacial synchrony parallel formations are developed by designing the heading and velocity control laws, and its convergence is proved, which are used in muti-USBv’s cooperative formation. The regressing method for observing field based on radial basis function is introduced for muti-USBv to observe the extremum area in the depth field.
引文
[1]许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000,4-10
    [2]刘金琨.智能控制[M].北京:电子工业出版社,2005:1-2
    [3] Guoqing Zhou and Menas Kafatos. Future intelligent earth observing[C]. Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings.
    [4] http://www.whoi.edu/page.do?pid=9915
    [5] Paul V. R. Snelgrove. HDiscoveries of the Census of Marine LifeH [M]. Cambridge: Cambridge University Press, 2010.
    [6]赵吉浩,高艳波,朱光文等.海洋观测技术进展[J].海洋技术,27(4),2008:1-3
    [7]王彦磊,黄兵,张韧等.基于Argo资料的世界大洋温度跃层的分布特征[J].海洋科学进展, 2008,26(4),:428-435
    [8]刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960
    [9]廖光洪,朱小华,林巨等.海洋声层析应用与观测研究综述[J].地球物理学进展,2008,23(6):1782-1790
    [10] Lentz S J. A climatology of salty intrusions over the continental shelf from Georges Bank to Cape Hatteras [J]. Journal of Geophysical Research, 2003, 108(10):2401-2412
    [11] Holliday N P. Air-sea interaction and circulation changes in the northeast Atlantic [J]. Journal of Geophysical Research, 2003, 108(8):1501-1511
    [12] Gawarkiewicz G, Wang J, Caruso M, et al. Shelfbreak Circulation and Thermohaline Structure in the Northern South China Sea—Contrasting Spring Conditions in 2000 and 2001[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4):1131-1143
    [13] Griffiths G, Harris A J K, Mansfield R, et al. A muti-frequency echo sounder for use within a towed undulating vehicle to study oceanic zooplankton abundance[C]. IEEE International Conference on Electronic Engineering in Oceanography, Southampton, July, 1997
    [14]王岩峰,张杰,易杏甫等.用于海洋生态动力监测的拖曳系统设计[J].高技术通讯, 2006, 16(9): 975-979
    [15] http://www.whoi.edu/page.do?pid=8423
    [16] Ferguson, J.S. The Theseus autonomous underwater vehicle Two Successful Missions [C]. Underwater Technology, 1998. Proceedings of the 1998 International Symposium on, Tokyo, Japan, 15-17, Apr, 1998:109-114
    [17] Larsen, M.B, Maridan A/S, Horsholm. High Performance Doppler-Inertial Navigation - Experimental Results[C]. Oceans 2000 MTS/IEEE conference and Exhibition, RI, USA, September, 2000, 2: 1449-1456
    [18] Larsen, M.B, Maridan A/S, Horsholm. Synthetic Long Baseline Navigation of UnderwaterVehicles[C]. Oceans 2000 MTS/IEEE conference and Exhibition, RI, USA, September, 2000, 3: 2043-2050
    [19] http://www.hydroidinc.com/
    [20] H. Stommel. The Slocum mission [J]. Oceanography, 1989, 2(1): 22-25.
    [21] D. C. Webb, P. J. Simonetti, and C. P. Jones. SLOCUM: An underwater glider propelled by environmental energy [J]. IEEE J. Oceanic Engineering, 2001, 26(4): 447–452
    [22] J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes. The autonomous underwater glider“Spray”[J]. IEEE J. Oceanic Engineering, 2001, 26(4):437–44
    [23] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi. Seaglider: A long-range autonomous underwater vehicle for oceanographic research [J]. IEEE J. Oceanic Engineering, 2001, 26(4):424–436
    [24] N. Leonard, R. Davis, D. M. Fratantoni, P. F. J. Lermusiaux, J. E. Marsden, S. R. Ramp, A. R. Robinson, H. Schmidt, and R. Bachmayer. Optimal asset distribution for environmental assessment and forecasting based on observations, adaptive sampling, and numerical prediction. Proposal for 2004 Department of Defense Multidisciplinary Research Program of the University Research Initiative on“Coupled Observation, Adaptive Sampling, and Forecast in the Real Environment”[R].
    [25] Volker Bertram. Unmanned surface vehicles-A survey. http://www.skibstekniskselskab.dk/ public/dokumenter/Skibsteknisk/Download%20materiale/2008/10%20marts%2008/USBvurvey_DTU.pdf
    [26] J. Curcio, J. Leonard, A. Patrikalakis. SCOUT - a low cost autonomous surface platform for research in cooperative autonomy[C]. OCEANS 2005. MTS/IEEE Conference Proceedings, 2005, 1: 725-729
    [27] Nuno Cruz, Aníbal Matos, Sérgio Cunha, Sérgio Silva. HZarco - An Autonomous Craft for Underwater SurveysH[C]. Proceedings of the 7th Geomatic Week, Barcelona, Spain, February 2007
    [28] W. Naeem, R. Sutton and J. Chudley. HModelling and control of an unmanned surface vehicle for environmental monitoringH[C]. UKACC International Control Conference, August, Glasgow, Scotland, 2006
    [29] Lermusiaux P F J. Adaptive modeling, adaptive data assimilation and adaptive sampling [J]. Physica D, 2007, 230:172-196
    [30] M. Ehrendorfer,“Predicting the uncertainty of numerical weather forecasts: A review,”Meteorologische Zeitschrift, 1997(4): 47–183
    [31] P. F. J. Lermusiaux. Data assimilation via error subspace statistical estimation. Part II: Middle Atlantic Bight shelfbreak front simulations and ESSE validation. Monthly Weather Rev., 1999, 127(7): 1408–1432
    [32] C. H. Bishop and Z. Toth. Ensemble transformation and adaptive observations [J]. J. Atmos. Sci., 1999, 56: 1748–1765
    [33] P. F. J. Lermusiaux, C. S. Chiu, G. G. Gawarkiewicz, P. Abbot, A. R. Robinson, R. N. Miller, P. J. Haley, W. G. Leslie, S. J. Majumdar, A. Pang, and F. Lekien. Quantifying uncertainities in ocean predictions [J]. Oceanography, Special Issue on Advances in Computational Oceanography, 2006,19(1): 92–105
    [34] A. R. Robinson and S. M. Glenn. Adaptive sampling for ocean forecasting [J]. Naval Res. Rev., 1999, 51(2):28–38
    [35] Fischer, C., A. Joly, and F. Lalaurette. Error growth and Kalman filtering within an idealized baroclinic flow [J]. Tellus. Serise A, Dynamic meterology and oeanography, 1998, 50(5): 596–615
    [36] Morss, R. E.. Adaptive observations: Idealized sampling strategies for improving numerical weather prediction [D]. Ph.D. thesis, Massachusetts: Massachusetts Institute of Technology, 1999
    [37] Lorenz, E. N., and K. A. Emanuel. Optimal sites for supplementary observation sites: Simulation with a small model [J]. J. Atmos. Sci., 1998, 55: 399–414
    [38] C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects [J]. Monthly Weather Rev., 2001, 129: 420–436
    [39] Thompson, S K and Ramsey, F L. Adaptive sampling of animal populations[R]. Technical Report No 82, Corvallis: Department of Statistics, Oregon State University, 1983
    [40]胡英,贾朋群,高良成.近5年大气科学外场试验及其重要成果[J].气象,2002,27(1):3-8
    [41] Snyder, C..Summary of an informal workshop on adaptive observations and FASTEX [J]. Bull. Amer. Meteor. Soc., 1996, 77: 953–965.
    [42] Joly, A., and Coauthors. The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design [J]. Bull. Amer. Meteor. Soc., 1997, 78: 1917–1940
    [43] Langland, R.H., and Rohaly G.D.. Adjoint-based targeting of observations for FASTEX cyclones[C]. Seventh Conf. on Mesoscale Processes, Phoenix, AZ, Amer. Meteor. Soc., 1996: 369–371
    [44] Bergot, T.. Adaptive observations during FASTEX: A systematic survey of upstream flights [J]. Quart. J. Royal Meteor. Soc., 1999, 125: 3271–3298
    [45] Szunyogh, I., Z. Toth, K. A. Emanuel, C. H. Bishop, C. Snyder, R. E. Morss, J. Woolen, and T. Marchok. Ensemble based targeting experiments during FASTEX: The impact of dropsonde data from the Lear jet [J]. Quart. J. Roy. Meteor. Soc., 1999, 125, 3189–3218
    [46]董佩明,张昕.目标观测设计与伴随敏感性分析[J].气象科技,2004,32(1): 1-5
    [47] Bergot T,Hello G,Joly A,et al Adaptive observations during FASTEX:A systematic survey of upstream flights [J].Qurt J R M eteo r.Soc ,1999,125:3271-3298
    [48] Robinson, A.R.. Eddies in Marine Science [M]. Berlin: Springer, 1983, pp609
    [49] Mooers, C.N.K., A.R. Robinson and J.D. Thompson.. A status and prospectus report on the scientific basis and the Navy's needs [D]. Inst. Naval Oceanography, National Space Technology Laboratory, MS, 1986
    [50] Robinson, A.R., J.A. Carton, N. Pinardi and C.N.K. Mooers. Dynamical forecasting and dynamical interpolation: an experiment in the California Current [J]. Journal of Physical Oceanography, 1986, 16: 1561-1579
    [51] Glenn, S.M., and A.R. Robinson. Verification of an Operational Gulf Stream Forecasting Model [J]. HAmerican Geophysical UnionH: Quantitative Skill Assessment for Coastal Ocean Models, Coastal and Estuarine Studies, 1995, 47: 469–499
    [52] I. Shulman, S. H. D. Haddock, D. J. McGillicuddy, Jr., J. D. Paduan, and W. P. Bissett. Numerical modeling of bioluminescence distributions in the coastal oceans [J]. J. Atmos. Oceanic Tech., 2003: 20(7):1060–1068
    [53] I. Shulman, D. J. McGillicuddy, Jr., M. A. Moline, S. H. D. Haddock, J. C. Kindle, D. Nechaev, and M. W. Phelps. Bioluminescence intensity modeling and sampling strategy optimization [J]. J. Atmospheric and Oceanic Technology, 2005, 22(8):1267–1281
    [54] Rabier, F., H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics [J]. Quart. J. Roy. Meteor. Soc., 2000, 126: 1143–1170.
    [55] Gelaro, R., R. Buizza, T. N. Palmer, and E. Klinker. Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors [J]. J. Atmos. Sci., 1998, 55: 1012–1037
    [56] Buizza, R., and A. Montani. Targeting observations using singular vectors [J]. J. Atmos. Sci., 1999, 56: 2965–2985.
    [57] Bergot, T.. Adaptive observations during FASTEX: A systematic survey of upstream flights [J]. Quart. J. Royal Meteor. Soc., 1999, 125: 3271–3298
    [58] Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics, and adaptive observations [J]. J. Atmos. Sci., 1998, 55, 633–653.
    [59] Langland, R. H., and G. D. Rohaly. Adjoint-based targeting of observations for FASTEX cyclones [C]. Preprints, Seventh Conf. on Mesoscale Processes, Phoenix, AZ, Amer. Meteor. Soc., 1996: 369–371.
    [60] Baker, N. L., and R. Daley. Observation and background adjoint sensitivity in the adaptive observation–targeting problem [J]. Quart. J. Roy. Meteor. Soc., 2000, 126, 1431–1454.
    [61] Pu, Z., and E. Kalnay. Targeting observations with the quasi-linear inverse and adjoint and adjoint NCEP global models: Performance during FASTEX [J]. Quart. J. Roy. Meteor. Soc., 1999, 125: 3329–3338.
    [62] Toth Z and Kalnay E.Ensemble forecasting at NMC:The generation of perturbations [J]. Bull. Amer.Meteor.Soc., 1993, 74: 2317-2330
    [63] Bishop, C. H., and Z. Toth. Ensemble transformation and adaptive observations [J]. J. Atmos. Sci., 1999, 56: 1748–1765
    [64] CRAIG H. BISHOP, BRIAN J. ETHERTON, AND SHARANYA J. MAJUMDAR. Adaptive Sampling with the Ensemble Transform Kalman Filter.Part I: Theoretical Aspects [J]. Monthly Weather Review, 2002, 129: 420-436
    [65] Lorenz, E. N., and K. A. Emanuel. Optimal sites for supplementary observation sites: Simulation with a small model [J]. J. Atmos. Sci., 1998, 55: 399–414
    [66] Grassle, J.F., S.M. Glenn and C. von Alt. Ocean Observing Systems for Marine Habitats [C]. OCC '98 Proceedings, Sea Technology, November, 1998: 567-570
    [67] HOPS-ESSE contributions to the Autonomous Ocean Sampling Network-II (AOSN-II) field exercise [EB/OL]. http://www.deas.harvard.edu/leslie/AOSNII/index.html, August 2003.
    [68] T. B. Curtin and J. G. Bellingham. Autonomous ocean-sampling networks [J]. IEEE J. OceanicEngineering, 2001, 26(4): 421–423
    [69] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous oceanographic sampling networks [J]. Oceanography, 1993, 6(3): 86–94
    [70] Derek A. Paley. Cooperative control of collective motion for ocean sampling with autonomous vehicles [D]. PhD thesis, Princeton University, 2007
    [71] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks [J]. IEEE Transactions on Robotics and Automation, 2004, 20(2): 243–255
    [72] J. Cortes, S. Martinez, and F. Bullo. Spatially-distributed coverage optimization and control with limited-range interactions [J]. ESAIM. Control, Optimisation and Calculus of Variations, 2005, 11: 691–719
    [73] A. Jadbabie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomuous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001
    [74] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Stability of flocking motion[R]. University of Pennsylvania, Technical Report, 2003
    [75] Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithm and theory [J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401–420
    [76] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups[C]. In Proc. 40th IEEE Conf. Decision and Control, Orlando, Florida, December 2001: 2968–2973,
    [77] F. Zhang and N. E. Leonard. Coordinated patterns of unit speed particles on a closed curve[J]. Systems and Control Letters, 2007, 56(6):397–407
    [78] N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for flocking of nonholonomic agents [J]. IEEE Trans. Automatic Control, 2007, 52(4):681–686
    [79] P. Sou`eres, A. Balluchi, and A. Bicchi. Optimal feedback control for route tracking with a bounded-curvature vehicle [J]. Int. J. Control, 2001, 74(10):1009–1019
    [80] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on the N-torus [J]. Systems and Control Letters, 2007, 56(5):335–341
    [81] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents [J]. Amer. J. Mathematics, 1957, 79(3): 497–517
    [82] T. Vicsek, A. Czirok, E. Ben Jacob, I. Cohen, and O. Schochet. Novel type of phase transitions in a system of self-driven particles [J]. Physical Review Letters, 1995, 75: 1226–1229
    [83] Jadbabaie.A,Jie Lin, Morse, A.S. coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
    [84] M.R.,D’Orsogna, Y.L. Chuang, A.L. Bertozzi, and L.S. Chayes. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse [J]. Phys. Rev. Letters, 2006, 96(10): 104302-1-4
    [85] Wei Ren, Randal W. Beard. Distributed consensusion in multi-vehicle cooperative control: theory and application [M]. London: Springer-Verlag, 2008
    [86] E. W. Justh and P. S. Krishnaprasad. A simple control law for UAV formation flying [R]. TechnicalReport 2002-38, Institute for Systems Research, University of Maryland, 2002. Available from: http://techreports.isr.umd.edu/reports/2002/TR 2002-38.pdf.
    [87] E. W. Justh and P. S. Krishnaprasad. Equilibria and steering laws for planar formations [J]. Systems and Control Letters, 2004, 52(1): 25–38
    [88] Derek A. Paley. Cooperative control of collective motion for ocean sampling with autonomous vehicles [D]. Princeton University, Department of mechanical and aerospace engineering, Ph.D paper, 2007
    [89] S. A. Levin. Random walk models of movement and their implications [M]. In T. G. Hallam and S. A. Levin, editors, Mathematical Ecology, an Introduction, volume 17 of Biomathematics, Springer-Verlag, 1986: 149–154.
    [90] B. L. Partridge. Rigid definitions of schooling behaviour are inadequate [J]. Animal Behavior, 1982, 30(1):298–299
    [91] B. L. Partridge. The structure and function of fish schools [J]. Scientific American, 1984, 246(6): 114–123
    [92] D. Chichka and J. Speyer. Solar Powered Formation-Enhanced Aerial Vehicle Systems for Sustained Endurance [C]. Proceedings of the 1998 American Control Conference, Philadelphia, Pennsylvania, June, 1998
    [93] J. Adler. Chemotaxis in bacteria [J]. Journal of Supramolecular Structure, 1966, 4(3): 305–317
    [94] Julius Adler and Wung-Wai Tso. Decision-Making in Bacteria: Chemotactic Response of Escherichia Coli to Conflicting Stimuli [J]. Science, 1974, 184 (143): 1292–1294
    [95] Burian, E.A.,D.R. Yoerger, A.Bradley and H.Singh. Gradient Search with Autonomous Underwater Vehicles Using Scalar Measurements [C]. in Proceedings of IEEE-AUV’96 Conference, Monterey, CA, June, 1996
    [96] Biyik, E. Arcak, M. Gradient climbing in formation via extremum seeking and passivity-based coordination rules [C]. HDecision and Control, 2007 46th IEEE Conference onH, New Orleans, LA, Dec. 2007: 3133
    [97] Jongeun Choi, Songhwai Oh and Roberto Horowitz. Cooperatively learning mobile agents for gradient climbing [C]. Proceedings of the 46PthP IEEE conference on decision and control, New Orleans, LA, USA, 2007: 3139-3144
    [98] Erik Alfred Burian. Search Methods for an Autonomous Underwater Vehicle using Scalar Measurement [D]. the Massachusetts Institute of Technology, Master of Science paper, 1996
    [99] P.¨Ogren, E. Fiorelli, and N.E. Leonard. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed network [J]. IEEE Transactions on Automatic Control, 2004, 49(8): 1292–1302
    [100] R. Bachmayer and N.E. Leonard. Vehicle networks for gradient descent in a sampled environment[C]. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 2002: 113–117
    [101] Dixon, C. Frew, E.W.. Controlling the mobility of networks nodes using decentralized extremum seeking [J]. HDecision and Control, 2006 45th IEEE Conference onH, San Diego, CA, Dec.2006: 1291-1296
    [102] Dixon HCHand Frew HE.W. H. Decentralized extremum-seeking control of nonholonomic vehicles to form a communication chain HAdvances in Cooperative Control and OptimizationH. HLecture Notes in Control and Information SciencesH, 2007, 369: 311-322
    [103]王岩峰.拖曳式多参数剖面测量系统的总体设计、功能评价及应用[D].青岛:中国科学院海洋研究所,博士论文,2005
    [104]金久才,张杰,王岩峰,官晟,程凯,刘善伟.自动表面船用于岛礁水深测绘[J].海洋技术, 2010, 29(2): 5-8
    [105] Antonio Pedro Aguiar, Antonio M. Pascoal. Dynamic positioning of an underactuated AUV in the presence of a constant unknown ocean current disturbance [C]. Proc. IFAC - 15th World Congress, Barcelona, Spain, July 2002
    [106] Jason Evans, Meyer Nahon. Dynamics modeling and performance valuation of an autonomous underwater vehicle [J]. Ocean Engineering, 2004, 31:1835–1858
    [107] H.I. Park, D.H. Jung, W. Koterayama. A numerical and experimental study on dynamics of a towed low tension cable [J]. Applied Ocean Research, 2003, 25: 289–299
    [108] Jiaming Wu, Jiawei Ye, Cheng Yang, Yuanming Chen, Huiping Tian, Xiaohui Xiong. Experimental study on a controllable underwater towed system [J]. Ocean Engineering, 2005, 32: 1803–1817
    [109]吴家鸣,叶家玮,李宁.拖曳式多参数剖面测量系统水动力与控制性能研究述评[J].海洋工程,2004,22(1):111-120
    [110] Indiver G. Modelling and Identification of Underwater Robotic Systems [D]. Ph.D.Thesis in Electronic Engineering and Computer Science,University of Genova,Genova,Italy,1998
    [111] Schj?lberg I.and Fossen T.I. Modelling Control of Underwater Vehicle-Manipulator Systems [C]. In:3rd Conference on Marine Craft Manoeuvring and Control,Southampton,United Kingdom, 1994,45-57
    [112] Fossen T.I. Guidance and Control of Ocean Vehicle [M]. John Wiley&Sons, Chichester, United Kingdom, 1994
    [113] Abkowitz M A. Stability and motion control of ocean vehicles [M]. MIT Press, 1969, 32– 50
    [114] Tannen S. VanZwieten. Dynamic simulation and control of an autonomous surface vehicle [D]. master paper, Florida Atlantic University, Boca Raton, Florida, December 2003
    [115] Arvind Antonio de Menezes Pereira. Navigation and guidance of an autonomous surface vehicle [D]. Master paper, university of southern California
    [116] B.Sicilizno O.khatib and F.Groen.Underwater Robots-Motion and Force Control of Vehicle-Manipulator Systems [M]. second edition,USA,Springer Berlin Heidelberg New York,2006: 23-25
    [117] Indiver G.Modelling and Identification of Underwater Robotic Systems [D]. Ph.D.Thesis in Electronic Engineering and Computer Science,University of Genova,Genova,Italy,1998
    [118] H盛振邦,刘应中.船舶原理(上) [M].上海:上海交通出版社,2003
    [119] A. Eliassen, J. Sawyer, and S. J.. Upper air network requirements for numerical weather prediction. Technical Note of the World Meteorological Organization, vol. 29, 1954.
    [120] L. Gandin, Gidrometerologicheskoe Izdatelstvo. Objective Analysis of Meteorological Fields. Leningrad, Jerusalem: English Translation by Israeli Program for Scientific Translations,1963.
    [121] F. P. Bretherton, R. E. Davis, and C. B. Fandry. A technique for objective analysis and design of oceanographic experiments applied to MODE-73 [J]. Deep-Sea Research, 1976, 23: 559–582
    [122] N. E. Leonard, D. Paley, F. Lekien, et al. Collective motion, sensor networks and ocean sampling [J]. In Proc. IEEE, 2007, 95 (1): 48–74,.
    [123] N. G. Hogg. Oceanographic data for parameter estimation. [M]. Modern Approaches to Data Assimilation in Ocean Modeling, Elsevier, 1996: 57–76
    [124] P. F. J. Lermusiaux. Data assimilation via error subspace statistical estimation, Part II: Mid-Atlantic bight shelfbreak front simulations, and ESSE validation [J]. Monthly Weather Review, 1999, 127(8): 1408–1432
    [125] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry. Underwater gliders for ocean research [J]. Marine Technology Society Journal, 2004, 38(1):48–59
    [126]郑义芳,郭炳火,汤毓祥等.东海黑潮锋面涡旋的观测[A].黑潮调查研究论文选(四)[C],1992
    [127]周慧,许建平,郭佩芳等.北太平洋西边界流研究综述[J].海洋学研究,2006,24(2):49-59
    [128] C. K. H. Chin, R. L. May, H. J. Connell. A numerical model of a towed cable-body system [J]. ANZIAM J, 2000,42(E): C362-C384
    [129] F. Milinazzo, M. Wilkie and S. A. Latchman. An efficient algorithm for sumulating the dynamics of towed cable systems [J]. Ocean Engng, 1987, 14(6):513-526
    [130] Cannon T C, Genin J. Dynamic behavior of a materially damped flexible towed cable [J]. Aeronautical Quarterly, 1972, 23: 109 -120
    [131] Leonard J W, Recher W W. Nonlinear dynamics of cables with low initial tension [J]. Journal of the Engineering Mechanics Division, 1972, 98 (2): 293 - 309.
    [132] Walton T S, Polachech H. Calculation of transient motion of submerged cables [J]. Mathematics of Computation, 1960, 14: 27 - 46.
    [133] Ablow CM, Schechter S. Numerical simulation of undersea cable dynamics [J]. Ocean Engineering, 1983, 10(6): 443– 457
    [134] Sanders J V. A three-dimensional dynamic analysis of a towed system [J]. Ocean Engng, 1982, 9(5): 483-499
    [135]李英辉,李喜斌,戴杰等.拖曳系统计算中拖缆与拖体的耦合计算[J].海洋工程,2002,20(4):37-42
    [136]金久才,张杰,王岩峰,官晟,范陈清.基于拖曳系统的等温层自适应追踪研究[J].北京理工大学学报(即将出版)
    [137] E. W. Justh, P. S. Krishnaprasad. A simple control law for UAV formation flying [R].ISR, University of Maryland, Technology. Report, 2002, 38: 1-35
    [138] R. Sepulchre, D. A. Paley, and N. E. Leonard,“Stabilization of Planar Collective Motion: All-to-AllCommunication,”IEEE Transactions on automatic control, 2007, 52(5): 1-14
    [139] STROGATZ S H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators [J]. Physica D: Nonlinear Phenomena, 2000, 143(1):1–20
    [140]金久才,张杰,官晟,王岩峰.自推进粒子群的空间同步平行编队控制[J].控制理论与应用,2011,28(4):587-590
    [141] Jiu Cai Jin, Jie Zhang, Sheng Guan, Yan Feng Wang. Spatial Synchronized Parallel Formation for Autonomous Underwater Vehicles Fleet, International Conference on Intelligent Control and Information Processing, Dalian, China, August 2010: 267-270
    [142] L. Ljung. Analysis of recursive stochastic algorithms [J]. IEEE Transactions on Automatic Control, 1977, 22(4): 551–575
    [143] J. G. Wang, G. R. Liu. A point interpolation meshless method based on radial basis functions [J]. International Journal for Numerical Methods in Engineering, 2002, 54:1623–1648
    [144]张润楚.多元统计分析[M].北京,科学出版社,2006: 122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700