基于SSR技术和ITS序列进行桃(Prunus persica L.Batsch)品种间亲缘关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃[Prunus persica(L.)Batsch]是起源于中国的重要核果类果树。通过长期的栽培和品种演化,形成极其丰富的种质资源和品种类型。研究桃品种间亲缘关系,分析桃品种的分子演化,对于桃品种改良具有重要意义。本研究利用简单重复序列(Simple sequence sepeat,SSR)技术和内转录间隔(Internal transcribed spacer,ITS)区比较技术对桃的不同品种进行了遗传关系的分析。
     本研究所用材料包括来源于中国、日本、美国、韩国的95个桃品种和新疆桃(P.ferganensis
     Kost.et Riab.),山桃(P.davidiana Franch)和梅(P.mume Sieb.et Zucc.)等3个近缘种。SSR引物是根据已公开发表的108个SSR标记合成,ITS引物据White等人(1990)合成。
     通过对108个SSR引物的分析,33个SSR引物具有多态性。用其对96个桃品种进行多态性分析,共获得283个等位基因,每个位点的平均为8.6等位基因。PIC值位于0.40(BPPCT041)至0.98(BPPCT009)之间,平均值为0.80。
     基于Nei的遗传距离通过聚类分析将96个桃品种分成6个组。除了少数中国品种之外,绝大多数都和地理起源相吻合。组Ⅰ主要包含了中国的华北和西北的地方品种,并可进一步划分为中国黄肉和中国白肉两个亚组;组Ⅱ为中国南方地方品种及日美品种组,包含的品种占供试品种总数的67%,并进一步划分成四个亚组,日本白桃亚组、中国蟠桃亚组、美国黄桃亚组,还有中国地方观赏桃亚组;组Ⅲ由人面桃和新疆桃组成,组Ⅳ为寿星桃品种和日本育成品种,组Ⅴ为中国的古老地方品种粉寿星;组Ⅵ仅有一个成员即:“白山碧桃”。
     进一步分析表明,中国北方的蟠桃和北方地方品种桃的亲缘关系较近,而中国南方蟠桃和日本白桃具有较近的亲源关系。白山碧桃为与其它桃品种遗传距离均很远的观赏桃品种。中国桃的地方品种的遗传背景较日本桃、美国桃和韩国桃品种具有更广泛的遗传变异,进一步表明桃起源于中国。
     分析了来源于中国、美国、日本和韩国的52个桃品种的ITS区域的核苷酸序列,并将这52个桃品种与新疆桃、山桃和梅3个近缘种进行了比较,它们的ITS序列长度为624~629 bp,彼此之间并没有多大差别。ITS 1区域碱基序列为229~232 bp,5.8s rDNA基因序列为85bp,ITS 2区域碱基序列为278~281 bp。含2个差异位点的5.8s rDNA基因序列在各品种间不具有多样性,ITS 1和ITS 2区域分别包含21和20个差异位点。
     根据系统分类分析结果将这52个桃品种和3个近缘种分为四个分支。分支Ⅰ为“白山碧桃和
    
    争、
     中国农业大学博士学位论文摘要
    甲甲熙哪...叫娜.....亘.
    美国黄桃”分支,由除了一个中国黄桃品种以外的全部黄桃品种,两个中国观赏桃品种和6个中
    国白桃品种组成;分支n包括日本黄桃的突变种‘JanghowenhwanghO’;分支川主要包括日本
    白桃,与其它分支具有较大的遗传距离;分支IV为“山桃和中国地方桃品种”分支,可以分
    为两个亚分支.第一亚分支包括两个中国西北地方品种,第二亚分支包括主要的蟠桃品种和中
    国北方地方品种,山桃与该分支亲缘关系比较接近.通过对近缘种的比较表明,梅的遗传背景
    和桃有很大的不同。分析还表明山桃与该52个桃品种的亲缘关系比梅更近,并且与五月鲜和白
    芒蟠桃等几个中国地方品种处于进化系统树的同一个分支上,山桃很可能是栽培桃的古老祖先
    之一。另外和处于进化系统树的同一个分支上的中国地方品种可能是比其他地方品种更古老的
    类型,其中五月鲜和白芒蟠桃可能是本研究中最古老的品种。
     SSR和rrs结果还证实了白山碧桃是山桃和桃的杂交种的推论。结合聚类分析结果讨论了新
    疆桃的分类地位问题,新疆桃可能是桃的一个变种。
    关键词桃(Pr uno persica L.Batsch),简单重复序列(s SR),内转录间隔区(I Ts),遗传
     关系分析
    常
    心
Peach [Prunus persica (L.) Batsch] was originated in China, along with the several thousands years of cultivation and genetic improvement, there are plentiful of genetic resources and ecological types as well as divergent cultivars in China. The research on genetic relationships of cultivars and molecular evolution of peach will be much helpful to genetic improvement of peach. The phylogenetic relationship of peach and nectarine cultivars was analyzed in this study through the use of SSR markers and ITS sequence.The genetic relationships of 95 peach and nectarine cultivars and three kindred species, P. ferganensis Kost. et Riab, P. davidiana Franch and P. mume Sieb. et Zucc, which originated from China, Japan, the USA and South Korea, were evaluated using 33 simple sequence sepeat markers (SSRs) screened among 108 SSR markers obtained from published SSR markers developed in peach or sweet cherry. 33 SSRs detected polymorphisms among 96 peach and nectarine cultivars and revealed total 283 alleles with an average of 8.6 alleles per locus. The polymorphism information content (PIC) value ranged from 0.40 (BPPCT041) to 0.98 (BPPCT009), with an average of 0.80.Most peaches and nectarines were classified according to their geographical origins except some Chinese cultivars. The 96 peach and nectarine cultivars were classified into 6 groups, "Chinese Northern and Northwestern local cultivars", "Chinese southern local and Japanese & American cultivars", "P. ferganensis and Renmiantao", "Chinese dwarf cultivars", 'Fenshouxing' and 'Baishanbitao', respectively, by the cluster analysis based on Nei's genetic distances:Group I, "Chinese Northern and northwestern local cultivars" was consisted of Chinese northern and northwestern local cultivars, and was divided into two subgroups: Chinese local white peach and yellow peaches;Group II, "Chinese southern local and Japanese & American cultivars" was consisted of around 67 % of all cultivars investigated and was divided into four subgroups: Japanese white peach cultivars, Chinese flat peach cultivars, the American yellow cultivars and some of Chinese local ornamental peach cultivars.Group III, IV and V were "P. ferganensis and Renmiantao", "Chinese dwarf cultivars" and 'Fenshouxing' were comprised of Chinese local ancient cultivars.Group VI had only 'Baishanbitao'.Based on the clustering results, northern china local flat peaches were closer to northern white cultivars in genetics, while Chinese southern flat peach and Japanese white peach cultivar had a close genetic relationship. 'Baishanbitao' had been proven an ornamental cultivar as its long distance from
    
    other cultivars in terms of genetic distance. On the whole, the genetic background among Chinese local peach cultivars accounted for much more distribution than those genetic background ranges of the cultivars of Japan, the USA and South Korea, which further proves the P. persica is native to China.Nucleotide sequences of the ITS (internal transcribed spacer) regions were determined for 52 peach cultivars (P. persica L. Batsch) from China, Japan, America and Korea, compared with three related species, P. ferganensis, P. davidiana and P. mume. The ITS regions of 52 peach cultivars, from 624 bp to 629 bp, did not show much of differences. ITS 1 region was 229-232 bp, 5.8s rDNA gene was 85 bp, and ITS 2 is 278-281 bp. 5.8s rDNA genes did not have diversity among cultivars (2 sites), ITS 1 and ITS 2 regions had 21 sites and 20 sites, respectively.Based on the phylogenetic analysis, 52 peach cultivars and two related species (P. ferganensis, P. davidiana) tested in this study were divided into 4 branchs:Branch Ⅰ, "Baishanbitao and American yellow peaches", contained all yellow peaches except 1 Chinese local yellow one, 2 Chinese ornamental cultivars and 6 Chinese white peaches.Branch Ⅱ, Japanese yellow peach mutation, Janghowenhwangdo obtained in Korea.Branch Ⅲ, "Japanese white peaches", had mainly all Japanese white peach cultivars with a bigger difference of genetic distance than that of the other 3 branchs.Branch Ⅳ, "P. david
引文
程中平,陈职位.胡春根,邓秀新,罗正荣.利用RAPD标记对桃品种特殊种质分析.果树学报,2001,18(4):217~220
    董继新,林伯年,何祖华.葡萄属植物基因组DNA的多态性分析.浙江大学学报,1998,24(2):219~220
    方宣钧,吴为人,唐纪良编著.作物DNA标记辅助育种.北京:科学出版社,2001,pp17
    高志红,章镇,韩振海.SSR技术及其在果树上的应用.果树学报,2002,19(5):281-285
    宋婉,续九如,杨凯.AFLP技术在中国枣优良品种鉴定种的应用.彭士琪,问陟良主编.干果研究进展.北京:中国林业出版社,1999,242~248
    彭建营,束怀瑞,孙仲序,彭士琪.中国枣种质资源的RAPD分析.园艺学报,2000,27(3):171~176
    曲柏宏,金香兰,陈艳秋,刘洪章,王丕武.梨属种质资源的RAPD分析.园艺学报,2001,28(5):460~462
    王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报,1999,37(4):407~416
    王三红,陈立耕,章镇,房经贵.RAPD在柑桔品系鉴别上的应用.果树科学,2000,17(1):70~72
    汪祖华,周建涛.桃种植的亲缘演化关系研究-花粉形态分析.园艺学报,1990,17(3):161~168
    汪祖华,陆振翔,陆秀华.桃品种演化及分类研究-同工酶分析.园艺学报,1990,17(4):241~248
    
    吴燕民,裴东,奚声珂,李嘉瑞.运用RAPD对核桃属种间亲缘关系的研究.园艺学报,2000,27(1):17~22
    肖顺元,张文才.RFLP在柑桔遗传多样性研究上的应用.果树科学,1995,12(1):1~4
    杨新国,张开春,秦岭,王永熙.桃种植亲缘演化关系的RAPD分析.果树学报,2001,18(5):276~279
    杨英军,张开春,李学强.RAPD技术及在桃种植研究中的应用概况.陕西林业科技,2000b,4:67~70
    杨英军,张开春,李荣旗,林珂,尹淑萍,姜全,张晓明.桃果实有毛,无毛、白肉/黄肉性状的RAPD分子标记.华北农学报,2000a,15(3):6~9
    于成哲,宗学普.西北罐藏桃品种资源调查.中国果树,1980,3:18~22
    张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱的RAPD分析.北京林业大学学报.1998,20(2):12~15
    张立平,林伯年,沈德绪,等.葡萄属植物核糖体基因的RFLP分析.园艺学报,1997,24(4):385~387
    赵锦,刘孟军.枣树品种、品系及其近缘种的RAPD分析.中国农业科学 2003,36(5):590~594
    周建涛,刘连森.桃品种黄酮类化合物组分类别的数量化研究.园艺学报,1996,23(3):297~299
    祝军,王涛,赵玉军,张文,李光晨.应用AFLP分子标记鉴定苹果品种.园艺学报,2000,27(2):102~106
    宗学普,段玉春.光核桃的分布及其类型初探.西藏作物品种资源考察文集.北京:中国农业出版社,1987,184~185
    Ainouche, M.L. and R. J. Bayer. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): Insights from the internal transcribed spacer sequences of nuclear ribosomal DNA. Genome, 1997, 40:730~743
    Akkaya, M.S., A.A. Bhagwat and P.B. Cregan. Length polymorphisms of simple-sequence repeat DNA in soybean. Genetics, 1992, 132:1131~1139
    Baldwin, B. G., M. J. Sanderson, J.M. Porter, M.F. Wojciechowski, C.S. Campbell and M.J. Donoghue. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard., 1995, 82:247~277
    Baldwin, B.G. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phylog. Evol., 1992, 1:3~16
    Bally, I.S.E., G.C. Graham, and R.J. Henry. Genetic diversity of Kensington mango in Australia. Aust. J. Exp. Agric., 1996, 36(2):243~247
    
    Belaj, A., Z. Satovic, L. Rallo, and I. Trujillo. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA.Theor Appl Genet, 2002,105:638-644
    Belthoff, L.E., R. Ballard, A. Abbott, et al. Development of a saturated linkage map of Prunus persica using molecular based marker systems. Acta Hort, 1993, 336:23-31
    Bhar, K.V., R.L. Jerret, and R.S. Rana. DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers. Electrophoresis, 1995,16(9):1736~1745
    Bostein, D., R.L. White, M. Skolnick, et al. Construction of genetic linkage map in man using restriction fragment length polymorphism. Amer. J. Hum. Genet., 1993,32:314~318
    Brochmann, C, T. Nilsson, and T.M. Gabrielsen. A classic example of postglacial allopolyploid speciation reexamined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symb. Bot. Ups., 1996,31:75-89
    Carriero, F, G Fontanazza, F. Cellini, and G Gicrio, Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet, 2002,104:301-307
    Causse, M.A., T.M. Fulton, and Y.G Cho. Saturated molecular map of the rice genome based on interspecific backcross population. Genetics, 1994,138:1251-1274
    Cipriani, G., R. Di Bella, and R. Testolin. Screening RAPD primers for molecular taxonomy and cultivar fingerprinting in the genus Actinidia. Euphytica, 1996,90(2):169~174
    Dirlewanger, E., P. Cosson, M. Tavaud, M.J. Aranzana, C. Poizat, A. Zanetto, P. Arus, and F. Laigret. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet, 2002, 105:127-138
    Duval, M.F., J.L. Noyer, X. Perrier, G Coppens d'Eeckenbrugge, and P. Hamon. Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet, 2001,102:83-90
    Elder, J.F., and B.J.Turner. Concerted evolution of repetitive DNA sequences in eukaryotes. Quart. Rev. Biol., 1995, 70:297-320
    Germano, J., and A.S. Klein. Species-speci.c nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana, and P. rubens. Theor Appl Genet, 1999, 99:37-49
    Gidoni, D., M. Rom, T. Kumik, et al. Strawberry cultivar identification using randomly amplified polymorphic DNA (RAPD) markers. Plant Breeding, 1994, 113(4)339-342
    Gogoreena, Y., and D.E. Parfitt. Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Sci. Hort., 1994,59(2):163-167
    Hadjiolova, K.V., A. Normann, J. Cavaille, E. Soupene, S. Mazan, A.A. Hadjiolov, and J.-P. Bachellerie. Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells. Mol. Cell Biol., 1994,14:4044-4056
    
    Hernandez, P, R. de la Rosa, L. Ratio, G Dorade, and Martin, Development of SCAR markers in olive (Olea europaea) by direct sequencing of RAPD products: applications in olive germplasm evaluation and mapping. Theor Appl Genet, 2001,103:788-791
    Hokanson, S.C., A.K. Szcwc-McFadden, W.F. Lamboy, and J.R. McFerson, Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica borkh. Core subset collection. Theor Appl Genet, 1998,97:671-683
    Hormaza, J.I., Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet, 2002, 104:321~328
    Kurata, N., Nagamura, K. Yamamoto. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994, 8:365-372
    Lecouls, A.C., M.J. Rubio-Cabetas, J.C. Minot, R. Voisin, A. Bonnet, G Salesses, E. Dirlewanger, and D. Esmenjaud. RAPD and SCAR markers linked to the Mal root-knot nematode resistance gene in Myrobalan plum (Prunus cerasifera Ehr.). Theor Appl Genet, 1999,99:328-335
    Lee, C.H., S.B. Kim, C.S. Kim, S.K. Kang, J.S. Shin, and N.I. Hyung. Utilization of RAPD for Classification of Grape (Vitis spp.) Cultivars. J. Kor. Soc. Hort. Sci, 1998,39(6):751-755
    Li, S.Z. Compendium of Materia Medica. Beijing: People's Medical Publishing House, 1982
    Liston, A., W.A. Robinson, J.M. Oliphant, E.R. Alvarez-Buylla. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst. Bot, 1996, 21:109-120
    Lu, Z.X., GL. Reighard, W.V. Baird, et al. Identification of peach rootstock cultivars by RAPD markers. HortScience, 1996, 31(1):127~129
    Maggini, F., M. Frediani, and M.T. Gelati. Nucleotide sequence of the internal transcribed spacers of ribosomal DNA in Picea abies Karst. DNA Seq., 2000,11:87~89
    Mai, J.C., and A.W. Coleman. The Internal Transcribed Spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol., 1997,44:258-271
    Meyer, F.N. A fruitful field for plant exploration. Yearbook of the department of agriculture. China. 1915
    Moore, GA., and R.E. Durkan. Molecular markers. In: Biotechnology of Perennial Fruit Crops. Edited by Hammerschlag and Litz, CAB International, 1992:pp. 105-139
    Morgante, M., and A.M. Olivieri. PCR-amplified microsatellites as markers in plant genetics. Plant J., 1993,3:175-182
    Mulcahy, D.L., M. Cresti, S. Sansavini, el al. The use of random amplified polymorphic DNAs to fingerprint apple genotypes. Sci. Hort., 1993, 54(2):89~96
    Musters, W., K. Boon, C.A.F.M. van der Sande, H. van Heerikhuizen, and R.J. Planta. Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J., 1990,9:3989-3996
    Rieseberg. L.H., and J.F. Wendel. Introgression and its consequences in plants. In: Harrison, R. (Ed.), Hybrid Zones and the Evolutionary Process. Oxford University Press, Oxford, 1993, pp. 70-109
    
    Roelofs, D., J. van Velzen, P. Kuperus, and K. Bachmann. Molecular evidence for an extinct parent of the tetraploid species Microseris acuminata and M. campestris (Asteraceae, Lactuceae). Mol. Ecol., 1997,6:641-649
    Rogers, S.O., and A.J. Bendich. Robosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol, 1987,9:509-520
    Ronnig, C.M., R.J. Schnell, and S. Gazit. Using randomly amplified polymorphic DNA (RAPD) markers to identify Annona cultivars. J. Amer. Soc. Hort. Sci., 1995, 120(5):726~729
    Sosinski, B., M. Gannavarapu, L.D. Hager, L.E. Beck, GJ. King, C.D. Ryder, S. Rajapakse, W.V. Baird, R.E. Ballard, and A.G Abbott. Characterization of microsatellite markers in peach[Prunus persica (L.) Batsch]. Theor Appl Genet, 2000, 101:421~428
    Sugawara, K., A. Oowada, T. Moriguchi, et al. Identification of citrus chimeras by RAPD markers. HortScience, 1995, 30(6): 1276-1278
    Tamura, M., R. Tao, and A. Sugiura. Regeneration of somatic hybrids from electrofused protoplasts of Japanese persimmon (Diospyros kaki L.). Plant Sci., 1995,108(1): 101~107
    van Nues, R.W., J.M.J Ricntjcs, C.A.F.M. van der Sande, S.F. Zerp, C. Sluiter, J. Venema, RJ. Planta, and H.A. Raue. Separate structural elements within Internal Transcribed Spacer 1 of Saccharomyces cerevisiae ribosomal DNA. J. Mol. Biol., 1994,223:899-910
    Vos, P., R. Hogers, M. Bleeker, Reijans, T. van der Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995,23:4407-4414
    Wang, Z., J.L. Weber, G Zhong, et al. Survey of plant short tandem repeats. Theor Appl Genet, 1994, 88:1-6
    Welsh, J., and M. McClelland. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 1990,18:7213-7218
    Wendel, J.F., A. Schnabel, and T. Seelanan. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci., 1995,92:280-284
    White, T.J., T. Bruns, S. Lee, and J.W. Taylor. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. New York: Academic Press Inc. 1990,315-322
    Williams, J.G.K., A.R. Rubelik, K.J. Livak, A. Rafalski, and S.V. Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 1990, 18:6531-6535
    Wissemann, V. Molecular evidence for allopolyploid origin of the Rosa canina complex (Rosaceae, Rosoideae). J. Appl. Bot., 2002, 76:176-178
    Xu, H., and A.T. Bakalinsky, Identification of grape (Vitis) rootstock using sequence characterized amplified region DNA markers. HortScience, 1996, 31(2):267-268
    Yae, B.W., and K.C. Ko. Classification of Malus domestica cultivars by random amplified polymorphic DNA markers. J. Kor. Soc. Hort. Sci., 1995,36(6):824~828
    
    Zabeau, M., Selective restriction fragment amplification : a general method for DNA fingerprinting. Eruopean Patent Application, Publication. 1993, No.:EP0534858 A1
    Zhou, L., F. Kappel, C. Hampson, PA. Weirsma, and G Bakkeren. Genetic Analysis and discrimination of sweet cherry cultivars and selections using amplified fragment length polymorphism fingerprints. J. Amer. Soc. Hort. Sci., 2002,127(5):786~792

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700