多机器人系统的动态路径规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从20世纪80年代后期,多机器人系统发展以来,由于多机器人系统具有许多单机器人系统无法比拟的优势,主要体现在:应用领域更广泛、容错性更好、完成复杂任务的成本更低、效率更高、可扩展性更好、并且易于研究和开发等,所以多机器人系统已经成为机器人学研究中一个充满活力、具有良好应用前景的研究方向。在多机器人系统的众多研究问题中,路径规划是其最基本的研究问题之一,是多机器人系统完成任务的根本保证。对于实际应用中的多机器人系统,大多工作在复杂、动态环境下,所以本文结合国家“211工程”建设项目“智能移动机器人系统”,对多机器人系统的动态路径规划方法进行了研究,具有重要的理论意义和实际意义。
     首先,针对机器人之间存在通信时的多机器人系统的动态路径规划问题进行研究,提出了一种将速度障碍和行为动力学方法相结合的动态路径规划方法。在该方法中,充分考虑动态障碍物和其它机器人的速度信息,为机器人规划了避障和避碰区域,完善了避障和避碰行为的姿态角动力学和速度动力学,可有效的防止机器人在动态路径规划时出现提前避障或躲避不及等避障失败现象。通过仿真,验证了该方法的有效性和可行性。
     其次,对基于速度障碍的行为动力学路径规划方法进行了两点优化研究:一个是提出利用粒子群优化算法对奔向目标行为、避障行为和避碰行为的三种行为模式进行了融合,从而使机器人能够根据传感器所采集的实时环境信息来获取各个基本行为的权值。并把该方法同基于竞争动力学的行为协调方法进行比较,仿真结果验证了算法的可行性和优越性;另一个是用改进的势场栅格法确定机器人子目标点的位置,并利用子目标点的位置代替最终目标的位置建立奔向目标行为的姿态角动力学,从而使机器人的目标点距离初始点较远的情况下的路径规划更合理,扩大了行为动力学路径规划方法的使用范围。
     再次,针对没有通信情况下的多机器人系统在未知动态环境下的路径规划问题,提出了一种双层模糊控制器结构,设计了危险度模糊控制器和速度模糊控制器。由于双层模糊控制器的应用,使每一层模糊控制器的输入和输出的模糊关系明确,并且简化了模糊规则的设计。其中,危险度模糊控制器充分考虑了运动障碍物的速度信息,把机器人同障碍物之间的碰撞可能性用基于碰撞时间因子和碰撞距离因子的碰撞危险度来表示,从而更能表达机器人同环境之间的关系,使算法更适合动态的环境;速度模糊控制器的设计充分考虑了目标方位角、障碍物方位角和碰撞危险度的影响,并采用基于行为的思想设计模糊规则,规则中体现了奔向目标行为、躲避障碍物行为和沿着障碍物行走行为,使算法更适合狭长的障碍物等特殊的环境。仿真结果表明该方法是可行的和有效的。
     最后,针对如何利用神经网络实现模糊规则的自动提取和化简、以及自动确定输入和输出隶属度函数的参数等问题进行了主要研究。提出利用改进的人工鱼群算法进行模糊神经网络的结构优化和参数优化,从而实现了模糊控制规则的自动提取和化简,以及输入和输出隶属度函数参数的自动确定。仿真结果表明,该方法能够减少多机器人系统利用双层模糊控制器进行动态路径规划时的计算复杂性,提高了算法的实时性。另外,通过在人工鱼群算法中对行为评价后的人工鱼增加交叉和变异操作,从而加快了基本人工鱼群算法对最优值的搜索速度和减少陷入局部最优值的可能性,同时提出了适合变定义域的最大步长方法,设计了改进的人工鱼群算法。
     此外,利用实验室的配备了全景视觉传感器和超声传感器的履带式机器人,对本文提出的动态路径规划方法以及相关技术进行了实验研究,主要有基于全景视觉的人工路标识别实验、机器人的三角定位实验、基于光电编码器的定位实验、行为动力学路径规划方法实验和双层模糊控制器路径规划方法实验等,通过实验验证了算法的可行性。
Since the development of multi-robot systems in the late 80s of the 20th century, the research on multi-robot systems has made much progress as it outperforms single-robot system in many respects. The advantages of multi-robot systems mainly include broader applications field, better fault tolerance, lower cost to complete complex tasks, more efficient, more scalable, and easy to study and development. Therefore, the study of multi-robot systems has become a vigorous and prospective research direction in robotics. Path planning is one of the most basic problems in the area of multi-robot systems and it is the fundamental precondition to achieve the task. Because multi-robot systems in practical application mostly work under the complex and dynamic environment, the research on the dynamic path planning has an important academic and practical meaning. Supported by the National "211 Project" construction project "Intelligent Mobile Robot System", this dissertation mainly do some research on dynamic path planning method.
     Firstly, by combining velocity obstacle and behavior dynamics, a new dynamic path planning method is proposed for MRS when robots can communicate with each other. This method considers the velocity information of the moving obstacles and the other robots, and it also defines obstacle avoidance and collision avoidance region for the robot. In addition, it improves the attitude angle dynamics and speed dynamics of obstacle avoidance and collision avoidance behavior. These unique ideas can effectively avoid failing in dynamic path planning including obstacle avoidance ahead of time or too late. The simulation verifies the effectiveness and feasibility of the method.
     Secondly, the dynamic path planning method, which combines the velocity obstacle and behavior dynamics, is optimized. In the first place, particle swarm optimization algorithm is adopted to fuse three behavior patterns including move-to-goal behavior, obstacle avoidance behavior and collision avoidance behavior. Thus, the robot could obtain the weight of each basic behavior according to the real-time environmental information collected by sensors. We compare two behavior coordination methods of particle swarm optimization method and competitive dynamics method, the simulation results show the feasibility and superiority of this algorithm. Then an improved potential grid method is utilized to determine the sub-target position of robot, which is used to substitute for the ultimate goal position to establish the attitude angle dynamics of the move-to-goal behavior. This idea makes the path planning more reasonable in case of the robot's target point far away from the initial point and enlarges serviceable range of behavior dynamics path planning methods.
     Thirdly, the dynamic path planning problem of multi-robot systems in unknown dynamic environment is considered for the case that communication between robots is unavailable. Double-layer fuzzy controller is proposed to design danger fuzzy controller and speed fuzzy controller. By using double-layer fuzzy controller, the fuzzy relationship of input and output of each layer are clarified. In addition, the fuzzy rules are simplified. The speed information of moving obstacle is fully taken into account by the danger fuzzy controller. The possibility of collisions between robot and obstacles is represented by danger degree which is determined by collision time factor and the collision distance factor. Consequently, it is better to express the relationship of the robot and the environment. The algorithm is more suitable for dynamic environments. The effects of target azimuth, obstacles azimuth and collision danger degree are fully considered when designing the speed fuzzy controller. Fuzzy rules, designed based on the ideology of behavior, reflect the behavior of move to goal, avoiding obstacles and walking along the obstacle. This design principle makes the algorithm more suitable for the special circumstances with narrow barrier. Simulation results show that the method is feasible and effective.
     Finally, the problems of how to automatically extract and simplify fuzzy rules, and how to automatically compute the input and output parameters of membership functions based on artificial neural networks are considered. So an improved artificial fish swarm algorithm is designed and applied to structure optimization and parameter optimization for fuzzy neural network. Thereby the fuzzy rules can be automatically extracted and simplified, and the input and output parameters of membership functions can be automatically determined. Simulation result shows that when the multi-robot systems carry through dynamic path planning utilize double-layer fuzzy controller, the proposed method can reduce the computation complexity and enhance the real-time performance. Moreover; by increasing cross and mutation operation to artificial fish after the behavior evaluation in artificial fish swam algorithm, the speed of searching optimal value is faster and the possibility of searching result falling into local optimal value is reduced. In addition, the maximum step method is proposed to adapt to variable domain.
     In addition, experimental test uses the tracked robot which is equipped with panoramic vision sensors and ultrasonic sensors. The proposed dynamic path planning methods and their related technologies are verified by experiments including panoramic vision-based artificial landmark recognition experiment, the robot's triangle positioning experiment, the odometer-based positioning experiment, the behavioral dynamics path planning experiment and double-layer fuzzy controller experiment.
引文
[1]张毅,罗元,郑太雄.移动机器人技术及其应用.电子工业出版社.2007:2-3页,158-165页
    [2]E. Garcia, M. A. Jimenez, P. G. Santos et al. The Evolution of Robotics Research: from Industrial Robotics to Field and Service Robotics. IEEE Robotics and Automation Magazine.2007,14(1):90-103P
    [3]战强,王树国,陈在礼.世界多机器人技术的研究现状.机器人技术与应用.1999,17(2):10-12页
    [4]张芳,林良明.多移动机器人协调系统体系结构与相关问题.机器人.2001,23(6):554-558页
    [5]T. Arai, E. Pagello, L. E. Parker. Editorial:Advances in Multi-Robot Systems. IEEE Tansactions on Robotics and Automation.2002,18(5):655-661P
    [6]W. Burgard, M. Moors, D. Fox et al. Collaborative multi-robot exploration. IEEE, Piscataway, NJ, United States. In proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA,2000:476-481P
    [7]谭民,范永等.机器人群体协作与控制的研究.机器人.2001,23(2):178-182页
    [8]J. H. Kim, Y. H. Kim, S. H. Choi etal. Evolutionary multi-objective optimization in robot soccer system for education. Computational Intelligence Magazine.2009,1(4): 31-41P
    [9]P. Rajamani, D. Dey, S. Chakravorti. Classification of dynamic insulation failures in transformer winding during impulse test using cross-wavelet transform aided foraging algorithm. Electric Power Applications.2010,9(4):715-726P
    [10]D. Jung, A. Zelinsky. Grounded symbolic communication between heterogeneous cooperating robots. Autonomous Robots.2000,8(3):269-292P
    [11]B. W. Andrews, K. M. Passino, T. A. Waite. Social Foraging Theory for Robust Multiagent System Design. IEEE transactions on automation science and engineering, 2007,4(1):79-86P
    [12]Ding, Yingying, Zhu Miaoliang, He Yan et al. P-CMOMMT algorithm for the cooperative multi-robot observation of multiple moving targets. Institute of Electrical and Electronics Engineers Inc.,445 Hoes Lane/P.O. Box 1331, Piscataway, NJ 08855-1331, United States. In proceedings of 6th World Congress on Intelligent Control and Automation, Dalian, China,2006, (2):9267-9271P
    [13]D. Zhang, L. Wang, J.Yu. Coordinated control of two biomimetic robotic fish in pushing-object task. Control Thwoey and Applications.2007,5(1):1200-1207P
    [14]Ezra Federico Parra-Gonzalez, Jose Gabriel Ramvirez-Torres. Cooperative Multi-Robot Box-pushing in a Cluttered Environment. Proceedings-5th Meeting of the Electronics, Robotics and Automotive Mechanics Conference 2008, Cuernavaca, Morelos, Mexico,2008,514-519P
    [15]A. Franchi, L. Freda, G. Oriolo et al. The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics.2009, 2(14):163-175P
    [16]Wolfram Burgard, Mark Moors, Cyrill Stachniss, etc. Coordinated Multi-Robot Exploration. IEEE transactions on robotics,2005,21(3):376-385P
    [17]Dongjun Lee, Mark W. Spong. Stable Flocking of Multiple Inertial Agents on Balanced Graphs. IEEE transactions on automatic control,2007,52(8),1469-1475P
    [18]Dongbing Gu, Zongyao Wang. Leader-Follower Flocking:Algorithms and Experiments. IEEE transactions on control systems technology,2009,17(5): 1211-1219P
    [19]Matthew J. Daigle, Xenofon D. Koutsoukos, Gautam Biswas. Distributed Diagnosis in Formations of Mobile Robots. IEEE transactions on robotics,2007,23(2),353-368P
    [20]K. S. Hwang, Y. J. Chen, C. H. Lee. Reinforcement learning in strategy selection for a coordinated multirobot system. Systems, Man and Cybernetics, Part A:Systems and Humans, IEEE Transactions on.2007,6(37):1151-1157P
    [21]T. Fukuda, S. Nakagawa. A dynamically reconfigurable robotic system. In Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation, Cambridge, MA,1987:588-595P
    [22]J. Y. Kuan, T. H. Huang, H. P. Huang. Human intention estimation method for a new compliant rehabilitation and assistive robot. Proceedings of SICE Annual Conference 2010, Taipei, Taiwan. Society of Instrument and Control Engineers,2010: 2348-2353P
    [23]H. Asama, A. Matsumoto, Y. Ishida. Design of an autonomous and distributed robot system:ACTRESS. In Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Tsukuba,1989:283-290P
    [24]K. Jin, P. Liang, G Beni. Stability of synchronized distributed control of discrete swarm structures. In Proceedings of the IEEE ICRA,1994:1033-1038P
    [25]M. Kumar, D. P. Garg, V. Kumar. Segregation of heterogeneous units in a swarm of robotic agents. IEEE Transactions on Automatic Control.2010,3(55):743-748P
    [26]T. Ueyama, T. Fukuda. Cooperative Search Using Genetic Algorithm Based on Local Information-path planning for structure configuration of cellular. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan,1993:1110-1115P
    [27]F. Mondada, L. M. Gambardella, D. Floreano etal. The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robotics and Automation Magazine. 2005,2(12):21-28P
    [28]L. E. Parker. ALLIANCE:An Architecture for Fault Tolerant Multirobot Cooperation. IEEE transactions on robotics and automation,1998,14(2):220-240P
    [29]Y. Matsuo. On Sensing and Control Methods for Super-Mechano Colonies. Proceedings of the 1999 IEEE International Conference on System, Man and Cybernetics,1999,3:184-192P
    [30]Masaki Yaqakita, Yuichirou Shukuya. Analysis of Formation Control of Cooperative Transportation of Mother Ship by SMC. Proceedings of the 2003 IEEE International Conference on Robotics&Automation,2003,951-956P
    [31]刘淑华.复杂动态环境下多机器人的运动协调研究.吉林大学博士学位论文.2005,12-14页
    [32]http://www.ri.cmu.edu/
    [33]Robert Zlot, Anthony (Tony) Stentz, M. Bernardine Dias, et al. Multi-Robot Exploration Controlled by a Market Economy. IEEE Proceedings International Conference on Robotics and Automation. Washington, DC, United States,2002, (3):3016-3023P
    [34]http://dilab.eecs.utk.edu/
    [35]http://www.ornl.gov/
    [36]http://robotics.usc.edu/
    [37]http://robots.mit.edu/
    [38]http://www.cc.gatech.edu/ai/robot-lab/
    [39]王越超,谈大龙,黄闪等.一个多智能体机器人协作装配系统.高技术通讯,1998,(7):6-10页
    [40]黄闪,蔡鹤皋,谈大龙.面向装配作业的多机器人合作协调系统.机器人.1999,21(1):50-56页
    [41]翁志锋.未知环境下多机器人协调编队运动控制方法研究.沈阳理工大学硕士学位论文.2008:4-5页
    [42]常文君,由光鑫,庞永杰,徐玉如.基于混合体系结构的多水下机器人协调控制体系.中国海洋平台.2002,17(3):12-16页
    [43]尚游.海洋环境下多水下机器人全局路径规划及避碰策略研究.哈尔滨工程大学博士学位论文.1999:4-24页
    [44]孟宪松.多水下机器人系统合作与协调技术研究.哈尔滨工程大学硕士学位论文.2006:2-6页
    [45]张亚鸣,雷小宇,杨胜跃等.多机器人路径规划研究方法.计算机应用研究.2008,25(9):2566-2569页
    [46]Yanyan Chen, Michael G. H. Bell, and Klaus Bogenberger. Reliable Pretrip Multipath Planning and Dynamic Adaptation for a Centralized Road Navigation System. IEEE transactions on intelligent transportation systems,2007,1 (8):14-20P
    [47]D. J. Stilwell, B. E. Bishop, C. A. Sylvester. Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2005, 4(35):842-848P
    [48]Fedor A. Kolushev, Alexander A. Bogdanov. Multi-agent Optimal Path Planning for Mobile Robots in Environment with Obstacles. Springer-Verlag, Berlin Herdelberg, 2000:503-510P
    [49]薄喜柱,洪炳熔.动态环境下多移动机器人路径规划的一种新方法.机器人2001,23(5):407-410页
    [50]L. Pallottino, V. G. Scordio, A. Bicchi et al. Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Transactions on Robotics,2007, 6(23):1170-1183P
    [51]徐潼,唐振民.多机器人系统中的动态避碰规划.计算机工程.2003,29(10):79-81,104页
    [52]A. K. Ray, P. Benavidez, L. Behera etal. Decentralized motion coordination for a formation of rovers. Systems Journal, IEEE.2009,3(3):369-381P
    [53]K. Azarm, G. Schimidt. A Decentralize Approach for the Conflict-Free Motion of Multiple Mobile Robots. Advanced Robots.1997,11(4):323-340P
    [54]王宗尧,司应涛,国海涛.机器人路径规划方法的研究现状与展望.淮阴工学院学报.2007,16(3):49-51页
    [55]刘华军,杨静宇.移动机器人运动规划研究综述.中国工程科学.2006,8(1):85-94页
    [56]T. L. Perez. Spatial planning:a configuration space approach. IEEE transactions on computers,1983, (C-32):108-120P
    [57]Bo Gao, Demin Xu, Fubin Zhang, et al. Constructing Visibility Graph and Planning Optimal Path for Inspection of 2D workspace. In Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems.2009, (1): 693-698P
    [58]L. Vachhani, K. Sridharan. Hardware-efficient Prediction-Correction-Based Generalized-Voronoi-Diagram Construction and FPGA Implementation. Industrial Electronics, IEEE Transactions on.2008,4(55):1558-1569P
    [59]于红斌,李孝安.基于栅格法的机器人快速路径规划.微电子学与计算机.2005,22(6):98-100页
    [60]曲道奎,杜振军,徐殿国等.移动机器人路径规划方法研究.机器人.2008,30(2):97-101,106页
    [61]Yuqing Huang, Hong Hu, Xingqiang Liu. Obstacles avoidance of artificial potential field method with memory function in complex environment. Proceedings of 2010 8th World Congress on Intelligent Control and Automation.2010:6414-6418P
    [62]李天成,孙树栋,高扬.基于扇形栅格地图的移动机器人全局路径规划.机器人.2010,32(4):547-552页
    [63]Amanda M. Whitbrook, Uwe Aickelin Jonathan, M. Garibaldi. Idiotypic Immune Networks in Mobile-Robot Control. IEEE transactions on systems, man, and cybernetics.2007,37(6):1581-1598P
    [64]陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法.机器人.2001,23(1):40-44,50页
    [65]樊长虹,卢有章,刘宏等.基于神经网络的移动机器人路径规划.计算机工程与应用.2004,(8):86-89页
    [66]苏治宝,陆际联.用模糊逻辑法对移动机器人进行路径规划的研究.北京理工大学学报.2003,23(3):290-297页
    [67]朱庆宝,张玉兰.基于栅格法的机器人路径规划蚁群算法.机器人.2005,27(2):132-136页
    [68]沈晶,顾国昌,刘海波.未知动态环境中基于分层强化学习的移动机器人路径规划.机器人.2006,28(5):544-547页
    [69]石鸿雁,孙昌志.一种基于混沌优化算法的机器人路径规划方法.机器人.2005,27(2):152-157页
    [70]吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法.机器人.2009,31(6):556-560页
    [71]祖迪,韩建达,谈大龙.加速度空间中基于线性规划的移动机器人路径规划方法.自动化学报.2007,33(10):1036-1042页
    [72]唐振民,赵春霞,杨静宇等.基于动态规划思想的多机器人路径规划.南京理工大学学报.2003,27(5):610-615页
    [73]张纯钢,席裕庚.全局环境未知时基于滚动窗口的机器人路径规划.中国科学(E辑).2001,31(1):51-58页
    [74]Jing Ren. Applying artificial potential fields to path planning for mobile robotics and to haptic rendering for minimally invasive surgery. The university of western ontario, london, ontario,2005
    [75]Hongru Tang, Aiguo Song, Xiaobing Zhang. Hybrid behavior coordination mechanism for navigation of reconnaissance robot. Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.2006:1773-1778P
    [76]黄炳强,曹广益.基于人工势场法的移动机器人路径规划研究.计算机工程与应用.2006,27:26-28页
    [77]P. Vadakkepat, O. C.Miin, X. Peng, et al. Fuzzy behavior-based control of mobile robots. IEEE transactions on fuzzy systems,2004,12(4):559-565P
    [78]Jerome Kodjabachian, Jean-Arcady Meyer. Evolution and Development of Neural Controllers for Locomotion, Gradient-Following, and Obstacle-Avoidance in Artificial Insects. IEEE transactions on neural networks,1998,9(5):796-812P
    [79]G. Schoner, M. Dose. A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robotics and Autonomous Systems.1992,10(4):253-267P
    [80]朱毅,张涛,宋靖雁.未知环境下势场法路径规划的局部极小问题研究.自动化学报.2010,36(8):1122-1130页
    [81]谭民,王硕,曹志强.多机器人系统.清华大学出版社.2005:55-56页
    [82]单建华.未知环境下移动机器人实时模糊路径规划.机电工程.2009,26(1):1-4页
    [83]G. Schoner, M. Dose, C. Engels. Dynamics of behavior:theory and applications for autonomous robot architectures. Robotics and Autonomous Systems. 1995,16(2-4):213-245P
    [84]Steinhage A, Schoner G. The dynamic approach to autonomous robot navigation. Proceedings IEEE International Symposium on Industrial Electronics. Portugal: IEEE-publications,1997:7-12P
    [85]Iossifidis I, Schoner G. Dynamical systems approach for the autonomous avoidance of obstacles and joint-limits for a redundant robot arm. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China.2006:580-585P
    [86]张惠娣,刘士荣,俞金寿.基于动力学系统方法的自主移动机器人行为设计.华东理工大学学报(自然科学版).2008,34(6):843-849页
    [87]傅卫平,张鹏飞,杨世强.利用机器人行为动力学与滚动窗口路径规划.计算机工程与应用.2009,45(2):212-215,236页
    [88]H. D. Zhang, S. R. Liu. On-line affective cognitive learning and decision-making for autonomous navigation of mobile robots. Proceedings of the 2009 IEEE International Conference on Information and Automation, China, Zhuhai/Macau.2009, 1234-1239P
    [89]S. Q. Yang, W. P. Fu, et al. Research on application of genetic algorithm for intelligent mobile robot navigation based on dynamic approach. Proceedings of the IEEE International Conference on Automation and Logistics, China, Jinan.2007:898-902P
    [90]严勇杰.多机器人系统协调与控制研究.哈尔滨工程大学博士学位论文.2007:56-58页,91-100页
    [91]张惠娣,刘士荣.基于情感的控制策略及其在移动机器人导航中的应用.南京航空航天大学学报,2006,38(增刊):74-78页
    [92]谢敬,傅卫平,杨静.基于碰撞危险度的移动机器人避障模糊控制.组合机床与自动化加工技术.2003,(2):23-25页
    [93]付宜利,顾晓宇,王树国.基于模糊控制的自主机器人路径规划策略研究.机器人.2004,26(6):548-552页
    [94]李鹏,温素芳.基于模糊控制的路径规划算法的实现.杭州电子科技大学学报.2007,27(6):82-86页
    [95]李保国,宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制.机器人.2005,27(6):481-485页
    [96]任伟建,王飞,吕微.分层模糊控制的移动机器人路径规划.科学技术与工程.2010,10(10):2317-2321页
    [97]P. Fiorini, Z. Shiller. Motion planning in dynamic environments using the relative velocity paradigm. IEEE International Conference on Robotics and Automation. 1993:560-565P
    [98]G. Schoner. Dynamic theory of action-perception patterns:The'moving room' paradigm, Biological Cybernetics,1991,64(6):455-462P
    [99]G. Schoner, J. A. S. Kelso. Dynamic pattern generation in behavioral and neural systems. Science.1988,239:1513-1520P
    [100]E. W. Large, H. I. Christensen. Scaling the Dynamic Approach to Path Planning and Control:Competition among Behavior Constraints. The International Journal of Robotics Research.1999,18(1):37-58P
    [101]P. Althaus. Indoor Navigation for Mobile Robots:Control and Representations. Stockholm Doctoral Dissertation.2003:9-34P
    [102]Estela Bicho, Pierre Mallet, Gregor Schoner. Using Attractor Dynamics to Control Autonomous Vehicle Motion. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society.1998:1176-1182P
    [103]Lars-Peter Ellekilde, Henrik I. Christensen. Control of Mobile Manipulator using the Dynamical Systems Approach. Proceedings of 2009 IEEE International Conference on Robotics and Automation.2009:1370-1376 P
    [104]仲训昱.遥自主移动机器人运动规划与控制技术研究.哈尔滨工程大学博士论文.2009:97-102页
    [105]J. van den Berg, M. Lin, D. Manocha, Reciprocal Velocity Obstacles for real-time multi-agent navigation. Proceedings of IEEE International Conference on Robotics and Automation.2008:1928-1935P
    [106]C. Fulgenzi, A. Spalanzani, C. Laugier. Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. Proceedings of IEEE International Conference on Robotics and Automation.2007:1610-1616P
    [107]B. Kluge, E. Prassler. Reflective navigation:Individual behaviors and group behaviors. Proceedings of IEEE International Conference on Robotics and Automation.2004:4172-4177P
    [108]J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proceedings IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Service Center, 1995:1942-1948P
    [109]Yanmin Lei. The Behavior Fusion Based on Particle Swarm Optimization Method. Proceedings of IEEE International Conference on Computer, Mechatronics, Control and Electronic Engineering. Changchun, China, August,2010:380-383P
    [110]雷艳敏,冯志彬.改进的势场栅格法在机器人路径规划中的应用.长春大学学报.2009,19(1):38-42页
    [111]王翠茹,张江维,王玥等.改进粒子群优化算法求解旅行商问题.华北电力大学学报.2005,32(6):47-51页
    [112]丁园,高晓智,黄显林等.基于微粒群优化算法的T-S模糊建模.哈尔滨工业大 学学报.2007,39(5):700-702页
    [113]王凌,刘波.粒子群优化与调度算法.清华大学出版社.2008:1-5页
    [114]宋初一,姜明晨等.粒子群算法及应用.内蒙古大学学报.2006,21(4):391-392页
    [115]Yuhui Shi, R. C. Eberhart. A modified particle swarm optimizer. Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway, NJ:IEEE Press, 1998:69-73P
    [116]张丽平.粒子群优化算法的理论和实践.浙江大学博士学位论文.2005:58页
    [117]Zheng Yong-ling, Ma Long-hua, Zhang Li-yan, et al.On the convergence analysis and parameter selection in particle swarm optimization. Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi'an,2003:1802-1807P
    [118]肖高超,王强,常棠棠等.一种动态惯性权重的粒子群优化算法.广西师范大学学报(自然科学版).2008,26(3):161-164页
    [119]任子晖,王坚.一种动态改变惯性权重的自适应粒子群算法.计算法科学.2009,36(2):227-229页
    [120]胡建秀,曾建潮.具有随机惯性权重的PSO算法.计算机仿真.2006,23(8):164-166P
    [121]黄强,陈晓楠,张洪波等.基于自适应随机惯性权的粒子群优化方法.西安理工大学学报.2008,24(1):27-31页
    [122]雷开友.粒子群算法及其应用研究.西南大学博士学位论文.2006:46-49页
    [123]李军民,王洪涛.一种改进惯性权重策略的粒子群优化算法.西安科技大学学报.2010,30(5):604-608页
    [124]刘建华,樊晓平,翟志华.一种惯性权重动态调整的新型粒子群算法.计算机工程与应用,2007,43(7):68-70页
    [125]Cai Chengtao, Yang Chunsheng, Zhu Qidan et al. A Fuzzy-based Collision Avoidance Approach for Multi-robot Systems. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China,2007: 1012-1017P
    [126]G. S. RAJU, J. ZHOU, R. A. KISNER. Hierarchical fuzzy control. Int J Control,1991, 54(5):1201-1216P
    [127]I-Fang Chung, Cheng-Jian Lin and Chin-Teng Lin. A GA-based fuzzy adaptive learning control network. Fuzzy Sets and Systems.2000,1(112):65-84P
    [128]李晓磊.一种新型的智能优化方法—人工鱼群算法.浙江大学博士学位论文.2003:22-40页
    [129]C. W. Reynolds. Flocks, herds, schools:a distributed behavioral model. Proceeding of SIGGRAPH'87, Anaheim, California. Computer Graphics, Anaheim, CA, USA.1987, 21(4):25-34P
    [130]江娜.SVM及其在船舶航向控制系统故障预报中的应用研究.哈尔滨工程大学硕士学位论文.2008:53-72页
    [131]张梅凤,邵诚,廿勇等.基于变异算子与模拟退火混合的人工鱼群优化算法.电子学报.2006,34(8):1381-1385P
    [132]郑华,刘伟,张粒子等.基于改进人工鱼群算法的电网可用传输能力计算.电网计术.2008,32(10):84-88P
    [133]王西邓.人工鱼群算法的改进研究.西安建筑科技大学.2007:6,17,30页
    [134]Z. Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs. New York: Springer Verlag,1996
    [135]张宇.基于人工鱼群——BP神经网络的建筑企业核心竞争力评价研究.河北工程大学硕士学位论文.2009:54-55页
    [136]师彪,李郁侠,于新花等.弹性自适应人工鱼群-BP神经网络模型及在短期电价预测中的应用.水利发电学报.2010,29(1):106-113页
    [137]王索立,高洁,孙新德.MATLAB混合编程与工程应用.清华大学出版社.2008:75-92页
    [138]完诚.履带式移动机器人运动控制系统设计.南京理工硕士学位论文.2010:69-72页
    [139]D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision.2004,60(2):91-110P
    [140]H. Murase, S. K. Nayar, Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision.1995,14:5-24P
    [141]E. Salvador, A. Cavallaro, T. Ebrahimi. Cast shadow segmentation using invariant color features. Computer Vision and Image Understanding.2004,95(3),238-259P
    [142]许俊勇.移动机器人全景vSLAM研究.上海交通大学硕士学位论文.2008:45-50页
    [143]阮秋琦等译.数字图像处理(MATLAB)版.电子工业出版社.2005:144-171页
    [144]章毓晋.图像工程(上)—图像处理和分析.清华大学出版社.1999:120-123页
    [145]徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法.计算机工程.2006,32(4):80-86页
    [146]赵钦佩,姚莉秀,程建.基于颜色信息与区域生长的图像分割新算法.上海交通大学学报.2007,41(5):803-812页
    [147]J. Bruce. Realtime Machine Vision Perception and Prediction. Carnegie Mellon University.2000:126-130P
    [148]Margrit Betke, Leonid Gurvits. Mobile Robot Localization Using Landmark. IEEE Transaction on Robotics and Automation.1997,12(2):251-263P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700