大塑性变形制备Cu-Cr-Zr原位形变复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术和现代工业的迅猛发展,对铜基复合材料的强度性能和导电性能都提出了更高要求。本文通过热力学分析、参考已有研究工作以及实际生产的可行性,设计并制备了有可能实现高强度和高电导性相匹配的Cu-10Cr-XZr(X=0、0.2、0.4、0.6)系复合材料。利用ABAQUS6.5软件对强烈塑性变形(拉拔和累积叠轧)制备Cu-10Cr-XZr(X=0、0.2、0.4、0.6)系复合材料的工艺过程进行了有限元模拟,采用金相显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪等分析手段,系统深入地研究了该复合材料棒材的基体以及增强纤维的组织演变过程,分析了Zr含量、变形应变以及退火温度对棒材强度和电导率的影响,并讨论了累积叠轧工艺对Cu-Cr-Zr系复合材料板材的显微组织、力学电学性能、表面织构以及结合强度的影响,探索了大塑性变形下Cu/Cr界面扩散原理以及Cr纤维高温失效模型。得出以下结论:
     (1)模拟结果表明拉拔过程中产生的塑性变形不均匀,弹性变形或者塑性变形主要靠近拉拔试样表面。拉拔速率的增大,减小了最大等效应力,但对等效应变影响不大。摩擦系数对于拉拔变形中总能量具有较大影响。当摩擦系数介于0~0.1时,变形中的总能量增幅较小。而当摩擦系数增大到0.1以后,随着摩擦系数的增大,变形中总能量的数值迅速增加。
     (2)模拟发现累积叠轧工艺过程中产生的塑性变形比较均匀,只有在轧辊接入部位存在少量应力集中。但是随着变形量的增大,在轧辊接入部位的网格出现了严重的压缩和拉伸,应力应变分布也有不均匀的现象,若在实际实验中则容易出现应力集中,导致裂纹产生。此外还发现单道次制备变形量为75%板材时出现轧制无法进行的情况。在实际实验中应尽量避免单道次变形量≥75%的叠轧。
     (3)微量合金元素Zr的添加,能够细化Cr相,在Cu-10Cr-0.4Zr和Cu-10Cr-0.6Zr合金中没有发现典型的Cr树枝晶。Cu-10Cr-XZr(X=0、0.2、0.4、0.6)四种合金铸态下Cr相的平均宽度分别为15.8μm、14.4μm、6.3μm和4.7μm。大塑性变形后,较细小的Cr相比粗大的Cr更易生成均匀细小的纤维。当变形应变为6.2时,Cu-10Cr形变复合材料平均纤维厚度为0.5~1μm,而Cu-10Cr-0.4Zr形变复合材料平均纤维厚度可达250nm左右。
     (4) Cu-10Cr-XZr(X=0、0.2、0.4、0.6)系形变复合材料在冷拉拔过程中,Cr相在纵向主要经历以下四个阶段:自由取向→扁化和旋转→搭接与合并→均匀化;而在横向,Cr主要经历的阶段包括:自由取向→扁化和旋转→弯曲与扭折→不规则化
     (5) Cu-10Cr-0.4Zr形变复合材料的纤维厚度D与变形应变η可由式D=9.77396exp(-2.8η)表示。纤维厚度与Cu-10Cr-XZr(X=0、0.2、0.4、0.6)系形变复合材料的强度为分段式函数关系:当η<4.2,强度增量为:当η≥4.2时,强度增量为:应用上述模型计算得到的材料强度与实测值基本吻合。
     (6)根据退火过程中Cr相纤维的热稳定性研究提出Cu-Cr-Zr形变复合材料高温纤维的失稳模型—纤维诱导迁移合并机制。该模型认为Cr纤维的失稳过程主要包括:次生纤维粘附于主纤维表面、次生纤维团聚球化、进一步团聚球化并向边界移动、次生纤维球体与主纤维边缘合并以及主纤维发生柱状化转变五个阶段。Cu-10Cr-XZr(X=0、0.2、0.4、0.6)形变复合材料Cu基体中阻碍晶界迁移的阻力主要来源于三部分:纤维Cr/Cu相界面阻碍、形变织构阻碍以及孪晶界阻碍。
     (7)在单道次下,形变量为50%、55%、60%、65%和70%时,复合材料结合界面特征与纯金属材料结合界面特征有较大差异。在变形量为50%时,复合材料结合界面由Cu基体组成。当变形量增加到55%时,结合界面由Cu基体和增强相共同组成。变形量增加到60%以上时,结合界面变得平直,结合效果较好。层间结合力测试表明:当变形量增加到60%~70%以后,材料的最大结合力提高到600N以上,故单道次下对Cu-10Cr-0.4Zr复合材料进行累积叠轧处理的最佳变形量应该为60%左右。
With the rapid development of the science and technology, and modern industry, the copper-based composites must have higher strength and higher electrical conductivity. In this paper, it has been used that the thermodynamic calculation, finite element simulation, and relevant studies to design and prepare a low cost Cu-10Cr-XZr (X= 0,0.2,0.4,0.6) wires and plates with high-strength and high conductivity. The processes of severe plastic deformation (including drawing and accumulative roll-bonding (ARB)) were simulated and analyzed by using software ABAQUS6.5. It was studied that microstructural evolution and mechanical properties of the matirx and reinforced fibers, the influence of strengthening and toughening phase with Zr contents on the microstructures and properties of the composites, the effect of accumulative roll-bonding (ARB) on microstructure, mechanical properties, electrical properties, surface texture, and the bonding strength, the interface diffusion principle and failure model of Cr fiber at high temperature with optical microscopy, scanning electron-microscopy (SEM), transmission electro-microscope (TEM) and X-ray diffraction (XRD). The conclusions were obtained as follows:
     (1) The results of the finite element simulation of drawing process showed that the plastic deformation was inhomogeneous, elastic deformation or plastic deformation rounded in the drawing-link surface in the process of drawing. With the increasing of drawing rates, the maximum equivalent stress reducesd, but only a little influence affected on the equivalent strain. The friction coefficient had a larger influence on the total energy of deformation. When the friction coefficient was 0~0.1, the total energy increasing would decrease during deformation. And when the friction coefficient increased to more than 0.1, with increasing of the friction coefficient increases, the value of the total energy would raise increasing rapidly during deformation.
     (2) The results of the finite element simulation of ARB process showed that ARB process would produce a uniform plastic deformation all over tha sample, and only a little stress centration in the parts of accessing to the roller. But as the deformation increased, the grid would have some serious compression and tension in the parts of accessing to the roller, the distribution of stress and strain would have extremely un-uniform. It would be easily to create stress concentration in the experiment, resulting in cracks. In addition, it also found that the process of one-pass with deformation of 75% would not complete, which should be avoided in the actual experiment.
     (3) The addition of Zr could refine the Cr phases. In Cu-10Cr-0.4Zr and Cu-10Cr-0.6Zr alloys, the typical Cr dendrites could not be found. The average width of Cr phases were 15.8μm,14.4μm,6.3μm and 4.7μm individually in Cu-10Cr-XZr (X= 0,0.2,0.4,0.6). After a large plastic deformation, the thinner and smaller Cr phases would generate small and homogeneous fibers more easily than the thicker and larger Cr phases. When the strain ratio reached 6.2, the average width of Cr in Cu-10Cr would be about 0.5μm~1μm, and in the Cu-10Cr-0.4Zr composite, the average width be about 250nm.
     (4) During the cold drawing process, Cr fibers in Cu-10Cr-XZr (X= 0,0.2,0.4,0.6) composites at the vertical sections contained the following four main steps:free orienting→rotating and thinning→overlapping and merging→homogenizing; but at the horizontal sections contained four different steps:free orienting→rotating and thinning→bending, twisting and folding→irregul arizing.
     (5) Between fiber thickness D and deformation ratioη, there was a relationship in the composite Cu-10Cr-0.4Zr:D=9.77396 exp(-2.8η). In the composites Cu-10Cr-XZr(X=0、0.2、0.4、0.6), there were piecewise functions between the strength and fiber thickness:whenη<4.2, the Incremental of strength could be expressed as and whenη≧ 4.2, The calculated values by this model had a good agreement with the experimental values.
     (6) The failure process of stability about Cr fibers in the aging process included five steps:secondary fibers adhibitting to the surface of the primary fibers, spheroidizing of secondary fibers, further spheroidizing of secondary fibers and the spheroid moving to the boundary, spheroid of secondary fibers combining with the edge of the main fibers, column transitting. Which was the model of the failure process of stability about high-temperature fibers in the deformation composite Cu-Cr-Zr—fiber-induced mechanism of migration and merge. There were three kinds of resistances to prevent migration of grain boundaries in the Cu matrix:obstruction from the Cr/Cu phase interfaces, deformation textures and twin boundaries
     (7) The interface features of composites and the pure metals in the ARB processes were quite different. Under the deformation ratio of 50%, the interfaces of Cu-Cr-Zr composites were composed of Cu matrix; when the deformation ratio increased to 55%, the interfaces composed of Cu matrix and Cr phases; and when the deformation ratio increased to 60%, the combination of interfaces become straight. The interlayer bonding tests showed that:if the deformation ratios increased to 60%~70%, the maximum bonding stress would be more than 600N, so the best deformation ratio 60% of one-pass ARB was recommened in Cu-Cr-Zr composites.
引文
[1]孙世清,毛磊,刘宗茂等.高强高导铜基复合材料[J].河北科技大学学报.2000,(1):19-22
    [2]林肇琦.有色金属学[M].沈阳:东北工学院出版社.1986:167
    [3]王深强,陈志强,彭德林等.高强度高导电铜合金的研究概述[J].材料工程.1995,(7):3-6
    [4]Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Ultrahigh strength and high electrical conductivity in coppe[J]. Science.2004,304:422-426
    [5]Lu L, Sui M L, Lu K. Cold rolling of bulk nanocrystalline copper[J]. Acta mater.2001,49: 4127-4134
    [6]陈树川.材料物理性能[M].上海:上海交通大学出版社.1999,40-65
    [7]赵冬梅,董企铭,刘平,金志浩,康布熙.高强高导铜合金化机理[J].中国有色金属学报.2001,11(2):21-25
    [8]陈志强,王深强,彭德林.高强高导铜合金的研究概况[J].材料工程.1995,7:3-6
    [9]《重有色金属材料加工手册》编写组.重有色金属材料加工手册[M].北京:冶金工业出版社.1979:168
    [10]《有色金属及其热处理》编写组.有色金属及其热处理[M].北京:国防工业出版社.1981:98
    [11]Tallbenblet P W, Tiainen T. Research of high-electrical-conductivity copper alloys[J]. Materials Science and Engineering.1986,02:863-866
    [12]Liu Q, Zhang X, Ge Y, Wang J, Cui J Z. Effect of processing and heat treatment on behavior of Cu-Cr-Zr Alloys to railway contact wire[J]. Metallirgical and Materials Transaction A.2006,12:3233-3237
    [13]Steeb J. Patent No.GB215077A(UK),1984
    [14]赵冬梅,董企铭,刘平等.高强高导铜合金成分设计[J].功能材料.2001,(6):609-611
    [15]赵冬梅,董企铭,刘平等.铜合金引线框架材料的发展[J].材料导报.2001,(5):18-20
    [16]Taubenblat P W, Opie W R, Hsu Y T. A new copper alloy with high strength and conductivity[J]. Met. Eng. Q.1972,12:41-45
    [17]汪明朴,方善锋,程建奕.高强高导Cu-Cr-Zr系合金材料的研究进展[J].材料导报.2003,17(9):21-24
    [18]Huang F X, Ma J S, Ning H L, Geng Z T, Lu C, Guo S M, Yu X B, Li H, Luo H F. Analysis of phases in a Cu-Cr-Zr alloy[J]. Scripta Materialia.2003,48:97-102
    [19]Dadras M M, Morris D G. Examination of some high-strength, high-conductivity copper alloys for high-temperature applications[J]. Scripta Materialia.1997,38:199-205
    [20]Tenwick M J, Davies H A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering.1988,98:542-546
    [21]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社.1998,156
    [22]Furukawa M, Horita Z, Nemoto M. Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size[J]. Acta Materialia.1996, 44(11):4619-4629
    [23]Xu C Z, Wang Q J, Zheng M S, Zhu J W, Li J D, Huang M Q, Jia Q M, Du Z Z. Microstructure and properties of ultra-fine grain Cu-Cr alloy prepared by equal-channel angular pressing[J]. Materials Science and Engineering A.2007,459:303-308
    [24]Seung Z H, Masahiro G, Chayong L,Chang J K, Sangshik K. Fatigue behavior of nano-grained copper prepared by ECAP[J]. Alloys and Compounds.2007,434-435:304-306
    [25]苏义祥,丁丁.富铈稀土对铜碲合金材料性能的影响[J].铸造.2009,9:947
    [26]王军丽,史庆南,吴承玲.大变形异步叠轧法制备超细晶铜材的再结晶研究[J].材料热处理学报.2008,29:154-158
    [27]Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science.2000,287:1463-1466
    [28]李强.王茜.高强高导铜合金的强化技术研究与展望[J].热加工工艺.2009,38:8-11
    [29]Tu J P, Wang N Y, Yang Y Z. Preparation and properties of TiB2 nano-particle reinforced copper matix composites by insist processing[J]. Materials Letters.2002,52:448-452
    [30]Toshihiko T. Processing, microstructure and properties of in-situ reinforced SiC matrix composites[J]. Composites Part A:Applied Science and Manufacturing.1999,30:419-423
    [31]Ma Z Y, Tong S C. High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite[J]. Materials Science and Engineering A.2000,284:70-76
    [32]Safak Y. Thermal mismatch stress development in Cu-ZrW2O8 composite investigated by synchrotron X-ray diffraction[J]. Composites Science and Technology.2002,62:1835-1839
    [33]Dorfman S, Fuks D. Carbon diffusion in copper-based metal matrix composites [J]. Sensors and Actuators A:Physical.1995,51:13-16
    [34]Kim J H, Yun J H, Park Y H, Cho K M, Choi I D, Park I M. Manufacturing of Cu-TiB2 composites by turbulent in situ mixing process[J]. Materials Science and Engineering A.2007, 449-451:1018-1021
    [35]Liu R H, Song K X, Jia S G, Xu X F, Gao J X, Guo X H. Chinese Journal of Aeronautics[J].2008,21:281-288
    [36]Groza J R, Gibeling J C. Principles of particle selection for dispersion-strengthened copper[J]. Materials Science and Engineering A.1993,171:115-125
    [37]张淑英,陈玉勇.反应喷射沉积金属基复合材料的研究现状[J].兵器材料科学与工 程.1998,21:52-57
    [38]王周成,倪永金,唐毅.电化学方法制备金属基复合材料研究进展[J].材料导报.2006,20:51-57
    [39]Perez J F, Moris D G. Metal and intermetallic matrix in-situ particle composites[J]. Scr Metall Mater.1994,31:231-235
    [40]Ying D Y, Zhang D L. Processing of Cu-Al2O3 metal matrix nano-composite materials by using high energy ball milling[J]. Materials Science and Engineering A.200,286:152-156
    [41]吴云忠,马永庆,高洪涛,张洋,刘世永.铜包钢线材室温拉变形后的显微组织和力学性能[J].材料工程.2006,10:19-22
    [42]李明茂.金属复合线材的生产使用现状与发展趋势[J].塑性工程学报.2005,14:93-95
    [43]Sinclair C W, Embury J D, Weatherly G C. Basic aspects of the co-deformation of bcc/fcc materials[J]. Materials Science and Engineering A.1999,272:90-98
    [44]Gao H Y, Wang J, Sun B D. Effect of Ag on the thermal stability of deformation processed Cu-Fe in situ composites [J]. Alloys and Compounds.2009,469:580-586
    [45]Hong S I, Hill M A. Mechanical properties of Cu-Nb microcompsites fabricated by the bundling and drawing process[J]. Scr Metall.2000,42:737-742
    [46]Go Y S, Spitizig W A. Strengthening in deformation-processed Cu-20% Fe composites [J]. J Mater Sci.1991,26:163-171
    [47]Bevk J,Harbison J P, Bell J L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J]. J Appl Phys.1978,49:6031
    [48]Raade D, Hangen U. Correlation of microstructure and type Ⅱ superconductivity of a heavily cold rolled Cu-20mass% Nb in situ composite [J]. Acta Mater.1996,44:953-961
    [49]He W X, Wang E D. Effect of extrusion on microstructure and properties of a submicron crystalline Cu-5 wt.%Cr alloy [J]. J Mater Proc Technol.2008,208:205-210
    [50]Song J S, Kim H S. Deformation processing and mechanical properties of Cu-Cr-X(X=Ag or Co) microcomposites [J]. J Mater Proc Technol.2002,130-131:272-277
    [51]Zhang D L, Mihara. Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-0.2%Ti in-situ composite [J]. Acta Mater.1996,44:953-961
    [52]Hong S I, Hill M A. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites [J]. Materials Science and Engineering A.1999,264:151-158
    [53]Liu Q, Zhang X. Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire [J]. Metall Mater Trans A.2006,37:3233-3238
    [54]Sun Z B, Guo J, Song X P. Effects of Zr addition on the liquid phase separation and the microstructures of Cu-Cr ribbons with 18-22 at.% Cr[J]. Journal of Alloys and Compounds. 2008,455:243-248
    [55]张俊超,刘平,田保红.Cu-15%Cr形变复合材料的组织与性能[J].热加工工艺.2007.36:11-14
    [56]Massalski T. Binary alloys phase diagrams [M]. Ohio:ASM International.1990:121
    [57]Moriss D G, Moriss M S. New model for strengthening by dislocation nucleation in nanoscale in situ composite microwires[J]. Scr Metall.2008,58:838-841
    [58]Jin Y, Adachi K. Microstructural evolution of a heavily cold-rolled metal matrix composite [J]. Mater Sci Eng A.1996,212:149-56
    [59]Holzwarth U, Stamn H. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing [J]. J Nucl Mater.2003,279:31-45
    [60]Frank H, Hans J, Schneider M, Gunter G. Analytical modeling of the electrical conductivity of metal matrix composites:application to Ag-Cu and Cu-Nb [J]. Materials Science and Engineering A.2003,347:9-20
    [61]He W X, Wang E D, Hu L X, Yu Y, Sun H F. Effect of extrusion on microstructure and properties of a submicron crystalline Cu-5 wt.%Cr alloy[J]. Journal of Materials Processing Technology.2008,208:205-210
    [62]Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Mater Sci Eng A.2000,291:186-197
    [63]Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography[J].2009,57:5254-5263
    [64]Raabe D, Mattissen D. Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J]. Acta Materialia.1999, 47:769-777
    [65]Raabe D, Mattissen D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite [J]. Acta Materialia.1998,46:5973-5984
    [66]Verhoeven J D, Spitzig W A, Jones L L, Downin H L, Trybus C L, Gibson E D, Chumbley L S, Fritzemeier L G, Schnittgrund G D. The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J Mater Eng.1990,12:127
    [67]Song J S, Hong S I, Kim H S. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites [J]. J Mater Process Technol.2001,113:610-616
    [68]Wu Z W, Chen Y, Meng L. Effects of rare earth elements on annealing characteristics of Cu-6 wt.% Fe composites[J] Journal of Alloys and Compounds.2009,477:198-204
    [69]Sun I H, Mary A H. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J]. Materials Science and Engineering A.1999,264:151-158
    [70]Pelton A R, Laabs F C, Spitzig W A, Cheng C C. Microstructural analysis of in-situ Cu-Nb composite wires[J]. Ultramicroscopy.1987,22:251-265
    [71]Sandim H R Z, Sandim M J R, Bernardi H H, Lins J F C, Raabe D. Annealing effects on the microstructure and texture of a multifilamentary Cu-Nb composite wire[J]. Scripta Materialia.2004,51:1099-1104
    [72]Dotsenko V I, Kislyak I F, Petrenko V T, Tikhonovsky M A, Shkilko A M, Zagoruiko L N, Rogozyanskaya L M. Static stress effects in superconducting composites:Part Ⅰ. Effect of uniaxial tensile stress on resistive critical field of Cu-Nb composites[J]. Cryogenics.2001,41: 219-224
    [73]Lei R S, Wang M P, Guo M X, Li Z, Dong Q Y. Microstructure evolution and thermal stability of nanocrystalline Cu-Nb alloys during heat treatment[J]. Transactions of Nonferrous Metals Society of China.2009,19:272-276
    [74]Wang Y L, Han K, Huang Y, Zhang Y K. Microstructure in Cu-Nb microcomposites[J]. Materials Science and Engineering A.2003,351:214-223
    [75]Cui B Z, Xin Y, Han K. Structure and transport properties of nanolaminate Cu-Nb composite foils by a simple fabrication route[J]. Scripta Materialia.2007,56:879-882
    [76]Sandim M J R, Santos CAM, Sandim H R Z, Ghivelder L. Influence of the filament morphology on the magnetic properties of a Cu-Nb composite[J]. Physica C: Superconductivity.2004,408-410:207-208
    [77]Botcharova E, Freudenberger J, Gaganov A, Khlopkov K, Schultz L. Novel Cu-Nb wires: Processing and characterisation[J]. Materials Science and Engineering A.2006,416:261-268
    [78]Spitzig W A, Pelton A R, Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites[J]. Acta Metallurgica.1987,35:2427-2442
    [79]Liu P, Bahadur S, Verhoeven J D. Further investigation on the tribological behavior of Cu-20% Nb in situ composite[J]. Wear.1993,162-164:211-219
    [80]Chen Z, Liu P, Verhoeven J D, Gibson E D. Tribological behavior of Cu-20%Nb and Cu-15%Cr in situ composites under dry sliding conditions[J]. Wear.1996,194:199
    [81]Krotz P D, Spitzig W A, Laabs F C. High temperature properties of heavily deformed Cu-20%Nb and Cu-20%Ta composites[J]. Materials Science and Engineering A.1989,110: 37-47
    [82]Spitzig W A, Krotz P D. Comparison of the strengths and microstructures of Cu-20% Ta and Cu-20% Nb in situ composites[J]. Acta Metallurgica.1988,36:1709-1715
    [83]Spitzig W A. Strengthening in heavily deformation processed Cu-20%Nb[J]. Acta Metallurgica.1991,39:1085-1090
    [84]Popova E N, Popov V V, Rodionova L A, Romanov E P, Sudareva S V, Hlebova N E, Pantsyrny V I, Shikov A K, Vorobieva A E. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire[J]. Scripta Materialia.2002,46: 193-198
    [85]Sakai Y, Inoue K, Maeda H. New high-strength, high-conductivity Cu-Ag alloy sheets[J]. Acta Metallurgica et Materialia.1995,43:1517-1522
    [86]Ning Y T, Zhang X H, Wu Y J. Electrical conductivity of Cu-Ag in situ filamentary composites[J]. Transactions of Nonferrous Metals Society of China.2007,17:378-383
    [87]Yao D W, Meng L. Effects of solute, temperature and strain on the electrical resistivity of Cu-Ag filamentary composites [J]. Physica B:Condensed Matter.2008,403:3384-3388
    [88]Liu J B, Zhang L, Meng L. Effects of rare-earth additions on the microstructure and strength of Cu-Ag composites[J]. Materials Science and Engineering A.2008,498:392-396
    [89]Zhang L, Meng L, Liu J B. Effects of Cr addition on the microstructural, mechanical and electrical characteristics of Cu-6wt.%Ag microcomposite[J]. Scripta Materialia.2005,52: 587-592
    [90]Liu J B, Meng L, Zeng Y W. Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J]. Materials Science and Engineering A.2006, 435-436:237-244
    [91]Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, Zhou G S. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding[J]. Materials Science and Engineering A.2006,398: 262-267
    [92]Gaganov A, Freudenberger J, Botcharova E, Schultz L. Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7 wt.%Ag alloys[J]. Materials Science and Engineering A.2006,437:313-322
    [93]Lyubimova J, Freudenberger J, Mickel C, Thersleff T, Kauffmann A, Schultz L. Microstructural inhomogeneities in Cu-Ag-Zr alloys due to heavy plastic deformation[J]. Materials Science and Engineering A.2010,527:606-613
    [94]Wu Z W, Chen Y, Meng L. Microstructure and properties of Cu-Fe microcomposites with prior homogenizing treatments[J]. Journal of Alloys and Compounds.2009,481:236-240
    [95]Brokmeier H G, Bolmaro R E, Signorelli J A, Fourty A. Texture development of wire drawn Cu-Fe composites[J]. Physica B:Condensed Matters.2000,276-278:888-889
    [96]Wu Z W, Chen Y, Meng L. Effects of rare earth elements on annealing characteristics of Cu-6wt.% Fe composites [J]. Journal of Alloys and Compounds.2009,477:198-204
    [97]Wu Z W, Chen Y, Meng L. Effect of rare earth addition on microstructural, mechanical and electrical characteristics of Cu-6%Fe microcomposites [J]. Journal of Rare Earths.2009, 27:87-91
    [98]Sun B D, Gao H Y, Wang J, Shu D. Strength of deformation processed Cu-Fe-Ag in situ composites[J]. Materials Letters.2007,61:1002-1006
    [99]Gao H Y, Wang J, Sun B D. Effect of Ag on the thermal stability of deformation processed Cu-Fe in situ composites[J]. Journal of Alloys and Compounds.2009,469:580-586
    [100]Gao H Y, Wang J, Sun B D. Microstructure and strength of Cu-Fe-Ag in situ composites [J]. Materials Science and Engineering A.2007,452-453:367-373
    [101]Gao H Y, Wang J, Sun B D. Effect of Ag on the microstructure and properties of Cu-Fe in situ composites[J]. Scripta Materialia.2005,53:1105-1109
    [102]Gao H Y, Wang J, Sun B D. Effect of Ag on the aging characteristics of Cu-Fe in situ composites[J]. Scripta Materialia.2006,54:1931-1935
    [103]Song J S, Hong S I, Park Y G. Deformation processing and strength/conductivity properties of Cu-Fe-Ag microcomposites[J]. Journal of Alloys and Compounds.2005,388: 69-74
    [104]Yu C Y, Liu J H, Zhao L M, Xu T. The influence of surface roughness and deformation on dechromization of a Cu-Cr alloy[J]. Rare Metals.2006,25:166-171
    [105]Peng L M, Mao X M, Xu K D, Ding W J. Property and thermal stability of in situ composite Cu-Cr alloy contact cable[J]. Journal of Materials Processing Technology.2005, 166:193-198
    [106]Sauvage X, Jessner P, Vurpillot F, Pippan R. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation[J]. Scripta Materialia.2008,58: 1125-1128
    [107]Song J S, Hong S I. Strength and electrical conductivity of Cu-9Cr-1.2Co filamentary microcomposite wires[J]. Journal of Materials Processing Technology.2000,311:265-269
    [108]Song J S, Kim H S, Lee C T, Hong S I. Deformation processing and mechanical properties of Cu-Cr-X (X=Ag or Co) microcomposites[J]. Journal of Materials Processing Technology.2002,130-131:272-277
    [109]Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Materials Science and Engineering A.2000, 291:186-197
    [110]Raabe D, Ge J. Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Ag in situ composite[J]. Scripta Materialia.2004,51:915-920
    [111]Gautam R K, Ray S, Jain S C, Sharma Satish C. Tribological behavior of Cu-Cr-SiCp in situ composite[J]. Wear.2008,265:902-912
    [112]Jacob K T, Fitzner K. The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path[J]. Thermochimica Acta. 1977,18:197-206
    [113]Zeng K J, Hamalainen M, Lilius K. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram[J]. Scripta Metallurgica et Materialia.1995,32:2009-2014
    [114]Zeng K J, Hamalainen M, Lilius K. A new thermodynamic description of the Cu-Zr systemJournal of Phase Equilibria[J]. Journal of Phase Equilibria.1994,15:577-586
    [115]高海燕.高强高导形变Cu-Fe-Ag原位复合材料的制备技术基础.上海交通大学博士学位论文.2007
    [116]Batra I S, Dey G K, Kulkarni U D, Banerjee S. Precipitation in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering A.2002,356:32-36
    [117]Tang N Y, Taplin D M R, Dunlop G L. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Materials Science and Technology.1985,1:270-275
    [118]孙世清.形变铜铁铬系复合材料的研究.北京科技大学博士学位论文.2002
    [119]Biselli C, Morris D G. Microstructure and strength of Cu-Fe in Situ composites after very high drawing strains[J]. Acta Materialia.1996,44:493-504
    [120]Sun S J, Sakai S, Suzuki H G. Effect of Si on the microstructure and mechanical properties of as drawn Cu-15Cr in situ composites[J]. Materials Science and Engineering A. 2001,303:187-196
    [121]Shen T D, Ge W Q, Wang K Y, Quan M X, Wang J T, Wei W D, Koch C C. Structural disorder and phase transformation in graphite produced by ball milling[J]. Nanostructured Materials.1996,7:393-399
    [122]Aguilar C, Martinez V, Palacios J, Ordonez S, Pavez O. A thermodynamic approach to energy storage on mechanical alloying of the Cu-Cr system[J]. Nanostructured Materials. 2007,57:213-216
    [123]Michaelsen C, Gente C, Bormann R. The thermodynamics of amorphous phases in immiscible systems:The example of sputter-deposited Nb-Cu alloys[J]. J. Appl. Phys.1997, 87:1436
    [124]Wu C J, Liu W V, Moore J, Sankar D S. Quantum Stripe Ordering in Optical Lattices[J]. J. Appl. Phys.2006,97:190
    [125]胡赓祥,蔡殉.材料科学基础[M].上海.上海交通大学出版社.2002
    [126]Sleeswyk A W, Verbraak C A. Incorporation of slip dislocations in mechanical twins[J]. Acta Metallurgica.1961,9:917-927
    [127]Karasek K R, Bevk J. Normal-state resistivity of in situ-formed ultrafine filamentary Cu-Nb composites[J]. J Appl Phys.1981,52:1370
    [128]Bevk J. Ultrafine filamentary composites[J].Ann Rev Mater Sci.1983,12:319-338
    [129]Funkenbusch P D. LeeJ K, Courtney T H. Ductile two-phase alloys:Prediction of strengthening at high strains[J]. Metallurgical and Materials Transactions A.1987,18: 1249-1256
    [130]Verhoeven J D, Spitzig W A, Jones L L,Downing H L, Trybus C L, Gibson E D, Chumbley L S, Fritzemeier L G, Schnittgrund G D. Development of deformation processed copper-refractory metal composite alloys[J]. Journal of Materials Engineering. 1990,12:127-139
    [131]Morris D G, Munoz-Morris M A. New model for strengthening by dislocation nucleation in nanoscale in situ composite microwires[J]. Scripta Materialia.2008,59: 838-841
    [132]崔约贤.金属断口分析[M].哈尔滨.哈尔滨工业大学出版社.1998
    [133]郑修麟.材料的力学性能(第二版)[M].西安:西北工业大学出版社.2001:54-55
    [134]Ashby M F. The deformation of plastically non-homogeneous materials[J]. Philosophical Magazine.1970,21:399-424
    [135]Argon A S, Im J, Safoglu R. Cavity formation from inclusions in ductile fracture[J]. Metallurgical and Materials Transactions A.1975,6:825-837
    [136]Verhoeven J D, Downing H L, Gibson E D. Resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. Applied Physics.1989,65:1293-1301
    [137]李海山.形变Cu-10%Cr-3%Ag原位复合材料研究.大连交通大学硕士学位论文.2005
    [138]Kampe M, Courtney T H, Leng Y. Shape instabilities of plate-like structures(I): Experiment observations in heavily cold worked in situ composites [J]. Acta Metallurgica. 1989,37:1735-1745
    [139]Nichols F A, Mullins W W. Morphological changes of a surface of revolution due to capillarity-Induced Surface Diffusion[J]. J Appl Phys.1965,36:1826
    [140]Rayleigh JWS. Proc London Math Soc[M].1880,11:57.
    [141]Cline H E. Shape instabilities of eutectic composites at elevated temperatures [J]. Acta Metall.1971,19:481
    [142]Weatherly G C. Loss of coherency of growing particles by the prismatic punching of dislocation loops[J]. Philosophical Magazine.1971,17:791-799
    [143]Mullins WW. The effect of thermal grooving on grain boundary motion[J]. Acta Metallurgica.1958,6:414-442
    [144]Ho E, Weatherly G C. The spheroidization of pearlite[J]. Metal Science.1977,11:141
    [145]Spitzig WA, Chumbley LS, Verhoeven J D, Go Y S, Downing H L. Effect of temperature on the strength and conductivity of a deformation processed Cu-20% Fe composite[J]. Journal of Materials Science.1992,27:2005-2011
    [146]Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding(ARB) process[J]. Acta Materialia. 1999,47(2):579-583
    [147]詹美燕,李元元,陈维平.累积叠轧技术的研究现状与展望[J].中国有色金属学报.2007,(17):841-851
    [148]Nobuhiro T, Yoritoshi M, Yuichiro K. Fabrication of Uhrafine Grained Metallic Materials by Accumulative Roll-Bonding. Proceed ings from processing and Fabrication of Advanced Materials XI[C].2002, (7-10):320-334
    [149]Eizadjou M, Danesh Manesh H, Janghorban K. Microstructure and mechanical properties of ultra-fine grains(UFGs) aluminum strips produced by ARB process[J]. Journal of Alloys and Compounds.2009, (474):406-415
    [150]Eizadjou M, Kazemi Talachi A, Danesh Manesh H, Shakur Shahabi H,Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process[J]. Composites Science and Technology.2008, (68):2003-2009
    [151]Kamikawa N, Tsuji N, Huang X X, Hansen N. Quantification of annealed microstructures in ARB processed aluminum [J]. Acta Materialia.2006, (54):3055-3066
    [152]Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process [J]. Scripta Materialia.2002, (47):69-76
    [153]Tsuji N, Ito Y, Saito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scripta Materialia.2002, (47): 893-899
    [154]Hosseini A S, Manesh H D. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process [J]. Materials & Design.2009, (30): 2711-2918
    [155]Pasebani S, Toroghinejad M R. Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process [J]. Materials Science and Engineering A.2010, (527):491-497
    [156]Masuda C S, Tanaka Y S. Fatigue properties of Cu-Cr in situ composite[J]. International Journal of Fatigue.2006,28:1426-1434
    [157]徐进,毛卫民.Cu对高压电解电容器阳极铝箔再结晶织构的影响[J].北京科技大学学报.2002,20(2):133-136
    [158]Luis C J, Leon J, Luri R. Comparison between finite element method and analytical methods for studying wire drawing processes[J]. Journal of Materials Processing Technology. 2005,164-165:1218-1225
    [159]Hortig D, Schmoeckel D. Analysis of local loads on the draw die profile with regard to wear using the FEM and experimental investigations[J]. Journal of Materials Processing Technology.2001,115:153-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700