基于电网AGC性能指标的单元机组协调控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风能、太阳能等新能源在电力系统中的大规模使用,为保证电网侧安全运行,传统火电机组参与调峰意义重大。同时为满足供电质量,华北区域制定的电网两个细则明确规定了参与AGC机组的负荷调节性能要求。为克服在大范围变负荷运行下机炉特性的显著变化对机组稳定运行的影响,保证机组输出功率满足电网侧的负荷需求,本文研究了基于进化算法寻优的协调控制系统设计方案。
     论文的研究内容包括以下几个方面。
     1.在机组非线性模型分析的基础上确定机组模型非线性度与协调控制系统鲁棒裕度之间的量化关系。提出一种科学确定典型工况点的方法,在各工况点获到机炉对象的线性化模型,采用基于间隙距离的非线性度分析系统的非线性,计算两两线性化模型之间的间隙距离。
     2.提出一种以单目标进化算法设计局部控制器、增益调度控制实现全局协调控制系统的设计方法。将协调控制系统的设计归结为以负荷、主蒸汽压力调节性能为优化目标,鲁棒性能与主蒸汽压力最大偏差为约束条件的多目标优化模型,并将其转化为单目标优化问题,分别采用两种不同的进化算法求解局部控制器。对比分析了两种控制器的鲁棒性能、采用不同性能评价指标的负荷调节性能与主蒸汽压力调节性能,验证了全局控制器在深度变负荷下的调节性能。
     3.基于AGC性能优化,提出采用改进多目标进化算法的协调控制系统设计方法。将AGC性能作为优化目标的一部分,改进了协调控制系统优化模型;分析多种多目标进化算法的特性,据此确定求解协调控制系统多目标优化问题的算法,从三方面对该算法进行改进,仿真验证了改进算法的有效性以及最优解对应的协调控制系统性能具有良好的AGC性能和鲁棒性。
     4.提出一种基于实用性和全局性能优化的超临界机组协调控制系统设计方案。分析了超临界机组的特性及其控制系统特点,总结了两种典型的超临界机组协调控制系统工程设计的思路。采用全静态解耦加多变量PI控制器的协调控制系统设计方法,利用增益调度控制实现系统的全局性能一致性。仿真结果验证了该方案的有效性。
With the large-scale application of wind and solar in power system, It is important for conventional thermal power units to participate in peak regulation for the safe operation of grid side. Two rules of grid for North China region that define the load regulation performance requirements of AGC units is proposed for the power quality. In order to overcome the effect caused by characteristics change of bolier-turbine under wide load variation and the power of units can meet load requirements of the grid side, this article research on the coordinaed control system design based on evolutionary algorithm optimization.
     The thesis includes the following aspects:
     1. On the basis of unit non-linear model analysis, the quantitative relationship between the unit nonlinearity and coordinated control system robustness index is determined. A scientific method to decide typical operating points is proposed, the linearized model of boiler-turbine unit is obtained at typical operating points, the nonlinear measure based on gap distance is applied to analyze nonlinearity of the system, calculation the gap distance between two linearized models.
     2. It is introduced the coordinated control system which local controllers is based on the single-objective evolutionary algorithm and gain schedule control is apply to realize global controller. The design of coordinated control system is attributed to the multi-objective optimization problem which take regulation performance of load and main steam pressure as optimization objectives, robustness and maximum deviation of main steam pressure as constrains, convert it into a single objective optimization problem, application two kinds of evolutionary algorithms to design local controllers, analysis and comparison the robustness, load and main steam pressure regulation performance of different local controllers, verification the performance of the global controller under wide load variation.
     3. It is proposed the coordinated control system based on multi-objective evolutionary algorithm based on optimization units AGC performance. The optimization model of coordinated control system is improved by taking AGC performance as a part of optimization objectives, analysis characteristics of many kinds of multi-objective evolutionary algorithms, determination the multi-objective evolutionary algorithm to slove multi-objective optimization problem of coordinated control system, making improvement of this algorithm on three aspects, simulation results show that the proposed coordinated control system has good AGC regulation performance and robustness and the algorithm is effective.
     4. It is proposed a supercritical unit coordinated control system design method fot the practicality and optimization of global performance. Analysis characteristic and control feature of the supercritical unit, it is summarized two typical coordinated control system engineering design ideas for supercritical unit. It is proposed a control scheme that static decouple and multi-variable PI are included for the coordinated control system, and gain schedule control is applied to realize the consistency of global performance. Simulation results show that the proposed coordinated control system is effective.
引文
[1]国家电力监管委员会.辅助服务管理实施细则和发电厂并网运行管理实施细则[EB/OL]. [2009-10-01].http://www.serc.gov.cn/jgdt/pcjg/2009/ t2009030211081.htm.
    [2]房方,谭文,刘吉臻.机炉协调系统的非线性输出跟踪控制[J].中国电机工程学报,2005,25(1):147-151.
    [3]房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制[J].中国电机工程学报,2004,24(4):195-199.
    [4]房方,魏乐,谭文,等.基于动态扩展算法的大型燃煤机组非线性协调控制系统设计[J].中国电机工程学报,2007,27(26):102-107.
    [5]刘吉臻,陈彦桥,曾德良,等.500MW单元机组模糊多模型协调控制系统[J].动力工程,2003,23(6):2790-2794.
    [6]Bell R D, Astrom K J. Dynamic models for boiler-turbine-alternator units:data logs and parameter estimation for a 160MW unit[R]. Report TfrT-3192, Dept. of Automatic Control, Lund Institute of Technology, Sweden,1987.
    [7]Bell R D, Astrom K J. Drum-boiler dynamics[J]. Automatica,2000,36(3): 363-378.
    [8]de Mello F P. Boiler models for system performance studies[J]. IEEE Transaction on Power Systems,1991,6(1):66-74.
    [9]de Mello F P. Dynamic models for fossil fueled steam units in power system studies[J]. IEEE Transaction on Power Systems,1991,6(2):753-761.
    [10]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报,2000,20(12):75-79.
    [11]曾德良,赵征,陈彦桥,等.500MW机组锅炉模型及实验分析[J].中国电机工程学报,2003,23(5):149-152.
    [12]田亮,曾德良,刘吉臻,等.简化的330MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184.
    [13]刘吉臻.协调控制与给水全过程[M].北京:中国电力出版社,1995:9-78.
    [14]刘红波,李少远柴天佑.协调控制系统多变量PID控制的自整定方法[J].自动化仪表,2003,24(6):10-15.
    [15]Adams J, Clark D R, Louis J R, et al. Mathematical model of once-through boiler dynamics[J], IEEE Transactions on Power Systems,1965,84:146-156.
    [16]Shinohara W, Koditschek D. A Simplified model for a supercritical power plant[R]. Michigan:University of Michigan,1995.
    [17]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J].中国电机工程学报,1998,18(4):246-253.
    [18]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二)[J].中国电机工程学报,1998,18(5):350-356.
    [19]Ali C, Ali G, S. Ali A M. A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms[J]. Simulation Modelling Practice and Theory,2007,15(9):1029-1051.
    [20]曾德良,闫妹,刘吉臻,等.直流炉机组简化非线性模型及仿真应用[J].中国电机工程学报,2012,32(11):126-134.
    [21]韩璞,魏乐.锅炉-汽轮机单元协调控制的反推PID方法[J].中国电机工程学报,2010,30(2):17-22.
    [22]陈彦桥,刘吉臻,谭文,等.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究[J].中国电机工程学报,2003,23(10):199-203.
    [23]林金星,沈炯,李益国.基于免疫优化的机炉协调系统模糊增益调度Hoo鲁棒控制[J].中国电机工程学报,2008,28(17):92-98.
    [24]Wen T, Horcaio J.M, Chen T W, et al. Analysis and control of a nonlinear boiler-turbine unit[J]. Journal of Process Control,2005(15):883-891.
    [25]王树兵.国产大中型火电机组负荷-汽压控制系统结构设计[J].河北电力技术,1989(1):21-26.
    [26]Fang F, Tan W, Liu J Z. Tuning of coordinated controllers for boiler-turbine units [J]自动化学报,2005,31(2):291-296.
    [27]Tan W, Liu J Z, Fang F, et al. Tuning of PID controllers for boiler-turbine units[J]. IS A Transaction,2004,43(4):571-583.
    [28]林金星,沈炯,李益国.单元机组协调系统的多模型自适应解耦控制[J].东南大学学报(自然科学版),2008,38(3):413-418.
    [29]Tan W, Chen T W, Horacio J M. Robust control design and PID tuning for multivariable processes[J]. Asian Journal of Control,2002,4(4):439-451.
    [30]Zhao H P, Li W, Cyrus T, et al. Robust control design for simultaneous control of throttle pressure and megawatt output in a power plant unit[C]. Proc. of the 1999 IEEE Conference on Control Applications,1999,4(40):802-807.
    [31]Hamed M, Firooz B N, Majid S A. Robust conreol of an industrial boiler system a comparison brtween two approaches:sliding mode control &technique[J]. Energy Conversion and Management,2009,50(6):1401-1410.
    [32]Wu J,Nguang S K, Shen J, et al. Robust H∞ tracking control of boiler-turbine system[J]. ISA Transactions,2010,49(3):369-375.
    [33]薛亚丽,李东海,吕崇德.基于遗传算法的机炉协调系统PID控制器优化[J].热能动力工程,2006,21(1):80-83,87.
    [34]谢谢,曾德良,刘吉臻,等.基于遗传算法的协调控制系统鲁棒PID参数寻优[J].动力工程学报,2010,30(12):937-940.
    [35]Jin S H, Kwamg Y L. Multiobjective control of power plants using particle swarm optimization techniques[J]. IEEE Transactions on Energy Conversion, 2006,21(2):552-561.
    [36]Holland J H. Adaptation in natural and artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. Ann Arbor:University of Michigan Press,1975.
    [37]Rechenberg I. Evolutionsstrategie:Optimierung technischer systeme nach prinzipien der biologischen evolution[D]. Berlin:Technical University of Berblin,1971.
    [38]Schwefel H P. Evolutionsstrategie und numerische optimierung[D]. Berlin: Technical University of Berblin,1975.
    [39]Fogel L J, Owens A J, Walsh M J. Artificial intelligence through simulated evolution[M]. New York:Wiley,1966.
    [40]Koza J R. Genetic programming:A paradigm for genetically breeding populations of computer programs to slove problems[R]. Stanford:Stanford University, Computer Science Department Technical Report,1990.
    [41]Koza J R. Genetic programming:On the Programming of Computers by Means of Natural Selection[M]. Cambrige:MIT Press,1992.
    [42]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Genetic Algorithms and their Applications:Proceeding of the First International Conference on Genetic Algorithms, Lawrence Erlbaum,1985, 93-100.
    [43]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation[C]. Proceeding of the Fifth International Conference on Genetic Algorithms, San Mateo, California,1993:416-423.
    [44]Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]. IEEE World Congress on Computation, Piscataway, NY,1994,1:82-87.
    [45]Srinivas N, Kalyanmoy D. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3): 221-248.
    [46]Zitzler E, Thiele L. An evolutionary algorithm for multiobjective optimization: The strength pareto approach[R]. Computer Engineering and Communication Networks Lab, Swiss Federal Institute of Technology, Zurich, Switzerland, Technical Report 43,1998.
    [47]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002, 6(2):182-197.
    [48]Knows J D, Corne D W. The pareto archived evolutionary strategy:A new baseline algorithm for pareto multiobjective optimization[C]. Proceedings of the Congress on Evolutionary Computation(CEC99),1999(1):98-105.
    [49]Corne D W, Knowles J D, Oates M J. The pareto envelope-based selection algorithm for multiobjective optimization[C]. Proceedings of the Parallel Problem Solving form Nature IV Conference,2000:839-848.
    [50]Zitzler E, Laumanns M, Thiele L. SPEA_Ⅱ:Improving the strength pareto evolutionary algorithm[C]. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Berlin:Springer-Verlag,2002, 95-100.
    [51]田亮.单元机组非线性动态模型的研究[D].保定:华北电力大学,2005,47-52.
    [52]杨婷婷,曾德良,刘吉臻,郝祖龙.基于工况划分的火电机组运行优化规则提取[J].华北电力大学学报,2009,36(6):64-68.
    [53]李序,张葛祥.基于K-均值的SVC的雷达辐射源信号识别[J].系统仿真学报,2008,20(23):6333-6337.
    [54]Han J W, Micheline K范明,孟小峰译.数据挖掘:概念与技术[M].北京:机械工业出版社,2008:263-267.
    [55]Tan W, Horcaio J M, Chen T W, et al. Analysis and control of a nonlinear boiler-turbine unit[J]. Journal of Process Control,2005(15):883-891.
    [56]Georgiou T T. Differential stability and robust control of nonlinear systems[J]. Math. Control Signals Syst,1993,10(3):289-306.
    [57]金鑫,谭文,李志军,刘吉臻.典型工业过程鲁棒PID控制器的整定[J].控制理论与应用,2005,22(6):947-953.
    [58]Tan W, Chen T W, Horacio J M. Robust controller design and PID tuning for multivariable processes[J]. Asian Iournal of Control,2002,4(4):439-451.
    [59]于希宁,刘红军.自动控制原理[M].北京:中国电力出版社,2001,39-40.
    [60]金以慧,方崇智.过程控制[M].北京:清华大学出版社,1991,8-10.
    [61]周明,孙树栋.遗传算法原理及应用[M].北京:国防出版社,2002.
    [62]王正志,薄涛.进化计算[M].长沙:国防科技大学出版社,2000.
    [63]Chambers L. Practical handbook of genetic algorithms:complex coding systems[M]. CRC Press, USA,1998.
    [64]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans. on Systems, Man and Cybernerics,1994, 24(4):656-667.
    [65]王小平,曹立明.遗传算法:理论、应用及软件实现[M].西安:西安交通大学出版社,2002,108-114.
    [66]谭文,牛玉广,刘吉臻.非线性锅炉-汽轮机系统的鲁棒控制[J].控制理论与应用,1999,16(6):863-867.
    [67]Rosario T, Patrick L. Robust PID controller tuning based on the heuristic Klaman algorithm[J]. Automatica,2009,45:2099-2106.
    [68]Rosario T, Patrick Ly. A new heuristic approach for non-convex optimization problems[J]. Information Sciences,2010,180:1955-1966.
    [69]Rosario T, Patrick L. Heuristic Kalman algorithm for solving optimization problems. IEEE Transctions on Systems, man, and cyberetics-part B: cybernetics,2009,39(5):1231-1244.
    [70]Astrom K J, Wittenmark B李清泉等译.自适应控制[M].北京:科学出版社,1992,225-230.
    [71]韩曾晋.自适应控制[M].北京:清华大学出版社,1995,151-157.
    [72]于达人,徐志强,翁一武,等.DEB的新认识——增益调度控制[J].热能动力工程,1999(9),379-381.
    [73]黄祖毅,李东海,姜学志.机炉协调的增益调度伺服系统[J].中国电机工程学报,2003,23(10):191-198.
    [74]席爱民.模糊控制技术[M].西安:西安电子科技大学出版社,2008,11-143
    [75]Zdenko K, Stjepan B模糊控制器设计理论与应用[M].北京:机械工业出版社,2010,262-293.
    [76]林锉云,董加礼.多目标优化的方法和理论[M].吉林:吉林教育出版社,1992,1-54.
    [77]雷德明,严新平.多目标智能优化算法及应用[M].北京:科学出版社,2009, 36-104.
    [78]崔逊学.多目标进化算法及应用[M].北京:国防工业出版社,2006,1-76.
    [79]谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68.
    [80]Erickson M, Mayer A, Horn J. The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems[C]. First International Conference on Evolutionary Multi-Criterion Optimization. Springer Verlag, Letcure Notes in Computer Science.2001,1993/2001:681-695.
    [81]Corne D W, Knowles J D, Oates M J. PESA_Ⅱ:Region based selection in evolutionary multi-objective optimization[C]. Proceedings of the genetic and evolutionary computation conference,2001:283-290.
    [82]Knows J D, Corne D W. Approximating the non-dominated front using the pareto archived evolutionary strategy[J]. Evolutionary Computation,2000(8): 149-172.
    [83]郑金华.多目标进化算法及其应用[M].北京:国防工业出版社,2007,1-60.
    [84]郑金华,李珂,李密青,等.一种基于Hypervolume指标的自适应邻域多目标进化算法[J].计算机研究与发展,2012,49(2):312-326.
    [85]Cello Cello C A, Pulido G T. A micro-genetic algorithm for multiobjective optimization[C]. First International Conference on Evolutionary multi-Criterion Optimization,2001,126-140.
    [86]Jaszkiewicz A. On the performance of multiple-objective genetic local search on the 0/1 Knapsack problem-A comparative experiment[J]. IEEE Transactions on Evolutionary Computation,2002,6:402-412.
    [87]Veldhuizen D A V. Multiobjective evolutionary algorithms:Classifications, Analysis, and new innovations[D]. Graduate School of Engineering of the Air Force Institute of Technology, Air University,1999.
    [88]Zydallis J B. Explicit building-block multiobjective genetic algorithms:Theory, Analysis, and Development[D]. Graduate School of Engineering and Management. Ohio:Air University, Air Force Institute of Technology,2003.
    [89]Darrell W. Evaluating evolutionary algorithms[J]. Artificial Intelligence,1996, 85:245-276.
    [90]Deb K, Thiele L, Laumanns M. Scaleble multi-objective optimization test problem[C]. Proceedings of the IEEE Congress on Evlutionary Computation, 2002:825-830.
    [91]夏季,华志刚,彭鹏,等.基于非支配排序遗传算法的无约束多目标优化配煤模型[J].中国电机工程学报,2011,31(2):85-90.
    [92]张成芬,赵彦珍,陈锋,等.基于改进NSGA-Ⅱ算法的干式空心电抗器多目标优化设计[J].中国电机工程学报,2010,30(18):115-121.
    [93]王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15.
    [94]谢炯亮,郑金华NSGA-Ⅱ中重复个体产生原因分析及影响研究[J].计算机工程与应用,2008,44(29):69-72.
    [95]Coello CAC. A survey of constraint handling techniques used with evolutionary algorithms[R]. Veracruz, Mexico:Laboratorio Nacional de Informtica Avanzada, 1999:1-33.
    [96]朱全利.超超临界机组锅炉设备及系统[M].北京:化学工业出版社,2008.
    [97]张磊,叶飞.超超临界火力发电技术[M].北京:中国水利水电出版社,2009.
    [98]西安热工研究院.超临界、超超临界燃煤发电技术[M].北京:中国电力出版社,2008.
    [99]刘潇,曹冬林,丁劲松.外高桥1000MW超超临界机组闭环控制系统设计[J].中国电力,2006,39(3):70-73.
    [100]张秋生,梁华,胡晓花,等.超超临界机组的两种典型协调控制方案[J].中国电力,2011,44(10):74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700