决策系统约简的粗糙集方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特征选择和特征提取是数据挖掘、机器学习和人工智能的重要研究主题,旨在从海量数据中挖掘出潜在的有效的信息.信息表(或称信息系统)和决策表(或称决策系统)是海量数据的具体体现,是特征选择的两种主要研究对象.决策系统是信息系统的细化和延伸.决策系统约简的目的是在保持决策系统的分类能力不变的条件下,去掉一些无关的和冗余的数据,获得紧凑型数据.
     粗糙集理论是一种基于集合论的不确定信息分析与处理的数学工具,可有效地分析和处理具有不精确、不一致、不完整等不确定性的信息与知识.基于粗糙集的决策系统约简不需要任何先验知识,可有效地消除决策系统中的冗余知识,获得集约的规则集,提高决策系统的应用效率.因此,研究粗糙集理论及其在特征选择中的应用有着重要的理论意义和实用价值.
     本文从以下几个方面对决策系统属性约简和属性值约简展开研究和探索:
     (1)为了解决基于依赖度的属性约简方法会得到空集的问题,提出了新的属性约简方法—基于条件知识粒度的属性约简.实例表明它有效地反映了属性的重要程度.
     (2)针对非协调决策系统上的属性约简,通过粗交流映射,建立了协调、非协调决策系统属性约简之间的联系,将非协调决策系统上的属性约简问题转化为协调决策系统的属性约简问题,具有重要的意义.通过UCI标准数据集验证了该方法的有效性和实用性.
     (3)经典的属性约简方法只考虑了决策系统的正域信息,忽略了负域和边界域信息.将直觉模糊集引入到不完备决策系统中,根据正域、负域和边界域之间的关系定义了决策系统上的直觉模糊集的肯定隶属函数和否定隶属函数,提出了决策系统的相对相似约简方法.相对相似约简是一种更为广泛的约简形式,相对正域约简、相对负域约简和相对双向域约简是它的特例.实验表明,选择适当的直觉模糊集间的相似度,会大大提高决策系统的分类精度.
     (4)系统地分析了特征选择和属性约简之间的关系,特别地研究了启发式优化算法的局部最优解、全局最优解与约简之间的关系,指出基于启发式优化算法的特征选择结果(称为近似约简)未必是决策系统的相对约简(若不是,则称为伪约简),从而提出了具有序结构的属性约简方法解决了该问题.进一步地,为了解决伪约简和非协调决策系统对经典属性值约简方法带来的冗余和错误问题,提出了新的属性值约简方法.实例验证了该方法的可行性和有效性.
Feature selection or feature extraction is one of the most important research topics in datamining, machine learning and artificial intelligence, mining out a potential effective informationfrom mass data. Information table (or called information system) and decision table (or calleddecision system), the concrete embodiments of massive data, are the two main objects to beresearched in feature selection. It is a fact that decision system is the particular and extension ofinformation system and decision system reduction can be degenerated into information systemreduction. As a result, the dissertation focuses on the research of decision system reduction,which aims to take out irrelevant and redundant data with maintaining invariable classificationability and gets a compact data.
     Rough set theory is a mathematical tool of uncertainty information analysis and processingbased on set theory. It can effectively analyze and process inconsistent, inaccurate, incompleteuncertainty information and knowledge. Without needing any prior knowledge, decision systemreduction based on rough set theory can effectively eliminate the redundancy, obtain the reducedrule set and improve application efficiency of decision system. Therefore, there is an importanttheoretical and practical value to research on rough sets theory and its application to featureselection in machine learning and artificial intelligence.
     The dissertation mainly researches and explores attribute reduction in decision systemsand rule extraction from the following aspects:
     (1) In order to solve the problem that empty sets could be got by attribute reduction basedon dependency, this dissertation puts forward a novel approach—conditional knowledge gran-ularity based attribute reduction. Examples show that the proposed method can well reflect theimportant degree of attributes.
     (2) Dealing with attribute reduction in inconsistent decision systems, rough communica-tion with mapping establishes a link between consistent decision systems and inconsistent de-cision systems. As a result, attribute reduction in inconsistent decision systems is convertedinto attribute reduction in consistent decision systems with important significance. ThroughUCI standard data sets, experiment results show the validity and effectiveness of the proposedmethod.
     (3) Classical attribute reduction approaches only consider information from the positive re-gion, thereby the information from the boundary region and negative region is overlooked. In-tuitionistic fuzzy sets(IFSs) are introduced into decision systems. According to the relationshipamong positive region, negative region and boundary region, membership and non-membership degree of IFSs are defined. With similarity measures in IFSs, the dissertation studies a novelattribute reduction approach called a relative similarity reduct in decision systems. A rela-tive similarity reduct is a generalization. Simultaneously, positive reduct, negative reduct andpositive-negative reduct are its special cases. Experimental results show that selecting appro-priate similarity measures, classification performance could be improved largely.
     (4) This dissertation systematically analyzes the relationship between feature selection andattribute reduction, especially researching the relationship between reducts and local optimalsolutions, globally optimal solutions of heuristic optimization algorithms. We point out theproblem that solutions of heuristic optimization algorithms (called an approximate reduct) maybe not reducts (called a fake reduct). Therefore, a novel attribute reduction algorithm withan order is proposed to solve the problem. Furthermore, to solve the problems brought fromfake reducts and inconsistent decision systems, a novel attribute value reduction algorithm isproposed. A few examples show the feasibility and effectiveness of the proposed algorithm.
引文
[1] Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences,1982,11(5):341–356P
    [2] Z. Pawlak. Rough sets: Theoretical aspects of reasoning about data. Dordrecht, Boston,London: Kluwer Academic Publishers,1991.
    [3] D. Parmar, T. Wu, J. Blackhurst. MMR: An algorithm for clustering categorical datausing rough set Theory. Data&Knowledge Engineering,2007,63(3):879–893P
    [4] P. Pattaraintakorn, N. Cercone. Integrating rough set theory and medical applications.Applied Mathematics Letters,2008,21(4):400–403P
    [5] D. Zhang, Y. Wang, H. Huang. Rough neural network modeling based on fuzzy roughmodel and its application to texture classification. Neurocomputing,2009,72(10-12):2433–2443P
    [6] B. Mak, T. Munakata. Rule extraction from expert heuristics: A comparative study ofrough sets with neural networks and Id3. European Journal of Operational Research,2002,136(1):212–229P
    [7] Y. Wang, M. Ding, C. Zhou, et al. Interactive relevance feedback mechanism for imageretrieval using rough set. Knowledge–Based Systems,2006,19(8):696–703P
    [8] A. Petrosino, A. Ferone. Rough fuzzy set-based image compression. Fuzzy Sets andSystems,2009,160(10):1485–1506P
    [9] X. Xiang, J. Zhou, C. Li, et al. Fault diagnosis based on walsh transform and rough sets.Mechanical Systems and Signal Processing,2009,23(4):1313–1326P
    [10] J. Stepaniuk, K. Kierzkowska. Hybrid classifier based on rough sets and neural networks.Electronic Notes in Theoretical Computer Science,2003,82(4):228–238P
    [11] R. Jensen, Q. Shen. Fuzzy–rough attribute reduction with application to web categoriza-tion. Fuzzy Sets and Systems,2004,141:469–485P
    [12] W. Wu. Attribute reduction based on evidence theory in incomplete decision systems.Information Sciences,2008,178(5):1355–1371P
    [13] Z. Xu, L. Huang, B. Yang. Efficient attribute reduction algorithm based on skowrondiscernibility matrix. International Workshop on Intelligent Systems and Applications.2009:1–4P
    [14] F. Xu, D. Miao, L. Wei. Fuzzy-rough attribute reduction via mutual information withan application to cancer classification. Computers and Mathematics with Applications,2009,57:1010–1017P
    [15] Q. Hu, Z. Xie, D. Yu. Hybrid attribute reduction based on a novel fuzzy-rough modeland information granulation. Pattern Recognition,2007,40:1825–1844P
    [16] S. Ghosh, S. Alam. Generalized rough approach to reduction of a decision table. Inter-national Journal of Intelligent Systems,2003,18:499–508P
    [17]赛煜,王海洋.一种基于粗糙集理论的最简规则挖掘方法.计算机工程,2003,29(20):77–79页
    [18]黄治国,王加阳.一种基于分布约简的规则获取方法.计算机应用研究,2007,24(6):42–44页
    [19] E. Amaldi, V. Kann. On the approximation of minimizing nonzero variables or unsat-isfied relations in linear systems. Theoretical Computer Science,1998,209(1–2):237–260P
    [20] S. Wong, W. Ziarko. On optimal decision rules in decision tables. Bulletin of PolishAcademy of Sciences,1985,33:693–696P
    [21] R. Biswas. On rough fuzzy sets. Bulletin of the Polish Academy of Sciences: Mathe-matics,1994,42(4):351–355P
    [22] R. Biswas. On rough sets and fuzzy rough sets. Bulletin of the Polish Academy ofSciences: Mathematics,1994,42(4):345–349P
    [23] D. Dubois, H. Prade. Rough fuzzy sets and fuzzy rough sets. International Journal ofGeneral Systems,1990,17:191–209P
    [24] T. Deng, Y. Chen, W. Xu, et al. A novel approach to fuzzy rough sets based on a fuzzycovering. Information Sciences,2007,177(11):2308–2326P
    [25] J. Mi, W. Zhang. An axiomatic characterization of a fuzzy generalization of rough sets.Information Sciences,2004,160:235–249P
    [26] T. Longshaw, S. Haines. Dynamic rough sets. Proceedings of the3rd International Sym-posium on Uncertainty modeling and Analysis.1730Massachusetts Ave., NW Washing-ton, DC USA: IEEE Computer Society,1995.
    [27] G. Cattaneo. Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) lattices. Stu-dia Logica,1997,58(1):47–77P
    [28] A. Gomolinska. A comparative study of some generalized rough approximations. Fun-damenta Informaticae,2002,51(1-2):103–119P
    [29] D. Chen, W. Zhang, D. Yeung, et al. Rough approximations on a complete completelydistributive lattice with applications to generalized rough sets. Information Sciences,2006,176(13):1829–1848P
    [30]张东星,苗夺谦,李道国等.基于数据库系统的可变精度粗糙集模型.计算机科学,2005,32(12):172–174页
    [31]陈万里,程家兴,张持健.基于相容关系的粗糙集理论的推广.计算机工程与应用,2004,4:2–28页
    [32]李凡,刘启,杨国玮.变精度模糊粗糙集的一种定义.控制与决策,2008,11(23):1206–1210页
    [33]米据生,吴伟志,张文修.粗糙集的构造与公理化方法.模式识别与人工智能,2002,15(3):280–286页
    [34]李钢,张雪婷.基于相似关系粗糙集的分解.计算机工程与应用,2004,2:85–87页
    [35]曾剑锋,吴根秀.基于相异关系的粗糙集理论.江西师范大学学报(自然科学版),2004,28(5):426–430页
    [36] J. Mi, W. Wu, W. Zhang. Approaches to knowledge reduction based on variable precisionrough set model. Information Sciences,2004,159:255–272P
    [37]冯源,张滨.粗糙集与模糊集的比较研究.太原师范学院学报(自然科学版),2004,3(1):1–5页
    [38] J. Wang, J. Wang. Reduction algorithms based on discernibility matrix: the orderedattributes method. Journal of Computer Science and Technology,2001,16:489–504P
    [39] Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts.Information Sciences,2009,179:867–882P
    [40] Y. Zhao, Y. Yao, F. Luo. Data analysis based on discernibility and indiscernibility. Infor-mation Sciences,2007,177(22):4959–4976P
    [41] J. Qian, D. Miao, Z. Zhang, et al. Hybrid approaches to attribute reduction based on indis-cernibility and discernibility relation. International Journal of Approximate Reasoning,2011,52(2):212–230P
    [42] J. Huang, Y. Cai, X. Xu. A hybrid genetic algorithm for feature selection wrapper basedon mutual information. Pattern Recognition Letters,2007,28(13):1825–1844P
    [43] H. K. Zare, M. Fakhrzad. Solving flexible flow-shop problem with a hybrid geneticalgorithm and data mining: A fuzzy approach. Expert Systems with Applications,2011,38(6):7609–7615P
    [44] L. Ke, Z. Feng, Z. Ren. An efficient ant colony optimization approach to attribute reduc-tion in rough set theory. Pattern Recognition Letters,2008,29(9):1351–1357P
    [45] M. Zhao, C. Fu, L. Ji, et al. Feature selection and parameter optimization for supportvector machines: A new approach based on genetic algorithm with feature chromosomes.Expert Systems with Applications,2011,38(5):5197–5204P
    [46] K. Tan, E. Teoh, Q. Yu, et al. A hybrid evolutionary algorithm for attribute selection indata mining. Expert Systems with Applications,2009,36(4):8616–8630P
    [47] X. Hu, N. Cercone. Learning in relational databases: A rough set approach. Computa-tional Intelligence,1995,12(2):323–338P
    [48]顾军华,周艳聪,宋洁等.一种新的求解属性值约简算法.南开大学学报(自然科学版),2003,36(4):38–42页
    [49]刘亚波,胡陈勇,刘大有.基于粗糙集的识别矩阵值简式求取算法DMBVR.吉林大学学报(理学版),2004,42(2):221–225页
    [50]常犁云,王国胤,吴渝.一种基于Rough Set理论的属性约简及规则提取方法.软件学报,1999,10(11):1206–1211页
    [51]朱红.基于Rough Set的属性及属性值约简的一种算法.湘潭大学自然科学学报,2002,24(3):36–39页
    [52] J. Zhang, J. Wang, D. L. et al. A new heuristic reduct algorithms based on rough setstheory. Lecture Notes in Computer Sciences,2003,27(2):247–253P
    [53] A. An, N. Cercone. Rule quality measures for rule induction system:Description andevaluation. Computational Intelligence,2001,17(3):409–424P
    [54] Z. Pawlak, C. Rauszer. Dependency of attributes in information systems. Bull. PolishAcad. Sci. Math,1985,33:551–559P
    [55] A. Skowron, C. Rauszer. The discernibility matrices and functions in information system-s. R. Slowinski. Intelligent Decision Support, Handbook of Applications and Advancesof the Rough Sets Theory, Kluwer, Dordrecht. Kluwer, Dordrecht,1992:331–362P
    [56] W. Ziarko. Variable precision rough set model. Journal of Computer and System Sci-ences,1993,46:39–59P
    [57] M. Banerjee, S. Pal. Roughness of a fuzzy set. Information Sciences,1996,93(3-4):235–246P
    [58] S. Nanda, S. Majumdar. Fuzzy rough sets. Fuzzy Sets and Systems,1992,45(2):157–160P
    [59] W. Zakowski. Approximations in the space (U, Π). Demonstratio Mathematica,1983,16:761–769P
    [60] P. Fortemps, S. Greco, R. Slowinski. Multicriteria decision support using rules that repre-sent rough-graded preference relations. Fuzzy Sets and Systems,2008,188(1):206–223P
    [61] T. Deng, H. Heijmans. Grey-scale morphology based on fuzzy logic. Journal of Mathe-matical Imaging and Vision,2002,16(2):155–171P
    [62] M. Lee. Using support vector machine with a hybrid feature selection method to thestock trend prediction. Expert Systems with Applications,2009,36(8):10896–10904P
    [63] D. Zhang, Y. Wang, H. Huang. Rough neural network modeling based on fuzzy roughmodel and its application to texture classification. Neurocomputing,2008,72(10–12):2433–2443P
    [64] Z. Pawlak. Some remarks on conflict analysis. European Journal of Operational Re-search,2005,166(3):649–954P
    [65] X. Hao, H. Fu, K. Shi. S-rough sets and the discovery of f-hiding knowledge. Journal ofSystems Engineering and Electronics,2008,19(6):1171–1177P
    [66] Y. Tsai, C. Chenga, J. Chang. Entropy-based fuzzy rough classification approach forextracting classification rules. Expert Systems with Applications,2005,31(2):436–443P
    [67] C. Wang, C. Wu, D. Chen, et al. Communicating between information. InformationSciences,2008,178:3228–3239P
    [68] Q. Hu, D. Yu, Z. Xie. Neighborhood classifiers. Expert Systems with Applications,2008,34(2):866–876P
    [69] L. Nanni, A. Lumini. Ensemble generation and feature selection for the identification ofstudents with learning disabilities. Expert Systems with Applications,2009,36(2):3896–3900P
    [70] R. Swiniarski, A. Skowron. Rough set methods in feature selection and recognition.Pattern Recognition Letters,2003,24(6):833–849P
    [71] T. Li, D. Ruan, W. Geert, et al. A rough sets based characteristic relation approachfor dynamic attribute generalization in data mining. Knowledge-Based Systems,2007,20(5):485–494P
    [72] L. Yu, H. Liu. Efficient feature selection via analysis of relevance and redundancy. Jour-nal of Machine Learning Research,2004,5:1205–1224P
    [73] R. Bhatt, M. Gopal. On fuzzy-rough sets approach to feature selection. Pattern Recog-nition Letters,2004,26(7):965–975P
    [74] Q. Shen, R. Jensen. Selecting informative features with fuzzy-rough sets and its applica-tion for complex systems monitoring. Pattern Recognition,2004,39(7):1351–1363P
    [75] R. Jensen, Q. Shen. New approaches to fuzzy-rough feature selection. IEEE Transactionson Fuzzy Systems,2009,17(4):824–838P
    [76] Q. Hu, D. Yu, J. Liu, et al. Neighborhood rough set based heterogeneous feature subsetselection. Information Sciences,2007,178:3577–3594P
    [77] N. Parthalain, Q. Shen. Exploring the boundary region of tolerance rough sets for featureselection. Pattern Recognition,2009,42(5):655–667P
    [78] L. Sanchez, M. Suarez, J. Villar, et al. Mutual information-based feature selection andpartition design in fuzzy rule-based classifiers from vague data. International Journal ofApproximate Reasoning,2008,49(3):607–622P
    [79] S. Foitong, P. Rojanavasu, B. Attachoo, et al. Estimating optimal feature subsets usingmutual information feature selector and rough sets. Advances in Knowledge Discoveryand Data Mining of Lecture Notes in Computer Science. Heidelberg: Springer Berlin,2009,5476:973–980P
    [80] Q. Hu, M. Guo, D. Yu, et al. Information entropy for ordinal classification. Science inChina Series F: Information Sciences, In press.
    [81] D. Sle′zak. Degrees of conditional (in)dependence: A framework for approximatebayesian networks and examples related to the rough set-based feature selection. In-formation Sciences,2009,179(3):197–209P
    [82] H. Liu, J. Sun, L. Liu, et al. Feature selection with dynamic mutual information. PatternRecognition,2009,42(7):1330–1339P
    [83] P. Estevez, M. Tesmer, C. Perez, et al. Normalized mutual information feature selection.IEEE Transactions on Neural Networks,2009,20(2):189–201P
    [84] L. A. Zadeh. Towards a theory of fuzzy information granulation and its centrality inhuman reasoning and fuzzy logic. Fuzzy Sets and Systems,1997,19(1):111–127P
    [85] J. Liang, Z. Shi. The information entropy, rough entropy and knowledge granulation inrough set theory. International Journal of Uncertainty, Fuzziness and Knowledge-BasedSystems,2004,12(1):37–46P
    [86] J. Liang, J. Wang, Y. Qian. A new measure of uncertainty based on knowledge granula-tion for rough sets. Information Sciences,2009,179(4):458–470P
    [87] Y. Qian, J. Liang, D. Li, et al. Measures for evaluating the decision performance of adecision table in rough set theory. Information Sciences,2008,178(1):181–202P
    [88] Y. Qian, C. Dang, J. Liang, et al. On the evaluation of the decision performance of anincomplete decision table. Data and Knowledge Engineering,2008,65:373–400P
    [89] D. Newman, S. Hettich, C. Blake, et al. Uci Repository of Machine Learning Databases,University of California, Department of Information and Computer Science, Irvine, Ca.http://www.ics.uci.edu/~mlearn/MLRepository.html,1998.
    [90]何芳芳,孙继银,孙向东,等.基于模糊集的神经网络景象匹配算法.系统仿真学报,2006,(S2):929–930页
    [91]吴国雄,陈武凡.图像的模糊增强与聚类分割.小型微型计算机系统,1994,(11):21–26页
    [92]白利波,郝晓莉,李杰.基于模糊集的车牌提取方法.北京交通大学学报,2006,(02):48–52页
    [93]汤恒琦,邓培民,易忠.模糊识别器与有穷自动机的等价性.计算机工程与应用,2008,(09):33–36页
    [94]冯宏娟,王守觉.自寻优模糊集的模糊控制器算法.电子学报,1993,(02):34–39页
    [95]史志富,张安,刘海燕,等.基于突变理论与模糊集的复杂系统多准则决策.系统工程与电子技术,2006,(07):1010–1013页
    [96]徐小毛,平殿发.基于模糊集的战场电磁频谱管理效果综合测评.舰船电子工程,2009,(03):154–156页
    [97]郑小霞,钱锋.基于变精度粗糙-模糊集模型的诊断知识获取.华东理工大学学报(自然科学版),2006,(12):1458–1462页
    [98]王世同.模糊诊断专家系统的体系结构.计算机工程与应用,1988,(07):21–25页
    [99] K. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems,1986,20(1):87–96P
    [100] E. Szmidt, J. Kacprzyk. Distances between intuitionistic fuzzy rough sets. Fuzzy Setsand Systems,2000,114:505–518P
    [101] K. Atanassov, G. Gargov. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Sys-tems,1989,31(3):343–349P
    [102] K. Atanassov. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems,1989,33(1):37–45P
    [103] K. Atanassov. New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets andSystems,1994,61(2):137–142P
    [104] Z. Xu, R. Yager. Some geometric aggregation operators based on intuitionistic fuzzysets. International Journal of General Systems,2006,35(4):417–433P
    [105] S. K. De, R. Biswas, A.Roy. Some operations on intuitionistic fuzzy sets. Fuzzy Setsand Systems,2000,114(3):477–484P
    [106] V. Khatibi, G. Montazer. Intuitionistic fuzzy set vs. fuzzy set application in medicalpattern recognition. Artificial Intelligence in Medicine,2009,47(1):43–52P
    [107] W. Hung, M. Yang. On the J-divergence of intuitionistic fuzzy sets with its applicationto pattern recognition. Information Sciences,2008,178(6):1641–1650P
    [108] T. Vlachos, G. Sergiadis. Intuitionistic fuzzy information-applications to pattern recog-nition. Pattern Recognition Letters,2007,28(2):197–206P
    [109] Z. Yue. Deriving decision maker’s weights based on distance measure for interval-valuedintuitionistic fuzzy group decision making. Expert Systems with Applications,2011,38(9):11665–11670P
    [110] L. Dymova, P. Sevastjanov. An interpretation of intuitionistic fuzzy sets in terms ofevidence theory: Decision making aspect. Knowledge-Based Systems,2010,23(8):772–782P
    [111] Z. Xu. A method based on distance measure for interval-valued intuitionistic fuzzy groupdecision making. Information Sciences,2010,180(1):181–190P
    [112] D. Li. The gowa operator based approach to multiattribute decision making using in-tuitionistic fuzzy sets. Mathematical and Computer Modelling,2011,53(5-6):1182–1196P
    [113] D. Li. Multiattribute decision making method based on generalized owa operators withintuitionistic fuzzy sets. Expert Systems with Applications,2010,37(12):8673–8678P
    [114] H. Liu, G. Wang. Multi-criteria decision-making methods based on intuitionistic fuzzysets. European Journal of Operational Research,2007,179(1):220–233P
    [115] S. De, R. Biswas, A. Roy. An application of intuitionistic fuzzy sets in medical diagnosis.Fuzzy Sets and Systems,2001,117(2):209–213P
    [116] Z. Xu, J. Chen, J. Wu. Clustering algorithm for intuitionistic fuzzy sets. InformationSciences,2008,178(19):3775–3790P
    [117] P. Wang. Qos-aware web services selection with intuitionistic fuzzy set under consumer’svague perception. Expert Systems with Applications,2009,36(3):4460–4466P
    [118] Z. Liang, P. Shi. Similarity measures on intuitionistic fuzzy sets. Pattern RecognitionLetters,2003,24(15):2687–2693P
    [119] D. Li, C. Cheng. New similarity measures of intuitionistic fuzzy sets and application topattern recognitions. Pattern Recognition Letters,2002,23(1-3):221–225P
    [120] H. Liu. New similarity measures between intuitionistic fuzzy sets and between elements.Mathematical and Computer Modelling,2005,42(1-2):61–70P
    [121] J. Ye. Cosine similarity measures for intuitionistic fuzzy sets and their applications.Mathematical and Computer Modelling,2011,53(1-2):91–97P
    [122] W. Hung, M. Yang. Similarity measures of intuitionistic fuzzy sets based on lp metric.International Journal of Approximate Reasoning,2007,46(1):120–136P
    [123] W. Hung, M. Yang. Similarity measures of intuitionistic fuzzy sets based on hausdorffdistance. Pattern Recognition Letters,2004,25(14):1603–1611P
    [124] Y. Li, D. Olson, Z. Qin. Similarity measures between intuitionistic fuzzy (vague) sets: acomparative analysis. Pattern Recognition Letters,2007,28(2):278–285P
    [125] W. Wang, X. Xin. Distance measure between intuitionistic fuzzy sets. Pattern Recogni-tion Letters,2005,26(13):2063–2069P
    [126] Q. Zhang, S. Jiang, B. Jia, et al. Some information measures for interval-valued intu-itionistic fuzzy sets. Information Sciences,2010,180(24):5130–5145P
    [127] T. Chaira, A. Ray. A new measure using intuitionistic fuzzy set theory and its applicationto edge detection. Applied Soft Computing,2008,8(2):919–927P
    [128] E. Szmidt, J. Kacprzyk. Distances between intuitionistic fuzzy sets. Fuzzy Sets andSystems,2000,114(3):505–518P
    [129] M. Modrzejewski. Feature selection using rough sets theory. Proceedings of the Euro-pean Conference on Machine Learning. Vienna, Austria,1993:213–226P
    [130] H. Peng, F. Long, C. Ding. Feature selection based on mutual information criteria ofmax-dependency, max-relevance, and min-redundancy. IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(8):1226–1238P
    [131] D. Sle′zak. Approximate entropy reducts. Fundamental Informatica,2002,53:365–390P
    [132] M. Hall. Correlation-based feature selection for discrete and numeric class machinelearning. Proceedings of17th International Conference Machine Learning. Stanford,CA, Morgan Kaufmann, San Francisco, CA,2000:359–366P
    [133] M. Sikonja, I. Kononenko. Theoretical and empirical analysis of relieff and rrelieff.Machine Learning,2003,53:23–69P
    [134] I. Guyon, J. Weston, S. Barnhill, et al. Gene selection for cancer classification usingsupport vector machines. Machine Learning,2002,46:389–422P
    [135] M. Dash, H. Liu. Consistency-based search in feature selection. Artificial Intelligence,2003,151(1–2):155–176P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700