激光内通道传输的气体热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光在内通道中传输时,通道内的气体会吸收激光能量,引起气体温度的起伏进而导致气体折射率的变化,形成气体热效应。激光在远距离传输过程中,气体热效应会降低激光到达远场时的能量集中度。因此,国内外对激光系统内通道中气体热效应的研究都非常重视。
     本文在已有关于气体热效应的研究基础上,采用简化的理论分析模型,对内外通道中的气体热效应进行了研究。对于外传输通道,研究了信标自适应校正所引入的聚焦非等晕误差和角度非等晕误差对激光远距离传输的影响。对于内传输通道,在有管道轴向存在的情况下,理论上建立了内通道气体热效应的缩比定标规律,确定了描述内通道气体热效应的能量定标参数N_E = n_TαPLR~2/ρC_pεπR_0~2和几何定标参数N_G= vR~2/εL。同时,分析了管道半径与中空光束外半径之比对气体热效应的影响。
     运用现有体力学计算软件FLUENT提供的用户自定义子程序功能,本文建立起一套较为完整的光场与场耦合相互作用数值仿真平台。仿真模型中,利用自编程序对通道内的光传输方程进行求解;对离散场控制方程,则采用现有的计算体力学软件FLUENT进行求解,通过用户自定义子程序功能完成光场与场之间的耦合。
     考虑到试验中气体吸收系数难以准确测量,本文通过比较理论解析计算结果和数值仿真计算结果的方法,验证了该仿真平台的可靠性。依托该数值仿真平台,对理论分析得到的内通道气体热效应缩比定标规律进行了验证。结果表明,已建立的内通道气体热效应缩比定标规律,不仅适用于直圆型管道结构,对于较为复杂的“L”型管道结构,内通道气体热效应缩比定标规律仍然成立。
     对复杂光传输通道内的气体热效应研究表明,气体速度在管道横截面内的分布是非常不均匀的,在有光场存在的情况下,非均匀的速度分布改变了通道内的气体温度分布,最终导致了管道出口处光场相位的非均匀分布。为了削弱光强非均匀分布对内通道出口光束质量的影响,研究了光束强度旋转情况下的内通道气体热效应问题。仿真结果表明,光束强度旋转不改变气体热效应到达稳态的时间,光程差中沿光轴方向对称的离焦项和球差项也保持不变,但光束强度旋转使光强不均匀分布带来的二阶像散项基本消失。因此,采取光束强度旋转的方式,在一定程度上可以削弱非均匀光强气体热效应引起的光程差的非对称分布。
     通过在已建立的气体热效应仿真平台中引入自适应共轭校正模型,研究了共轭相位自适应校正对激光远场峰值斯特列尔比的影响。得到了内通道气体热效应自适应共轭校正的阈值特性。在不考虑镜面热变形对光传输影响的情况下,本文还仿真分析了单独加热镜面、单独加热气体以及镜面和气体同时加热时通道内气体的温度分布。仿真结果表明,激光加热气体引起的光程差以活塞项和离焦项为主,激光加热镜面导致气体温升引起的光程差以高频成份为主。在同时考虑镜面和气体加热效应时,激光加热镜面导致气体温升引起的光程差与激光加热气体引起的光程差,二者基本是叠加的。
     针对在内通道中注入低吸收系数气体的热效应处理方式,开展了内通道气帘以及在通道内注入不同气体成分的数值分析和试验研究。从气帘的数值仿真和试验结果看,用气帘作为通道的密封设备,对激光内传输通道进行抽真空充氮气处理,能够削弱通道内气不均匀而引起的附加光程差,而气帘本身的气不均匀引起的光程差也较小。在有轴向气存在的情况下,分别以室内空气、氮气以及氮氧混合气作为注入气体,进行了相应的内通道气体热效应试验。通过对比分析可以看出,激光在室内空气中的气体热效应非常严重,而在氮气或者氮气与氧气混合气体中传输时,由于气体吸收激光的能量减小,使得内通道中的气体热效应变得很弱,气体热效应引起的光程差远小于分光镜的透射热变形引起的光程差。因此,在激光内传输通道中注入低吸收系数的氮气或者氮气与氧气混合气体的气,是一种比较有效的内通道气体热效应处理方式。
As a laser beam propagates through a pipe in which the air would absorbe some energy of the laser beam, the absorbed laser energy heats the air and form a distributed thermal blooming effects along the heated air path. As it can limit the maximum power that can be efficiently transmitted through the air, thermal blooming is one of the most serious problems encountered in the propagation of laser. Many theoretical and experimental works have been concerned with it.
     In this paper, based on the available research of the blooming thermal effect, thermal effects of the inside and outside channel are analyzed by the simplified model. For the outside laser path, the expressions of the angular anisoplanatic error and the focus anisoplanatic error are derived for the beacon adaptive correction system. For the laser beam path indoor, using the simplified straight round pipe model with the axial pipe flow, scaling laws for the thermal effects of the beam path indoor is derived theoretically, the description of the energy scaling parameters N_E = n_TαPLR~2/ρC_pεπR_0~2and geometric scaling parameters N_G= vR~2/εL are expressed. The effects of the ratio of the pipe radius to the beam radius on the thermal blooming are also analyzed based on the flattened hollow gaussian beam.
     Using the user-defined function provided by the fluid dynamics software FLUENT, a more completed simulation platform for the laser interacting with the fluid is established. In the simulation platform, the laser propagation equation is solved by the self-compiled program. For the discrete equations of the flow field, the fluid dynamics software FLUENT is used. The coupling effects between the flow field and the laser are solved by the user-defined function.
     In view of the uncertainty of the gas absorption coefficient in the experiment, the theoretical analysis is compared with the numerical simulation results for the simple mode of the straight pipe, and it is verified that the results derived from the simulation platform are reliable. Based on the numerical simulation platform, scaling law of gas thermal effect of the inside channels is verified by simplified theoretical analysis.The result shows that the established scaling law not only can be applied for straight circular pipe structure, but also for the more complex“L”shaped pipe structure.
     By studying gas thermal effect in the complex channels for laser propagation, it is shown that the gas velocity distribution in the pipe cross-section is very nonuniform, and furthermore the nonuniform velocity distribution changes the gas concentration distribution in channels and finally brings about optical phase distribution into the“double fishes eyes type”. In order to weak the affect of the beam distribution to the beam quality, the problem on the gas thermal effect of the rotation beam in the inside channels is simulated and calculated based on the rotation beam model mentioned in the previous literatures,. Simulation results show that the beam rotation does not change the time duration which the gas thermal effect reaches steady state, and symmetrical defocus and spherical aberration along the optical axis remains constant. But the second-order astigmatism caused by the uneven beam intensity distribution is disappeared. Therefore, the way of the beam rotation can weaken the asymmetrical distribution of optical path difference caused by the thermal blooming of asymmetrical beam intensity distribution.
     By introduction of adaptive conjugate correction model to the established simulation platform of thermal effects, the change of the peak far-field Strehl-ratio with output is studied. The threshold property of conjugate adaptive phase correction for the thermal effects is obtained. Without considering the thermal deformation of the mirror, alone heating effect of the mirror, alone heating effect of the gas and heating effect of simultaneously considering mirror and gas are separately simulated. Simulation results show that the optical path difference caused by the heating of gas is meanly composed by the piston items and focus items, the optical path difference caused by the heating of mirror is meanly composed by the high frequency component. Taking into account of the gas heating effect and the mirror heating effect synchronously, the optical path difference caused by the heating effect of gas and mirror can be linearly superposed.
     Acording to the thermal effect treatment manner of pipe filled with low absorption coefficient gas, the numerical and experimental studies on air curtain and thermal effects of different gas are carried out. The results indicate that the method of vacuum pipe filled with low absorption coefficient gas with the air curtain as the seals can reduce the optics phase difference caused by the heterogeneous beam intensity distribution. However the optics phase difference induced by the air curtain is small. With the axial flow exists, with the air, nitrogen and nitrogen-oxygen mixture as the injected gas respectively, the corresponding thermal effects experiments in the pipe are carried out. The results indicate that the heating effect of air is serious as the laser transmitts through the pipe, while the thermal effects are very weak as the laser transmitts though the pipe filled with nitrogen or nitrogen and oxygen mixed gas. The optical path difference caused by thermal effect of the gas is much smaller than that caused by the permeating thermal deformation of the splitter. Therefore, the transmission path of the laser system filled with the low absorption coefficient of nitrogen or nitrogen and oxygen mixed gas flow will be a more effective thermal treatment manner.
引文
[1] Rieckoff K E. Self Induced Divergence of CW Laser Beam in Liquids a New Nonlinear Effect in the Propagation of Light [J]. Appl. Phys. Lett., 1966, 9:50~52.
    [2] Primmerman C A, Fouche D G. Thermal Blooming Compensation Experimental Observations Using a Deformable Mirror System [J]. Applied Optics, 1976, 15(4): 990~995.
    [3] Bradley L C, Herrmann J. Numerical Calculation of Light Propagation in a Nonlinear Medium [J]. J. Opt. Soc. Am. 1971, 61:668.
    [4] Walsh J L, Ulrich P B. Laser Beam Propagation in the Atmosphere [M]. New York, 1978: 223~318.
    [5] McClellan C, Munn M. W, Norris H, Nourie D. Optical Effects of Gas Flow Through an Optical Train: an Experimental Determination [J]. Applied Optics, 1979, 18(23): 3984~3989.
    [6] Mohammad H M, Babak L. Two-Dimensional-Simulation of Thermal Blooming Effects in Ring Pattern Laser Beams [J]. Optical Engineering, 2005, 44(9):096001.
    [7] David C. S, Sallie S. T. Thermal Blooming Critical Power and Adaptive Optics Correction for the Ground Based Laser[C]//Proc of SPIE, 1991, 1408:112~118.
    [8] Carhart G W, Simer G J, Vorontsov M A. Adaptive Compensation of the Effects of Non-stationary Thermal Blooming Based on the Stochastic Parallel Gradient Descent Optimization Method[C]//Proc of SPIE, 2003, 5162:28~36.
    [9] Steven M. E, Carolyn Duzy. Experimental and Theoretical Investgation of Small-Scale Blooming[C]//Proc of SPIE, 1990, 1221:341~350.
    [10] Ryan C L, Arthur Nitkowskia, Donald J L. Thermal-Blooming Compensation Using Target-in-the-Loop Techniques[C]//Proc of SPIE, 2005, 58950N-1~58950N-14.
    [11] Johnson B. Thermal-Blooming Laboratory Experiments [J]. The Lincoln Laboratory Journal, 1992, 5 (1): 151~169.
    [12] Yee C L. Two Dimensional Turbulent Diffusion Calculations for Application to Atmospheric Laser Propagation[C], SPIE, 1990, 1221:241~251.
    [13] Gebhardt F G. Twenty-Five Years of Thermal Blooming-an Overview[C], SPIE, 1992, 1221: 2~25.
    [14] Shen P I, Andrepont M. Thermal Blooming of HEL in the Non-Flowing Beam Tube with Various Wall Temperatures[C]//Proc of SPIE 2000, 4034: 100~107.
    [15] Sprangle P, Penano J R, Ting A, et.al. Propagation of Short, High-Intensity Laser Pulses in Air [J]. Journal of Directed Energy, 2003, 1: 73~92.
    [16] Gebhardt F G. Atmospheric Effects Modeling for High-energy Laser Systems[C]//Proc of SPIE, 1995, 2502: 101~110.
    [17] Johnson B, Primmerman C A. Experimental Observation of Thermal Blooming Phase Compensation Instability [J]. Opt. Lett., 1989, 14(12):639~941.
    [18] Breaux H, Evers W, Sepucha R, et.al. Algebraic Model for cw Thermal-blooming Effects [J]. Applied optics, 1979, 18(15): 2638~2644.
    [19] Weiss J D, Maclnnis W H. Thermal Blooming: Round Beam Vs Square Beam[J]. Applied Optics, 1980, 19(1):31~33.
    [20] Albertine J R, Sadegn Siahatgar, Bennett H E. High-power Beam Control: Results to Date and Relevance to Power Beaming[C]//Proc of SPIE, 1997, 2988:257~263.
    [21] Robert E K. Thermal Blooming in Axial Pipe Flow: the Effects of Beam Shape and Thermal Conditions at the Pipe Wall [J]. Applied Optics, 1980, 19(18): 3037~3039.
    [22] Gavrielides A, Peterson P. Time-dependent Thermal Blooming in Axial Pipe Flow [J].Applied Optics, 1983, 22(21): 3359~3365.
    [23] Laderman A J. Thermal Blooming in Axial Pipe Flow: Comment [J]. Applied Optics, 1980, 19:2269~2270.
    [24] Schonfeld J F. The Theory of Compensated Laser Propagation through Strong Thermal Blooming [J]. The Lincoln Laboratory Journal, 1992, 5(1): 131~149.
    [25] Penano J R, Phillip Sprangle. Propagation of High Energy Laser Beams through Atmospheric Stagnation Zones[R]. Native Reporting, 2006, NRL/MR/6790-06-8925.
    [26] Paul J B, Peter B U, Jeanne T U, et al. Transient Thermal Blooming of a Slewed Laser Beam Containing a Region of Stagnant Absorber[J]. Applied Optics, 1977, 16(2):345~354.
    [27] Sprangle P, Penano J.R. Ting A, et al. Propagation of Short High-Intensity Laser Pulses in Air[J]. Journal of Directed Energy, 2003, 1:73~92.
    [28]冯绚,黄印博,范承玉,王英俭.激光室内传输热晕效应的数值分析[J].强激光与粒子束, 2004, 16(9):1123~1126.
    [29]黄印博,王英俭等.热晕效应相位补偿定标参量的数值分析[J].光学学报, 2002, 22(12):1461~1464.
    [30]冯绚,黄印博,王英俭.不同参数对室内传输通道热晕效应影响的数值分析[J].强激光与粒子束, 2005, 17(2):169~172.
    [31]黄印博,王英俭.热晕效应数值模拟中对计算参数的选取[J].强激光与粒子束, 2005, 17(1):1~4.
    [32]吴毅,王英俭,汪超等.聚焦光束稳态热晕补偿实验[J].量子电子学报, 1998, 15(2):170~174.
    [33]吴毅,王英俭,汪超等.单脉冲高功率激光热晕效应的实验研究[J].强激光与粒子束, 1992, 4(1): 86~92.
    [34]安建祝,李有宽,杜祥琬.激光窗口热透镜效应对光束质量的影响[J].强激光与粒子束, 2004, 16(4): 429~433.
    [35]张恩涛,季小玲,吕百达.内光路中大气吸收对远场光束质量的影响[J].激光技术, 2006, 30(1): 96~98.
    [36]陶向阳,季小玲,吕百达.光束控制系统中热效应的数值模拟[J].激光技术, 2003, 27(6): 514~516.
    [37]陶向阳,季小玲,吕百达.风对光束控制系统内热效应的抑制作用[J].强激光与粒子束, 2004, 16(11): 1370~1374.
    [38]季小玲.高功率畸变激光的传输特性和光束控制研究[D].四川大学博士学位论文, 2004.
    [39]刘顺发,陈洪斌.激光加热物体的三维模型计算[J].光子学报, 2000, 29(3): 267~270.
    [40]刘顺发,金钢,柳建,陈洪斌.激光通道传输热特性对远场光束质量的影响[J].强激光与粒子束, 2004, 16(6): 703~706.
    [41]刘顺发,金钢,陈洪斌.激光通道传输热效应仿真[J].光电工程, 2001, 28(6):14~17.
    [42]柳建,金钢,王世庆.连续激光内通道传输的弱可压缩模型[J].强激光与粒子束, 2006, 18(12): 1983~1986.
    [43]柳建,李树民,金钢.沿Z型光传输管道轴向吹气对激光传输的影响[J],强激光与粒子束, 2005, 17(2): 164~168.
    [44]柳建,王世庆,金钢.吹气抑制气体热效应时管道结构对光传输的影响[J],强激光与粒子束, 2007, 19(3): 391~393.
    [45]禹烨,牛燕雄,王秀生等.强激光稳态热晕效应的数值模拟研究[J].激光技术, 2007, 31(2): 182~184.
    [46]吴子牛.计算体力学基本原理[M].北京:科学出版社, 2001.
    [47] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics [M]. Berlin- Springer, 1996.
    [48]章梓雄,董曾南.粘性体力学[M].北京:清华大学出版社, 1999.
    [49]陶文铨.数值传热学[M].西安:西安交通大学出版社, 1988.
    [50]朱自强等.应用计算体力学[M].北京:北京航空航天大学出版社,1998.
    [51]程心一.计算体力学[M].北京:科学出版社, 1984.
    [52]汪志诚.热力学·统计物理[M].北京:人民教育出版社, 1980.
    [53]罗奇P J,刘学宗译.计算体力学[M].北京:科学出版社, 1983.
    [54]陶文铨.数值传热学[M],西安:西安交通大学出版社, 2001.
    [55]王承尧,王正华,杨晓辉.计算体力学及其并行算法[J].湖南:国防科技大学出版社, 2000.
    [56] Guillard H, Viozat C. On the Behavior of Upeind Schemes in the Low Mach Number Limit [J]. Computers and Fluids, 1999, 28:63~86.
    [57]李树民.低速粘计算方法和应用研究[D].中国空气动力研究与发展中心博士学位论文, 2004.
    [58]李俊昌,熊秉衡等.信息光学理论与计算[M],北京:科学出版社, 2009.
    [59] Smith D C. High-power Laser Propagation: Thermal Blooming [J]. Proc.IEEE, 1977, 65:1679~1714.
    [60] John W H. Adaptive Optics for Astronomical Telescopes [M]. New York, Oxford University Prees, 1988
    [61] Daniel E N. Zernike-ordered Adaptive-optics Correction of Thermal Blooming [J], J. Opt. Soc. Am. A, 1988, 5(11): 1937~1942.
    [62] Vladimir P L. Anisoplanatic Degradation of Correction with Real Beacon[C]//Proc of SPIE, 1999, 3866: 88~98.
    [63] Gebhardt F G. High Power Laser Propagation [J]. Applied Optics, 1976, 15(6):1479~1493.
    [64] Li H. Analytical Formula for a Circular Flattened Gaussian Beam Propagating Through a Misaligned Paraxial ABCD Optical System [J]. Physics Letters A, 2006, 360: 394~399.
    [65]饶瑞中.激光大气传输湍与热晕综合效应[J].红外与激光工程,2006, 35(2):130~134.
    [66]黄印博,王英俭.聚焦光束大气传输光束扩展定标规律的数值分析[J].物理学报, 2006, 55(12): 7615~7619.
    [67]乔春红,范承玉,王英俭.氟化氘激光大气传输的定标规律[J],强激光与粒子束, 2007, 19: 1965~1969.
    [68] Stock R D. High Energy Laser Scaling Laws[C]. Directed energy conference, 2003, 3: 25~27.
    [69]李俊昌,熊秉衡等.信息光学理论与计算[M],科学出版社, 2009.
    [70] Weiss J M, Smith W A. Preconditioning Applied to Variable and Constant Density Flows[C]. AIAA J, 1995, 33:2050~2057.
    [71] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics [M]. Berlin- Springer, 1996.
    [72] Charles L Y. Two Dimensional Turbulent Diffusion Calculations for Application to Atmospheric Laser Propagation[C]//Proc of SPIE, 1990, 1221:241~251.
    [73] Crawforg D M. Computer Techniques for Solution of the High Energy Laser Propagation Problem[C]//Proc of SPIE, 1979,195.
    [74] Bradley L C, Herrmann J. Numerical Calculation of Light Propagation in aNonlinear Medium [J]. J. Opt. Soc. Am. 1971, 61:668.
    [75] Rieger H, Jameson A. Solution of Steady Three-dimensional Compressible Euler and Navier-Stokes Equations by an Implicit LU Scheme[C]. AIAA-88-061[J] 9, 1981.
    [76]张涵信,沈孟育.计算体力学--差分方法的原理和应用[M].北京:国防工业出版社, 2003.
    [77] Turkel E. Review of preconditioning for the compressible fluid dynamic wquations [M]. CFD Review, 1998, 1:449~477.
    [78]陶向阳,季小玲,吕百达.光束控制系统中热效应的数值模拟[J].激光技术, 2003, 27(6), pp:514~517.
    [79]许晓军,气动光学的工程研究[D],国防科技大学博士论文, 1997.
    [80] Jin G, Li S, Liu S, Chen H, Ma J. Numerical Analysis of Thermal Effects on Laser Beam Propagation[C]//Proc of SPIE, 2001, 4489: 261~268.
    [81]王福军编著.计算体动力学分析-CFD软件原理与应用[M].清华大学出版社, 2004.
    [82]温正,石良辰,任毅如等. FLUENT体计算应用教程[M],清华大学出版社, 2009.
    [83]宋正方.应用大气光学基础.气象出版社, 1990.
    [84] Yang J C, Di G. Propagation of various dark hollow beams through an apertured paraxial ABCD optical system [J]. Physics Letters A, 2006, 357:72~399.
    [85]刘沛青.自由紊动射理论[M].北京:北京航空航天大学出版社, 2008.
    [86]柳建.近封闭环境下激光传输特性仿真分析平台研究[D].中国科学院光电技术研究所博士学位论文, 2005.
    [87]杜祥琬.强激光武器光束质量的概念研究[J].强激光与粒子束, 2000, 12: 1~6.
    [88]杜祥琬.实际强激光远场靶面上光束质量的评价因素[J].中国激光, 1997, 24(4)327~332.
    [89] Jin G, Li S, Chen H, Ma J. Numerical Analysis of Thermal Effects on Laser Beam Propagation[C]//Proc of SPIE, 2001, 4489: 261~268.
    [90] Hardy J W, Koliopoulos C L. Real Time Atmospheric Compensation [J]. J. Opt. Soc. Am. 1977, 67:20~25.
    [91] Brain E, Arthur N, et al. Comparison of Cooperative Adaptive Optics Reference Performance for Propagation with Thermal Blooming Effects [C]//Proc of SPIE, 2004, 5552: 85~92.
    [92]季小玲,陶向阳,吕百达.激光非均匀性和内光路热效应对远场特性的影响[J].中国激光, 2004, 31(10): 1193~1197.
    [93] Daniel M. Optical Shop Testing [M]. John Wiley & Sons, New York, 1992: 465.
    [94]刘顺发.激光束在光束控制系统内通道传输热效应研究[D].中国科学院光电技术研究所博士学位论文, 2005.
    [95] Johnson B, Primmerman C A. Experimental Observation of Thermal-Blooming Phase Compensation Instability [J]. Optics Letters, 1989, 14 (12): 639~941.
    [96] Vladimir P L, Bons V F. The Influence of Wave Front Dislocations on Phase Conjugation Instability with Thermal Blooming Compensation [J], SPIE, 2989: 258~269.
    [97] Morris J R. Scalar Green's-function derivation of the thermal blooming compensation instability equations [J]. J. Opt. Soc. Am. A, 1989, 6(12): 1859~1862.
    [98]张德良,姜文汉,吴旭斌,严海星,李树山.自适应光学对大气扰动波前的补偿效果研究I.理论推导[J].光学学报, 1998, 18(10):1366~1371.
    [99]张德良,姜文汉,吴旭斌,严海星,李树山.自适应光学对大气扰动波前的补偿效果研究II.水平大气传输时的结果分析[J],光学学报,1998,18(10):1375.
    [100]王英俭,吴毅,汪超.激光实际大气传输湍效应相位校正一些实验结果[J].量子电子学报, 1998, 15(2):164~169.
    [101] Wang S H, Xu X J. Jiang Z F. Studying of Thermal Blooming of HEL in the Non-flowing Tube[C]//Proc of SPIE, 2002, 4926:181~186.
    [102] Livinston P M. Thermally Induced Modifications of a High Power CW Laser Beam [J]. Applied Optics, 1971, 10(2):426~435.
    [103] Walker T W. Pulsed Laser-induced Damage to Thin-film Optical Coatings [J]. IEEE, J Quantum Electron, 1981:2041~2065.
    [104] Bennett H. Simple Expressions for Predicting the Effect of Volume and Interface Absorption and of Scattering in High Reflectance Multiplayer Coatings [J]. J. Opt. Soc. Am, 1980, 70(3):268~276.
    [105] Decker D L. Thermal Properties of Optical Thin-film Materials[C]//Proc of SPIE, 1990, 1323:244~252.
    [106] Rainer F, Demacro F P, Staggs M C, et al. Laser Induced Damage in Optical materials[C]//Proc of SPIE, 1993, 2114:9~22.
    [107] Stephens T, Johnson D C, Languirand M T. Beam Path Conditioning for High-Power Laser System. The Lincoln Laboratory Journal, 1990, 3(2):225~244.
    [108]潘锦珊.气体动力学基础[M],西安:西北工业大学出版社,1995.
    [109]张远君.体力学大全[M],北京:北京航空航天大学出版社,1991.
    [110] Rogers C. Altitued depedent atmospheric absorbtion report. NRL memorandum report 4906, 1995, pp: 48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700