微层TiB_2-NiAl复合材料板材的制备及组织控制与力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足航空涡轮发动机叶片以及导向叶片对轻质高强合金板材的需求,对NiAl基合金板材的研发与制备具有十分重要的理论和实际意义。本文以TiB_2颗粒增强Al基复合材料板材(TiB_2/Al)和纯Ni板材为原料,采用轧制连接及反应合成方法,通过Ni与TiB_2/Al中的Al反应生成NiAl基体,同时保留TiB_2颗粒作为增强相,成功制备出微层TiB_2-NiAl复合材料板材。一方面避免了对于脆性的NiAl基合金锭的直接轧制变形,大大降低了加工成本,另外还克服了传统的叠轧加反应合成制备NiAl基合金板材致密度低的缺陷,并且改善了增强体的强化效果和基体的韧化效果。研究了微层TiB_2-NiAl复合材料板的制备工艺,系统的研究了轧制变形和两种反应合成过程中产物的组成、织构演变和反应机理,对微层TiB_2-NiAl复合材料板的室温和高温力学性能进行了检测,分析了TiB_2颗粒和独特的层状结构对TiB_2-NiAl复合材料板的组织与性能影响,并对微层TiB_2-NiAl复合材料板的抗氧化行为进行了研究。
     多层Ni-(TiB_2/Al)复合板的轧制试验表明,TiB_2/Al复合材料板与纯Ni板有良好的变形协调性。通过对轧制变形后的多层Ni-(TiB_2/Al)复合板的微观组织观察,界面结合良好,没有界面反应发生,但在Ni/(TiB_2/Al)界面处的Al (Ni)固溶体层内发现了高密度层错。
     第一种反应合成方法包含了固相法两步退火处理。多层Ni-(TiB_2/Al)复合板在650℃反应退火时,有NiAl_3和Ni_2Al_3生成。采用了一个有效形成热模型成功的预测了第一个生成相是NiAl_3,和处在Ni/NiAl_3内界面的第二个生成相是Ni_2Al_3。由于Ni/(TiB_2/Al)界面高的浓度梯度,最初的NiAl_3晶粒呈现出平行的柱状晶结构。然而由于Ni/NiAl_3界面相对低的浓度梯度,大部分Ni_2Al_3晶粒呈现出等轴形貌。TiB_2颗粒的添加对NiAl_3和Ni_2Al_3形成和长大都没有显著影响。650℃反应退火时,NiAl_3层向TiB_2/Al层生长速率高于向Ni层生长速率,原因在于NiAl_3相在Al/NiAl_3界面形核率更高。NiAl_3层生长遵循抛物线生长动力学规律。多层Ni-(TiB_2/Al)复合板经过650℃/50h反应退火和再在950~1000℃高温反应退火时,各个中间相不断消耗,最终得到层状的TiB_2-NiAl复合板。在反应合成过程中TiB_2没有参与反应。950℃反应退火时,NiAl层生长遵循抛物线生长动力学模式。
     由于固相法两步退火处理获得的TiB_2-NiAl复合板中存在大量孔洞,难以进行应用。我们开发了新的固液法反应合成工艺。多层Ni-(TiB_2/Al)复合板经过1200℃/3h/50MPa的固液反应后,形成微层的TiB_2–NiAl复合板。所得复合板材具有独特的单一粗晶NiAl层和富TiB_2细晶NiAl层交替排列的结构。反应合成过程中TiB_2没有参与反应。粗晶单一NiAl层有明显的{111}<112>和{111}<110>织构组分。这个织构是通过扩散反应从Ni板中的织构遗传得到的。NiAl织构的产生能定性的基于Ni相和NiAl相的密排面位相关系(N–W和K–S)来解释。
     通过轧制变形及固液反应合成法制备了四种体系(颗粒含量分别为0.7vol.%,1.3vol.%,2vol.%,3.3vol.%)的TiB_2-NiAl复合材料板,Al含量控制在51at.%Al~52at.%Al之间,随着颗粒含量增加板材致密度略微降低,晶粒尺寸和层厚没有明显变化。纳米硬度分布在9.5~9.6GPa,弹性模量分布在200~210GPa,颗粒含量没有太大影响。
     随TiB_2颗粒的引入,微层TiB_2-NiAl复合材料板材断裂韧性增加。且微层TiB_2-NiAl复合材料板的断裂韧性与加载方向相关,微层2vol.%TiB_2-NiAl复合材料板平行于板材轧制方向加载的断裂韧性为6.9±0.3MPa·m~(1/2),平行于法线方向加载的断裂韧性达到7.5±0.5MPa·m~(1/2)。裂纹蔓延沿着特定的晶面,接近{110}~(B2)和{100}~(B2)晶面族。富TiB_2细晶NiAl层对裂纹扩展起到阻碍作用并使裂纹发生偏转是断裂韧性提高的主要原因。
     高温拉伸实验表明,随着温度升高,微层TiB_2-NiAl复合材料板的抗拉强度、屈服强度先增加后减少,延伸率增加。韧脆转变温度介于750℃和800℃之间。750℃的屈服强度达到最大值为435MPa,延伸率为4.7%。富TiB_2层的增强作用和单相NiAl层对裂纹的钝化作用是导致其高温性能高于纯NiAl材料的主要原因。揭示了微层TiB_2–NiAl复合材料板材的强化机理。
In order to satisfy the requirements of gas turbine engines blades and guidevanes for high-strength low-density alloy sheets, it is of theoretical and practicalsignificance for development and manufacture of NiAl-based alloy sheets.Microlaminated TiB_2–NiAl composite sheets have been successfully fabricated byroll bonding and reaction annealing of Ni sheets and TiB_2/Al composite sheets. Onthe one hand, this technique avoids the direct deformation of the brittle NiAlcompared with the conventional rolling method, along with the decrease infabrication costs by using simplified techniques. On the other hand, the obstacle offorming dense NiAl sheets by conventional solid-solid methods can be overcome.The strenghening effect can be effectively improved by a densification processconsisting of a solid-liquid reaction.
     Preparation processes of microlaminated TiB_2–NiAl composite sheets wereinvestigated. Phase composition, transformation of texture and reaction mechanismof the reaction products in the process of roll bonding and reaction annealing weresystemically studied using SEM, XRD, EBSD and TEM. The mechanical propertiesof microlaminated TiB_2–NiAl composite sheets at room temperature and hightemperature were evaluated and effect of laminate structure and TiB_2onmicrostructures and properties of microlaminated TiB_2–NiAl composite sheets wereinvestigated. Moreover, the oxidation resistance of microlaminated NiAl-TiB_2sheetwas investigated.
     Roll bonding of multi-laminated Ni–(TiB_2/Al) sheet show the gooddeformation compatibility between Ni and TiB_2/Al sheets with no subsequentreactions. The presence of wide stacking faults is observed in the Al (Ni) layer nearthe interface in multi-laminated Ni–(TiB_2/Al) sheet after the roll bonding process.
     The first reactive synthesis method is called “two-steps solid-solid annealingtreatment”. NiAl_3and Ni_2Al_3phase was detected in the multi-laminated Ni–(TiB_2/Al)composite sheet during annealing at650oC. A modified effective heat of formationmodel was applied and it predicted correctly the appearance of NiAl_3as the firstphase as well as subsequent formation of Ni_2Al_3between the Ni and NiAl_3layers.The initial NiAl_3grains demonstrated parallel columnar structure because ofthe high concentration gradient at the Ni/Al interface. Most Ni_2Al_3grains showedequiaxed morphology, due to the low concentration gradients of Al and Ni at theNi/NiAl_3interface. Growth velocity of NiAl_3towards TiB_2/Al layer is much fasterthan that towards Ni layer, due to the higher nucleation rate at the Al/NiAl_3interface.The growth of NiAl_3layer is consistent with the parabolic growth law, while annealing at650℃. When the laminate is subsequently annealed at950~1000℃after annealing at650℃for50h, TiB_2still remains stable. Finally, multi-layeredTiB_2-NiAl composite sheets are obtained. The growth of NiAl layer is attributed tothe reaction diffusion process and in consistent with the parabolic growth law, whileannealing at950℃.
     Because there are too much holes in the TiB_2-NiAl composite sheets after“two-steps solid-solid annealing treatment”, a new reactive synthesis method named“solid-liquid annealing treatment” was investigated. The dense microlaminated(0.7vol.%,1.3vol.%,2vol.%,3.3vol.%)TiB_2–NiAl composite sheet with alternatingTiB_2-rich and NiAl layers was successfully produced by reaction diffusion frommulti-laminated roll bonded Ni–(TiB_2/Al) sheet at1200℃/3h/50MPa. NiAl phasehas strong {111}<112> and {111}<110> texture components in the microlaminatedTiB_2–NiAl composite sheet. The texture may be considered to be a transformationtexture inherited from initial rolling texture of Ni in the multi-laminatedNi–(TiB_2/Al) sheets via reaction diffusion. The texture formation of the NiAl phasecan be qualitatively explained on the basis of the orientation relationships onclose-packed planes (N–W and K–S) between Ni phase and NiAl phase in view ofcoherency with texture of Ni. The content of Al in the microlaminated TiB_2–NiAlcomposite sheet is between51at.%Al and52at.%Al. The nanohardness is between9.5GPa and9.6GPa, and the elastic modulus is between200GPa and210GPa. Theparticle content does not influence the hardness and elastic modulus of themicrolaminated TiB_2–NiAl composite sheet.
     Testing for fracture toughness shows that with addition of TiB_2, the fracturetoughness increases. Furthermore, the value of fracture toughness depends onloading direction, fracture toughness of micro-laminated2vol.%TiB_2-NiAlcomposite sheets with loading parallel to normal direction (ND) is7.5±0.5MPa·m~(1/2),while the value with loading parallel to rolling direction (RD) is6.9±0.3MPa·m~(1/2).It was found that the crack in the micro-laminated2vol.%TiB_2-NiAl compositesheets propagates along the particular crystallographic planes close to that of{110}B2and {100}B2. TiB_2-rich fine NiAl layer hinders propagation of cracks andinduces crack deflection. These factors contribute to increase in fracture toughnessof micro-laminated2vol.%TiB_2-NiAl composite sheets with loading parallel to ND.
     High temperature tensile testing shows that with raising temperature, strengthof microlaminated TiB_2-NiAl composite sheets increases firstly and then decreases,coupled with an increase in elongation. The brittle-to-ductile transition temperature(BDTT) for this material lies somewhere between700℃and750℃. Yield strengthat750℃reaches the highest value of435MPa and elongation reaches4.7%. Theimprovements in strength and elongation are attributed to the unique laminated structure: bimodal distribution of grain size and good interface bonding betweenboth layers.
     TiB_2-rich layers acts as the “reinforcement phase” in the microlaminatedcomposite, and the monolithic NiAl layer results in cracks blunting which efficientlyreleases the stress concentration. The relationship between microstructure andstrength of the microlaminated TiB_2-NiAl composite was analyzed.
引文
[1] Stolo N S, Liu C T, Deevi S C. Emerging applications of intermetallics[J].Intermetallics,2000,8:1313-1320.
    [2] Lee W W, Lee D B, Kim M H, et al. High temperature oxidation of anoxide-dispersion strengthened NiAl[J]. Intermetallics,1999,7:1361-1366.
    [3] Mahesh R A, Jayaganthan R, Prakash S, et al. High temperature cyclicoxidation behavior of magnetron sputtered Ni–Al thin films on Ni-andFe-based superalloys[J], Materials Chemistry and Physics,2009,114:629-635.
    [4] GUO Jian-ting. Qrdered intermetallic compound NiAl alloy[M]. Beijing:Science Press,2003:30-533
    [5] Zhao H L, Qiu F, Jin S B, et al. High work-hardening effect of the pure NiAlintermetallic compound fabricated by the combustion synthesis and hotpressing technique[J], Materials Letters,2011,65:2604-2606.
    [6] Darolin R. NiAl Alloy for High-temperature Structural Applications[J].Journal of the Minerals Metals and Materials Society.1991,43:44-49.
    [7] Battezzati L, Antonione C, Fracchia F. Ni-Al Intermetallics Produced byCold-rolling Elemental Sheets[J]. Intermetallics.1995,3:67-71.
    [8] Battezzati L, Pappalepore P, Durbiano F. Solid State Reactions in Al/NiAlternate Foils Induced by Cold Rolling and Annealing[J]. Acta Materilia.1999,47:1901-1914.
    [9] Kumar K S, Darolia R, Lahrman DF, et al. Tensile creep response of anNiAl-TiB2particulate composite[J], Scripta Metallurgica et Materialia,1992,26:1001-1006.
    [10] Cheng T Y, Cantor B, Improvement of ductility of NiAl at room temperatureand manufacturing of NiAl-TiB2composites by melt spinning[J], MaterialsScience and Engineering: A,1992,153:696-699.
    [11] Aoki K, Izumi. Improvemene in room temperature ductility of the LI2typeintermetallic compound Ni3Al by boron addition[J]. Journal of The JapanInstitute of Metals,1979,12:1190-1196.(in Japanese)
    [12] WardClose C M, Minor R, Doorbar P J. Intermetallic-matrix composites-Areview[J],Intermetallics,1996,4:217-229.
    [13] Okamoto H. Al-Ni (Aluminum-Nickel)[J]. Journal of Phase Equilibria Vol.14No.21993.
    [14] Westbrook J H.Trans AIME J Met,1957,6:895
    [15] Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing ofNi3Al-based intermetallics and applications[J], Intermetallics,2000,8:1329-1337.
    [16] Chen R S, Guo J T, Yin W M, Zhou J Y. Superplasticity of a multiphaseNi-25Al-25Cr lntermetallic alloy[J], Scripta Mater,1999,40:209-215.
    [17]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.
    [18] Noebe R D, Bowman R R,Nathal M V Physical and mechanical properties ofthe B2compound NiAl[J], International Materials Reviews,1993,38:193-232.
    [19] Miracle D B. The physical and mechanical properties of NiAl[J], ActaMetallurgica et Materialia,1993,41:649-684.
    [20] Ball A, Smallman R E. The deformation properties and electron microscopystudies of the intermetallic compound NiAl[J], Acta Metallurgica etMaterialia,1966,14:1349-1355.
    [21] Ball A, Smallman R E. The operative slip system and general plasticity ofNiAl-II[J], Acta Metallurgica et Materialia,1966,14:1517-1526.
    [22] Bowman R R,Noebe R D, Raj S V. Correlation of deformation mechanismswith the tensile and compressive behavior of NiAI and NiAl(Zr) intermetallicalloys[J], Metallurgical Transactions A,1992,23:1493-1508.
    [23] Nagpal P, Baker I. Dislocation arrangements in polycrystalline NiAl afterroom temperature deformation[J], Journal of Materials Science Letters,1992,11:1209-1210.
    [24] Cotton J D, Noebe R D,Kaufman M J. Chromium-bearing NiAl intermetallicalloys part II slip system[J], Intermetallics,1993,1:117-126.
    [25] Mises R V, Mechanik der plastischen Form nderung von Kristallen[J],Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM),1928,8:161-185.
    [26] Groves G W, Kelly A. Change of shape due to dislocation climb[J].Philosophical Magazine,1969,19:977-986.
    [27] Rozner A G,Wasilewski R J. Tensile properties of NiAl and NiTi[J]. Journalof the Institute of Metals,1966,94:169-175.
    [28] Westbrook J H,Wood D L. A source of grain-boundary embrittlement inintermetallics[J]. Journal of the Institute of Metals,1962,91:174-181.
    [29] George E P,Liu C T. Brittle fracture and grain boundary chemistry ofmicroalloyed NiAl[J]. Journal of Materials Research,1990,5:754-762.
    [30] Nagpal P,Baker I. Room temperature fracture of FeAl and NiAl[J]. MaterialsCharacterization,1991,27:167-173.
    [31] Pascoe R T,Newey C W A. The mechanical behavior of the intermediatephase NiAl[J]. Metal Science,1968,2:138-141.
    [32] M.V Nathal et al eds."Structural Intermetallics1997"[M]. Minerals, Metals&Materials Society (TMS),1997.
    [33] Noebe R D, Cutlers C L,Bowman R R. The effect of strain rate andtemperature on the tensile properties of NiAl[J]. Journal of MaterialsResearch,1993,7:605-609.
    [34] Bowan R R, Neobe R D, Raj S V.Correlation of deformation mechanism andwith the tensile and compressive behaviour of NiAl and NiAl(Zr)intermetallic alloys[J]. Metallurgical Transactions A,1992,23:1493-1499.
    [35] Raj S V, Noebe R D, Bowman R R. Observations on the brittle to ductiletransition temperatures of B2nickel aluminides with and withoutzirconium[J]. Scripta Metallurgica et Materialia,1989,23:2049-2051.
    [36] Lasalmonie A, Intermetallics: Why is it so difficult to introduce them in gasturbine engines?[J]. Intermetallics,2006,14:1123-1129.
    [37] Darolia R, Lahrman D, Field R. The effect of Fe, Ga, Mo on the roomtemperature tensile ductility of NiAl[J]. Scripta Metallurgica et Materialia,1992,26:1007-1012.
    [38] Masugi K, Wenman D W, Stoloff N S. Observation of the Buctile transitiontemperature in the iron microalloyed polycrystalline NiAl intermetalliccompound[J]. Scripta Metallurgica et Materialia,1992,27:1633-1640.
    [39] Liu C T, Horton J A. Effect of refractory alloying addition on mechamicalproperties of near-stoichiometric NiAl alloys[J]. Materials Scicence andEngineering A,1995,192/193:170-178.
    [40] Ishida K, Kairema P, Ueno N, Nishizawa T. Ductility enhancement inNiAl-based alloys by microstructure control[J]. Metallurgical Transactions A,1991,22:441-446.
    [41]王淑荷,郭建亭,赖万慧.制备工艺对NiAI-30Fe-Y合金组织与性能的影响[J].航空学报,1996,17:77-84.
    [42] Guha S, Murroe P R. Room temperature deformation behavior of multiphaseNi-20A1-30Fe and its constituent phase[J]. Materials Scicence andEngineering A,1991,131:27-37.
    [43] Chen R S, Guo J T, Zhou J Y. Brittle-to-ductile transition of a multiphaseintermetallic alloy based on NiAl. Intermetallics[J].2000,8:663-667.
    [44] Inone A, Masumoto T, Tomicka H J. microstructure and mechanicalproperties of rapidly quenched L20and L20+L12alloys in Ni-A-Fe andNi-Al-Co system[J]. Journal of Materials Science,1984,19:3097-3106
    [45] Guha S, Munroe P R, Baker I. Room temperature deformation behavior ofmultiphase Ni-20.at%Al-30at.%Fe and its constituent phase[J]. MaterialsScience and Engineering A,1991,131:27-37.
    [46] Larsen M, Misra A, Hartfield-Wunsch S, et al. Ductility Enhancement fromInterface Dislocation Sources in a Directionally Solidified β (γ+γ′) Ni-Fe-AlComposite Alloy[J]. MRS Proceedings,1990,194:191
    [47] Chen R S, Guo J T, Yin W M, et al. Superplasticity of a multiphaseNi-25Al-25Cr intermetallic alloy[J]. Scripta Mater,1999,40:209-215.
    [48] Zhou W L, Cuo J T, Chen R S, et al. Superplasticity in NiAl intermetallicmacroalloyed with iron[J]. Materials Letters,2001,47:30-34.
    [49] Zhou W L, Guo J T, Chen R S, et al. Investigation of superplasticity in aNi50Al20Fe30intermetallic compound[J]. Materials Letters,2001,51:342-346.
    [50] Du X H, Guo J T, Zhou B D. Superplasticity of stoichiometric NiAl withlarge grains[J]. Scripta Mater,2001,45:69-74.
    [51] Guo J T, Li G S. Du X H. Continuous dynamic recrystallization of extrudedNiAl polycrystals during saperplastic deformation press[C]//Malayappan S.Proceedings of International Conference on Recent Advances in MeterialProcessing Technology. New Delhi: Allied Publishers PVT. LTD,2005:529-539.
    [52] Guo J T, Du Y H. Large tensile elongation behavior of extruded NiAlPolycrystals with stoichiometric composition[C]//CHEN G L, LIU C T,YANG R, HAN Y F, SASS S L. Proceedings of International workshop onordered Intermetallics and Advanced Metallic Materlals, namely,Intermetallics,2005,13:257-261.
    [53] Misra A, Wu Z L, Gibala R, et al. Toughening Mechanisms in DS B2-NiAlBased Eutectic Al-Alloys[M]. In: Nathal M V, Darolia R, Liu C T, Martin P L,Miracle D B, Wagner R, Yamaguchi M. Ed. Structural Intermetallics,Warrendale, PA, TMS,1997:673
    [54] Chen R S, Guo J T,Zhou W L, et al. Brittle-to-ductile transition of amultiphase intermetallic alloy based on NiAl[J]. Intermetallics,2000,8:663-667.
    [55] Johnson D R, Chen X F, Oliver B F, etal. Processing and mechanicalproperties of in-situ composites from the NiAI-Cr and the NiAI-(Cr,Mo)eutectic systems[J]. Intermetallics,1995,3:99-113.
    [56] Li M, Soboyejo W O. Synergistic toughening of a hybrid NiAl compositereinforced with partially stabilized zirconia and molybdenum particles[J].Materials Science and Engineering: A,1999,271:491-495
    [57] Ren W L, Guo J T, Li G S. The critical temperature for brittle-to-ductiletransition of intermetallic compound based on NiAl[J]. Materials Letters,2004,58:1272-1276.
    [58] Cui Chuan-yong, Guo Jian-ting. Investigation on microstructure andmechanical properties of NiAl-28Cr-5Mo-1Hf alloy[J]. Acta MetallurgicaSinica,1999,5:477-468.
    [59] Qi Y H, Guo J T, Cui C Y, et al. Superplasticity of a directionally solidifiedNiAl-Fe(Nb) alloy at high temperature[J]. Materials Letters,2002,57:552-557.
    [60] Whittenberger J D. Effect of composition properties of NiAI between1200and1400K[J]. Journal of Materials Science,1987,22:394-402.
    [61] Nathal M V,Ebert L J. Elevated temperature creep-rupture behaviour of thesingle crystal Nickle-based superalloy NASAIR100[J]. MetallurgicalTransactions A,1985,16:427-431.
    [62] Chen R S, Guo J T, Zhou J Y. Elevated temperature compressive behaviorof cast NiAI-9Mo(1Hf) eutectic alloys[J]. Materials Letter.2000,42:75-80.
    [63] Polvani R S, Tzeng W S, Strutt P R. High temperature creep in semi-coherentNiAl-Ni2A1Ti alloy[J]. Metallurgical Transactions A,1976,7:33-38.
    [64] Whittenberger J D, Gaydosh D J, Kumar K S.1300K compressive propertiesof several dispersion strengthened NiAl materials[J]. Journal of MaterialsScience,1990,25:2771-2778.
    [65] Senior B A, Maguire J, Evans C A. Effects of dwell time on the creep damagegenerated in AISI type347weld and1CrMoV steel during creep fatigueloading[J]. Materials Science and Engineering: A,1991,138:103-109.
    [66] Whittenberger J D, Ray R, Jha S C and Draper S.1000-1300K slow strainrate properties of NiAI containing dispersed TiB2and HfB2[J]. MaterialsScience and Engineering: A,1991,138:83-88.
    [67] Schulson E M, Baker D R. A brittle to ductile transition in NiAl of criricalgrain size[J]. Scripta Metallurgica et Materialia,1983,17:519-522.
    [68] Chan K S, Theoretical Analysis of grain size Effects on Tensile Ductility[J].Scripta Metallurgica et Materialia,1990,24:1725-1730.
    [69] Nagpal P, Baker I, The effect of grain size on the room-temperature ductilityof NiAl[J]. Scripta Metallurgica et Materialia,1990,24:2381-2384.
    [70] Cheng T Y, McLean. M. Mechanically alloyed NiAl-based composites[J].Materials Letters,1995,24:377-382.
    [71] Bonetti E, Campari E G, Mechanical Behavior of NiAl and Ni3Al OrderedCompounds Entering the Nano-grain Size Regime[J]. Nano StructuredMaterials,1999,12:896-897.
    [72] Whittenberger J D. Intermetallic Matrix Composites[C]//Materials ResearchSociety Symposium Proceedings. Pittsburgh, PA, USA.1990:211-218.
    [73] Whittenberger J D. In Solid State Processing[J]. The Minerals, Metals andMaterials Society,1990,12:137-155.
    [74] Zhou L Z, Cuo J T. Grain growth and kinetics for nanocrystalline NiAl[J].Script Metallurgica,1999,40:139-144.
    [75] Zhou L Z, Cuo J T, FAN G J. Systhesis of NiAl-TiC nanocomposite bymechanical al loying elemental powders[J]. Material Science and EngineeringA,1998,249:103-108.
    [76] Yang F B, Cuo J T, Zhou J Y. Reactive milling and mechanical properties ofNiAl composite With HfC dispersoids[J]. Journal of Materials Science&Technology,2002,18:59-62.
    [77] Yang F B, Cuo J T, Li G S, Zhou J Y. Mechanically synthesis, microstructureand mechanical properties of NiAl-based composites[C]//HANADA S,ZHONG Z, NAM S W. The Forth Pacific Rim International Conference onAdvanced Materials and Processing (PRICM-4). Sendai: The Japan Instituteof Metals,2001:835-839.
    [78] Villars P, Calvert L D. Pearson’s Handbook of Crystallographic Data forIntermetallic Phases[C]//American Society for Metals, Ohio, USA: MetalsPark.1985:50-53.
    [79] Arzt E, Gohring E, Grahle P. Dispersion strengthened intermetallics bymechanical alloying: creep results and dislocation mechanisms[J]. MaterialsResearch Society Symposium Proceedings,1993,288:861-862.
    [80] Johnson D R, Oliver B F, Noebe R D, et al. NiAl-based polyphase in-situcomposites in the NiAl2Ta2X(X=Cr, Mo, or V) systems[J]. Intermetallics,1995,3:493-503.
    [81] Song J, Hu W, Gottstein G, Long term stability and mechanical properties ofAl2O3–NiAl composites reinforced with partially fragmented long fibers[J].Materials Science and Engineering A,2011,528:7790-7800.
    [82] Guo J T, Xing Z P. Investigation of NiAl-TiB2in situ composites[J]. Journalof Materials Research,1997,12:1083-1090.
    [83] Xing Z P, Han Y F, Guo J T, et al. Microstructure and mechanical behavior ofthe NiAl-TiC in situ composite[J]. Metallurgical and Materials TransactionsA,1997,28:1079-1087.
    [84] Zhou L Z, Cuo J T. Microstructure and compressive properties ofreaction-milled NiAl-10%TiC composite[J]. Acta Metallurgica Sinica:English Letters,1998,11:281-285.
    [85] Yang F B, Guo J T, Zhou J Y. Microstructure and mechanical properties ofmechanically synthesized NiAl/HfB2composites[J]. Acta Metallurgica Sinica,2001,37:483-487.
    [86] Jiang D T, Cuo J T. Elevated temperature compressive behavior of in-situmultiphase composites NiAl/Cr(Mo)-TiC[J]. Material Science andEngineering A,1998,255:154-161.
    [87] Jiang D T, Cuo J T, Shi C X, et al. Microstructure and compressive propertiesof in situ composite (Ni-40Al-10Ti)-(0.20%)TiC[J]. journal of materialsscience letters,2000,19:115-117.
    [88] Yu L G, Dai J Y, Xing Z P, et al. High resolution electron microscopyobservation of interfacial structures in NiAl-matrix in situ compositesreinforced by TiC Particulate[J]. Journal of Materials Research,1997,12:1790-1795.
    [89] Lee I G, Ghosh A K, Ray R, et al. High-Temperature Deformation of B2NiAl-Base Alloys[J]. Metallurgical and Materials Transactions A,1994,25,2017-2026.
    [90] Kaneno Y, Yamaguchi T, Takasugi T, Hot rolling workability, texture andgrainboundary character distribution of B2-typeFeAl, NiAl and CoTiintermetallic compounds[J]. Journal of Materials Science,2005,40:733-740.
    [91] Kaneno Y, Yamaguchi T, Takasugi T, Texture evolution during hot-rollingand recrystallization in B2-type FeAl, NiAl and CoTi intermetalliccompounds[J]. Journal of Materials Science,2006,41:6871-6880.
    [92] Zhang Q, Li C J, Wang X R, et al. Formation of NiAl IntermetallicCompound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder ThroughPostannealing Treatment[J]. Journal of Thermal Spray Technology,2008,17:715-720.
    [93] Ding Y Q, Zhang Y, Northwood D O, et al. PVD NiAl intermetallic coatings:microstructure and mechanical properties, Surface and CoatingsTechnology[J].1997,94-95:483-489.
    [94] D’Angelo L, Gonzalez G, Ochoa J, Phase transformations study on Ni75Al25and Ni50Al50duringmechanical alloying and sintering[J]. Journal of Alloysand Compounds,2007,434-435:348-353.
    [95] Mohammadnezhad M, Shamanian M, Enayati M H, et al. Influence ofannealing temperature on the structure and properties of the nanograinedNiAl intermetallic coatings produced by using mechanical alloying[J].Surface&Coatings Technology,2013,217:64-69.
    [96] Sieber H, Park J S, Weissmüllerc J, et al. Structural evolution and phaseformation in cold-rolled aluminum–nickel multilayers[J]. Acta Materialia,2001,49:1139-1151.
    [97] Wei C T, Maddox B R, Stover A K, et al. Reaction in Ni–Al laminates bylaser-shock compression and spalling[J]. Acta Materialia,2011,13:5276-5287.
    [98] Mozaffari A, Danesh Manesh H, Janghorban K. Evaluation of mechanicalproperties and structure of multilayered Al/Ni composites produced byaccumulative roll bonding (ARB) process[J]. Journal of Alloys andCompounds,2010,1:103-109.
    [99] Ramos A S, Vieira M T, Morgiel J, et al. Production of intermetalliccompounds from Ti/Al and Ni/Al multilayer thin films—A comparativestudy[J]. Journal of Alloys and Compounds,2009,1:335-340.
    [100] Qiu X, Liu R, Guo S. Combustion synthesis reactions in cold-rolled Ni/Aland Ti/Al multilayers[J]. Metallurgical and Materials Transactions A,2009,7:1541-1546.
    [101] Zhu P, Li J M, Liu C T. Reaction Mechanism of Combustion Synthesis ofNiAl[J]. Materials Science and Engineering.2002,329:57-68.
    [102] Mumtaz K, Echigoya J, Nakata C, Effect of cold rolling and subsequentannealingon hot pressed Ni/Al laminates[J]. Journal of Materials Science,2001,36:3981-3987.
    [103] Alman D E, Stoloef N S. Powder fabrication of monolithic and compositeNiAl[J]. International journal of powder metallurgy,1991,1:29-41.
    [104] Wang H, Northwood D O, Han, J, et al. Reaction Synthesis ofNickel/Aluminide Multilayer CompositesUsing Ni and Al Foils:Microstructures, Tensile Properties, and Deformation Behavior[J].Metallurgical and Materials Transactions A,2007,38:409-419.
    [105] Barmak K, Michaelsen C, Lucadamo G J. Reactive phase formation insputter-deposited Ni/Al multilayer thin films[J]. Journal of MaterialsResearch,1997,12:133-146.
    [106] Sim es S, Viana F, Ramos A S, et al. Anisotherm al solid-state reactions ofNi/Al nanometric multilayers[J]. Intermetallics,2011,19:350-356.
    [107] Noro J, Ramos A S, Vieira M T. Intermetallic Phase Formation inNanometric Ni/Al Multilayer Thin Films[J]. Intermetallics,2008,16:1061-1065.
    [108] Chen Y, Wang H M. Laser Melted TiC Reinforced Nickel Aluminide Matrixin Situ Composites[J]. Journal of Alloys and Compounds.2005,11:49-50.
    [109] Matsuura K, Kudoh M, Oh J H, et al. Development of freeform fabrication ofintermetallic compounds[J]. Scripta materialia,2001,44:539-544.
    [110] Oh J H, Kirihara S, Miyamoto Y, et al. Process control of reactive rapidprototyping for nickel aluminides[J]. Materials Science and Engineering: A,2002,334:120-126.
    [111] Matsuura K, Kudoh M, Kirihara S, Miyamoto Y. Proceedings of24thAnnual Conference on Composites, Advanced Ceramics, Materials, andStructures: B, Ceramic Engineering and Science Proceedings [C]. OH: AmCeram Soc,2000:1518
    [112] Sauvage X, Dinda G P, Wilde G, Non-equilibrium intermixing and phasetransformation in severely deformed Al/Ni multilayers[J]. Scripta Materialia,2007,56:181-184.
    [113] Cardellini F, Mazzone G, Montone A, et al. Solid state reactions between Niand Al powders induced by plastic deformation[J]. Acta Metallurgica etMaterialia,1994,42:2445-2451.
    [114] Yamakov V, Wolf D, Phillpot S R, et al. Dislocation processes in thedeformation of nanocrystalline aluminium by molecular-dynamicssimulation[J]. Nature materials,2002,1:45-49.
    [115] Yamakov V, Wolf D, Phillpot S R, et al. Deformation twinning innanocrystalline Al by molecular-dynamics simulation[J]. Acta Materialia,2002,50:5005-5020.
    [116] Li Y, Lin Y J, Xiong Y H, et al. Extended twinning phenomena in Al–4%Mgalloys/B4C nanocomposite[J]. Scripta Materialia,2011,64:133-136.
    [117] Liao X Z, Zhou F, Lavernia E J, et al. Deformation twins in nanocrystallineAl[J]. Applied Physics Letters,2003,83:5062-5064.
    [118] Liu M P, Roven H J, Murashkin M, et al. Structural characterization byhigh-resolution electron microscopy of an Al–Mg alloy processed byhigh-pressure torsion[J]. Materials Science and Engineering A,2009,503:122-125.
    [119] Wu X L, Li B, Ma E. Vacancy clusters in ultrafine grained Al by severeplastic deformation[J]. Applied Physics Letters,2007,91:141908-3.
    [120] Bilde-Sorensen J B, Schiotz J. Nanocrystals Get Twins[J]. Science,2003,300:1244-1245.
    [121] Liu M P, Roven H J, Yu Y D, et al. Werenskiold, Deformation structures in6082aluminium alloy after severe plastic deformation by equal-channelangular pressing[J]. Materials Science and Engineering A,2008,483-484:59-63.
    [122] Zhao Y H, Zhua Y T, Liao X Z, et al. Tailoring stacking fault energy for highductility and high strength in ultrafine grained Cu and its alloy[J]. AppliedPhysics Letters,2006,89:121906
    [123] Sun P L, Zhao Y H, Cooley J C, et al. Effect of stacking fault energy onstrength and ductility of nanostructured alloys: An evaluation with minimumsolution hardening[J]. Materials Science and Engineering A,2009,525:83-86.
    [124] Karimpoor A A, Erb U, Aust K T, et al. High strength nanocrystalline cobaltwith high tensile ductility[J]. Scripta Materialia,2003,49:651-656.
    [125] Muzyk M, Pakiela Z, Kurzydlowski K J. Ab initio calculations of thegeneralized stacking fault energy in aluminium alloys[J]. Scripta Materialia,2011,64:916-918.
    [126] Wang Y Q, Wang Z, Yang J H, etal. Pseudoelasticity, shape memory effectand FCC→HCP martensitic transformation associated with stacking faults inFCC alloys[J]. Scripta Materialia,1996,35:1161-1166.
    [127] Zhu H X, Abbaschian R. Reactive Processing of Nickel-aluminideIntermetallic Compounds[J]. Journal of Materials Science.2003,38:3861-3870.
    [128] Kurz W., Fisher D J. Fundamentals in Solidification[M]. Trans. Tech.Publications, Switzerland,1989.
    [129] Fedorov G B, Shevchuk Y A, Khasaev T O. Growth kinetics of theintermetallic coating in mutual diffusion in systems of aluminum withtitanium and titanium-zirconium alloys[J]. Fizika i Khimiya ObarabotkiMaterialov,1990,24:68-72.
    [130] Laik A., Bhanumurthy K., Kale G B. Intermetallics in the Zr–Al diffusionzone[J]. Intermetallics,2004,12:69-74.
    [131] Pretorius R, Reus R. de, Vredenberg A M, et al. Use of the effective heat offormation rule for predicting phase formation sequence in Al Ni systems[J],Materials Letters,1990,9:494-499.
    [132] Bhaumik S K, Divakar C, Rangaraj L, et al. Reaction sintering of NiAl andTiB2–NiAl composites under pressure[J]. Materials Science and Engineering:A,1998,257:341-348.
    [133] Hu L, Hu W, Gottstein G, et al. Investigation into microstructure andmechanical properties of NiAl-Mo composites produced by directionalsolidification. Materials Science and Engineering: A,2012,539:211-222.
    [134] Cao G H, Liu Z G, Shen G J, et al. Interface and precipitate investigation of aTiB2particle reinforced NiAl in-situ composite[J]. Intermetallics,2001,9:691-695.
    [135] Inoue H, Ishio M, Takasugi T. Texture of TiNi shape memory alloy sheetsproduced by roll-bonding and solid phase reaction from elementary metals[J].Acta Materialia,2003,51:6373-6383.
    [136] Weber A, Schmidt S, Abou-Ras D, et al. Texture inheritance in thin-filmgrowth of Cu2ZnSnS4[J], Applied Physics Letters,2009;95:041904.
    [137] Skrotzki W, Tamm R, Oertel C G, et al. Influence of texture and hydrostaticpressure on the room temperature compression of NiAl polycrystals[J].Materials Science and Engineering: A,2002,329-331:235-240.
    [138] Dymek S, Dollar M, Hwang SJ, et al. Deformation mechanisms and ductilityof mechanically alloyed NiAl[J], Materials Science and Engineering: A,1992,152:160-165.
    [139] Kurdjumov G, Sachs G. Z. Phys[J].1930,64:325-343.
    [140] Nishiyama Z, Sci. Rep. Tohoku Imp. Univ. Tokyo,1934;23:637-664.
    [141] Wassermann G. Mitt.-K.Wilh.-Inst Eisenforsch.1935,17:149-155.
    [142] Bunge, Texture analysis in materials science[M]. London: Butterworths,1982.
    [143] W llmer S, Zaefferer S, G ken M, et al. Characterization of phases ofaluminized nickel base superalloys, Surface and Coatings Technology,2003,167:83-96.
    [144] Wegmann G, Gerling R, Schimansky F P. Temperature induced porosity in hotisostatically pressed gamma titanium aluminide alloy powders[J]. ActaMaterialia,2003,51:741-752.
    [145] Hu L, Hu W, Gottstein G, et al. Investigation into microstructure andmechanical properties of NiAl-Mo composites produced by directionalsolidification[J]. Materials Science and Engineering A,2012,539:211-222.
    [146] Noebe R D, Bowman R R, Nathal M V. Physical and mechanical properties ofthe B2compound NiAl[J]. International Materials Reviews,1993,38:193-232.
    [147] Guo J T, Jiang D T, Xing Z P, et al. Tensile properties and microstructures ofNiAl–20TiB and NiAl–20TiC in situ composites[J]. Materials&Design,1997,18:357-360.
    [148] Song J, Hu W, Gottstein G. Long term stability and mechanical properties ofAl2O3–NiAl composites reinforced with partially fragmented long fibers[J].Materials Science and Engineering: A,2011,528:7790-7800.
    [149] Schulson E M, Barke D R. A brittle to ductile transition in NiAl of a criticalgrain size[J], Scripta Materialia,1983,17:519-522.
    [150] Nardone V C, Prewo K M. On the strength of discontinuous silicon carbidereinforced aluminum composites[J], Scripta Materialia,1986,20:43-48.
    [151] Hansen N. The effect of grain size and strain on the tensile flow stress ofaluminium at room temperature, Acta Materialia,1977,25:863-869.
    [152] Hansen N. boundary strengthening over five length scales[J], AdvancedEngineering Materials,2005,7:815-821.
    [153] Lei S, Zhang J Y, Niu J J, et al. Intrinsic size-controlled strain hardeningbehavior of nanolayered[J], Scripta Materialia,2012,66:706-709.
    [154] R J Arsenault, Shi N, Dislocation generation due to differences between thecoefficients of thermal expansion, Materials Science and Engineering: A,1986,81:175-181.
    [155] Miracle D B. Overview No.104the physical and mechanical properties ofNiAl[J]. Acta Metallurgica et Materialia,1993,41:649-684.
    [156] Hellmann J R, Koss D A, Moose C A, et al.[J]. HITEMP Review-1990,(1990)NASACP-1005141-1.
    [157] Lilholt N, in: J.B. Bilde S renson, N. Hansen, A. Horsewell, T. Leffers, H.Lilholt (Eds.), Deformation of Multi-phase and Particle ContainingMaterials[M]. Ris Nat. Lab. Roskilde,1983,381.
    [158] Giannakopoulos A E, Suresh S, Finot M, et al. Elastoplastic analysis ofthermal cycling: layered materials with compositional gradients[J], ActaMetallurgica et Materialia,1995,43:1335-1354.
    [159] Ye D, Hu J H, Thermochemical Data of Pure Substances[M], MetallurgyIndustry Publishing Company, Beijing, China,2002.
    [160] Zhang G Y, Zhang H, Guo J T, Improvement of cyclic oxidation resistance ofa NiAl-based[J], Surface&Coatings Technology,2006,201:2270-2275.
    [161] Godlewska E, High temperature corrosion of p-NiAl intermetallic compoundand pseudobinary NiAl-Cr alloys in sulphur-containing atmospheres[J],Materials and Corrosion,1997,48:687-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700