龙须菜紫外诱变育种及抗逆速生优良品系的选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙须菜(Gracilariopsis lemaneiformis)是我国重要的产琼胶红藻,目前已经成为我国继海带和紫菜之后的第三大栽培海藻。野生型龙须菜自然分布在我国的山东半岛的潮间带,其最适的生长温度是12-23°C。随着龙须菜养殖业的不断发展,其耐高温性、生长速率及琼胶含量仍亟待提高,以扩大其栽培地域并延长栽培时间,进一步提高产品产量和质量。因此有必要对其进行遗传改良,选育出更具应用价值的新品种。
     本研究首次以龙须菜四分孢子和果孢子做为材料进行紫外线辐射诱变,以耐高温和生长速率作为主要性状筛选抗逆速生突变体,就高温胁迫对突变株与981和野生型藻体的生理和分子特性等方面的影响进行了比较分析。本文旨在探索适于龙须菜的遗传育种方法,建立一套耐高温品系的筛选方法,为选育龙须菜的高产抗逆品系,并进一步将其应用于生产打下基础。
     诱变育种是龙须菜新品种选育的重要手段之一。本实验选择放散刚附着在平皿中的四分孢子(单倍体)和果孢子(二倍体)作为紫外诱变的材料,确定了其紫外诱变条件分别为20W紫外灯,照射距离为30cm,照射时间为45s和48s。建立了龙须菜四分孢子和果孢子的紫外诱变技术方法。实验中观察到了单倍体四分孢子和二倍体果孢子的紫外诱变效果的差异,四分孢子紫外诱变后,观察到细胞出现了色素凝集现象,而诱变后的果孢子没有;四分孢子紫外诱变后,经高温胁迫筛选到了6株色素突变体,而在诱变后的果孢子中没有获得色素突变体。研究结果显示,刚放散附着的四分孢子和果孢子均为单个细胞,是紫外诱变的良好材料。
     本实验成功建立起了一套龙须菜耐高温藻株的筛选方法。针对龙须菜在不同发育阶段耐高温性可能会不同,设置了在其不同发育阶段都进行高温胁迫筛选。配子体的耐高温筛选分为三个阶段,分别在四分孢子发育到盘状体期(诱变2周后)、直立体期(诱变6周后)和成熟藻体(海上挂养采回)时,在培养箱中经35°C高温胁迫72h,经过三个时期筛选后最终存活的藻体,被初步确定为耐高温配子体。四分孢子体的耐高温筛选分为两个阶段,在果孢子发育到5cm长幼苗期(诱变8周后)时,采用41°C水浴高温胁迫30min,将存活的藻体经海上挂养至成熟藻体时(海上挂养采回),再经过在培养箱中35°C高温胁迫72h,经过两个时期筛选最终存活的藻体,被初步确定为耐高温四分孢子体。
     通过高温筛选,初步获得了具有耐高温、生长快速等优良性状的雌配子体和四分孢子体突变株各两株,比较了突变株与981和野生型藻体在高温胁迫下的生理响应,包括它们在海上和实验室内的日平均生长速率(SGR),在32°C热胁迫下藻体内丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、脯氨酸含量和热激蛋白基因(hsp70)表达等方面的变化,测定了藻体的琼胶含量。
     研究结果显示,两株雌配子体在实验室内和海上的日平均生长速率与981差异不显著,但明显高于野生型,四分孢子体突变株的日平均生长速率均明显高于981和野生型,推测四分孢子体可能因为二倍体的原因,具有明显的生长优势;在热胁迫后,配子体和四分孢子突变体MDA含量和增加的幅度均明显低于野生型,SOD活性高于野生型,脯氨酸含量的累积高于野生型,hsp70基因的表达水平也显著高于野生型,显示了明显的抗逆性。这些结果进一步说明了该四株突变藻体比野生型具有更强的生长优势和耐高温性。基于这些分析结果将有助于龙须菜耐高温品系的选育。
     研究发现,不同耐热性的藻体在整个热胁迫过程中各种生理和分子指标的变化趋势是一致的。热胁迫下,藻体的MDA含量一直处于升高的趋势,由于MDA是膜脂过氧化的产物,说明随着时间的延长,热胁迫导致细胞膜受到损害的程度增加。所有的藻株SOD活性在第一天内呈上升趋势,随着胁迫时间的延长活性降低。热胁迫后较短的时间内SOD活性升高,有利于保护细胞免受氧化胁迫的伤害。推测随着胁迫时间的延长,SOD酶的活性受到抑制,使细胞受损害程度增加,导致胁迫过程中MDA含量的持续升高。脯氨酸在非酶促抗氧化系统中起着重要的作用,在热胁迫后脯氨酸含量呈现先上升再下降的趋势,显示了在胁迫初期能够有效地提高藻体的抗逆性。藻体经4h高温胁迫后,hsp70基因的表达水平显著增高,说明hsp70基因快速响应,大量表达缓解高温胁迫带来的伤害,产生更强的耐热性。通过高温胁迫后藻体各项生理和分子指标的比较分析,为进一步揭示龙须菜耐高温机理提供参考,为其耐高温品系的快速选育提供依据。
Gracilariopsis lemaneiformis is a macroscopic red alga well known as the majoragarophyte in China. It becomes the third largest cultivated seaweed followingLaminaria and Porphyra in China. Gp. lemaneiformis distribute naturally along thecoast of Shandong Peninsula in China. The suitable temperature for growth of thewild population is between12-23°C. With the development of Gp. lemaneiformis, it isurgently needed to improve it's heat tolerance, growth rate and agar content in orderto extend the cultivation period, enlarge the cultivation area and increase theproductivity and quality. Therefore it is essential to improve it genetically and toselect more worthy strains.
     In the present study, tetraspores and carpospores were firstly used as the materialfor Ultraviolet (UV) mutagenesis. Stress tolerance mutants were screened by hightemperature tolerance and growth rate mainly. The influence of high temperature onphysiological and molecular character of the mutants, cultivar981and wild strainswas analyzed. The aim of our research was to set up an appropriate means for geneticbreeding, to develop a suitable screening procedure for high temperature tolerantstains and to lay the foundation of breeding and application for stress tolerance andfast growth strains of Gp. lemaneiformis.
     Mutagenesis breeding is one of the most important methods for the selection ofnew strains of Gp. lemaneiformis. Newly attached tetraspores and carpospores weremutated by UV irradiation. The UV mutagenesis condition was set as:20W UV light,30cm distance,45s and48s irradiation respectively. The method of tetraspores andcarpospores UV mutagenesis was set up. The differences between haploid tetrasporesand diploid carpospores after UV mutagenesis were discovered. After UVmutagenesis, the pigment aggregation was discovered in tetraspores cell while it wasnot found in carpospores. Also, six pigment mutants were isolated after heat-stresswhile there was no in carpospores. It was indicated that the newly released tetrasporesand carpospores which were single cells were the nice materials for UV mutagenesis.
     A set of method for screening for high temperature tolerance mutants was set upsuccessfully. Mutants at different development stages were screened under heat shockin order to obtain mutants with constant heat-resistance. The screening ofthormo-tolerate gametophytes was divided into three phases. Heat shock of35°C inincubator for72h was imposed to tetraspores when they developed into gametophyticdiscs (2weeks after mutagenesis), germlings of gametophyte (6weeks aftermutagenesis) and mature algae (after cultivation in the sea) respectively. The survivalsafter the three screening were preliminary considered as thermo-tolerate strains. Thethormo-tolerate screening method of tetrasporophyte was optimized to two phases.When carpospores developed into5cm germlings of tetrasporophyte (8weeks aftermutagenesis), heat shock of41°C water bath for30min was carried on. When carpospores developed into mature algae (after cultivation in the sea), heat shock of35°C for72h in incubator was carried on. The survivals after the two screening phaseswere preliminary considered as thermo-tolerate strains.
     Two strains of female gametophytes and tetrasporophytes each withthermo-tolerance and high growth were isolated through high temperature screeningand analyzed with cultivar981and wild strains under heat stress. The specific growthrate (SGR) were compared and malondialdehyde (MDA) contents, SuperoxideDismutase (SOD) activities, proline contents and the expressions of heat shockproteins70(hsp70) under heat stress were also compared among the mutants, cultivar981and the wild strains. The agar contents were measured.
     Results demonstrated that the SGR of two female gametophytes growed and inlab and sea were similar with that of the cultivar981and higher significantly than thewild strains. While the SGR of two tetrasporophytes were higher than cultivar981and wild strains. It was inferred that tetrasporophytes may have the growth superioritybecause of diploid. The contents of MDA of gametophytes and tetrasporophytesmutants were lower than the wild, and SOD activities and hsp70expression werehigher than wild, which indicated their stress tolerance. All these may indicated thatthe mutants were more tolerant to high temperature and growed faster than the wild.The analysis process on the basis of these criteria may help to develop heat-toleranceGp. lemaneiformis cultivars in the future.
     In our study, the physiological and molecular responses of different strains to heatstress were coordinate. Research revealed, MDA contents that are the ultimate productof membrane peroxidation increased during the heat stress, which indicated the cellmembrane was harmed increasingly. SOD activity in all strains increased within thefirst day and decreased thereafter gradually within the heat stress period. Increasedactivity of SOD during short-term heat stress may provide protection from oxidativestress. We deduced that with prolonged periods of heat stress, the activities of SODwere inhibited and the degree of cell damage increased, which lead to MDA contentsaccumulated significantly. Proline plays an important role in the nonenzymaticantioxidant system and it's contents increased firstly and then decreased under theheat stress. It showed proline can improve the stress tolerance of the strains at thebeginning. The expression of hsp70increased significantly after4h's heat shock. Theexcessive expression of hsp70rapidly can relieve the harm of heat stress and producehigher heat tolerance. The physiological and molecular indicators provided data forunderstanding the heat stress mechanisms of Gp. lemaneiformis, and for breeding forhigh temperature resistant strains.
引文
陈昌生,章景荣.福建省细基江蓠繁枝变型人工栽培的探讨.集美大学学报(自然科学版),1999,4(2):65-71.
    陈美琴,任国忠.江蓠幼苗的早期发育过程.海洋与湖沼,1985,16(3):181-187.
    陈美琴,任国忠.温度对真江蓠幼苗早期生长发育的影响.海洋与湖沼.1987,18(3):301-308.
    陈忠,苏维埃,汤章城.植物热激蛋白.植物生理学通讯,2000,36(4),289-296.
    程晓杰.龙须菜杂种优势株的筛选及AFLP分析.中国海洋大学,2008a.
    程晓杰,徐涤,张学成.龙须菜杂交和筛选及相关性状的分析.武汉大学学报(理学版),2008b,54(4):492~496.
    初建松,刘万顺,张朝阳.江蓠原生质体分离和培养的初步研究.海洋通报.1998,17(6):17-20.
    邓茳明,熊格生,袁小玲,贾菲,刘志.棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应.棉花学报,2010,22(3):242-247.
    丁弘叶.青岛野生种群不同倍性龙须菜AFLP遗传多样性分析以及与性别相关SCAR标记的开发与验证.中国海洋大学,2011.
    樊恭炬,李伟新,王永川,范允平.琼胶海藻的研究Ⅰ.龙须菜的果孢子萌发体的生长适温及其幼苗的季节生长.植物学报(英文版),1974,16(1):24-30.
    费修绠,鲍鹰,卢山.海藻栽培—传统方式及其改造途径.海洋与湖沼.2000,31(5):575-580.
    高俊凤.植物生理学实验指导,高等教育出版社,北京,2006.
    何晓明,林毓娥,陈清华,邓江明.高温对黄瓜幼苗生长、脯氨酸含量及SOD酶活性的影响上海交通大学学报(农业科学版).2002,20(1):30-33.
    侯和胜,何文君,李洪艳,佟少明.高温胁迫对条斑紫菜丝状体的生长和生理影响.辽宁师范大学学报(自然科学版),2008,31(4):487-490
    黄瑞芳,刘广发,周韬,高亚辉.耐高温巴氏杜氏藻突变株的诱变和鉴定.厦门大学学报(自然科学版),2006,45(2):272-275.
    黄世玉,王志勇.紫外线辐射坛紫菜离体细胞的初步试验.集美大学学报,1997,2(1):25-30.
    姜红霞,汤晓荣.红藻育种研究进展.2003,27(6):25-30.
    刘书仁,郭世荣,孙锦,程玉静,刘超杰,王丽萍.脯氨酸对高温胁迫下黄瓜幼苗活性氧代谢和渗调物质含量的影响.西北农业学报,2010,19(4):127-131.
    刘思俭.江蓠在不同水层中的光合作用与生长.水产学报,1982,6(1):59-64.
    刘思俭.中国江蓠人工栽培的现状与展望.水产学报,1989,13(2):173-180.
    刘思俭.我国江蓠的种类和人工栽培.湛江海洋大学学报,2001,21(3):71-79.
    刘涛,王翔宇,崔竞进.海带杂种优势苗种繁育技术研究.海洋学报,2005,27(1):145-148.
    李建宏,郑卫,倪霞,翁永萍,潘欣,浩云涛.两株钝顶螺旋藻紫外诱变株的特征.水生生物学报,200l,25(5):486-490.
    李敏,隋正红,易恒,张学成,阎炳伦,朱明.龙须菜5.8S rRNA和ITS区的克隆与系统学分析.中国海洋大学学报,2009,39(1):77~83.
    李婷婷,陈斌,陈省平,刘翠,姚雪,陈伟洲,赖学文,刘涛.江蓠属和龙须菜属5种海藻ITS序列分子系统学分析.中山大学学报(自然科学版),2012,51(4):97-105.
    李美真,周光正.由孢子大规模养殖产胶藻类—智利江蓠.海洋信息,1997,8:24-25.
    李晓丽.裙带菜、海带多倍体及杂交育种的研究.中国海洋大学,2008.
    李文红,姚建亭,王继成,王如才,段德麟.龙须菜(Gracilaria lemaneiformis)选育品系及其野生型的ISSR指纹分析.海洋与湖沼,2005,36(3):241-247.
    李修良,李美真.江蓠(Gracilaria vessucosa (Hude) Papenfuss)孢子体、雌配子体的生长比较.海洋湖沼通报,1986,3:63-68.
    鹿宁,臧晓南,张学成,等.高温胁迫下不同龙须菜品系抗氧化能力的比较.武汉大学学报(理学版).2010,56(5):570-577.
    孟琳.龙须菜耐高温新品系的选育及其相关性状分析.中国海洋大学,2009a.
    孟琳,徐涤,陈伟洲,张学成.龙须菜新品系07-2的筛选及性状分析,中国海洋大学学报,2009b,39:94~98.
    逄巧巧,隋正红,张学成,孔凡娜.龙须菜微卫星DNA的初步研究.中国海洋大学学报,2010,40(7):077-081.
    彭建宗,李安,黄志刚,陈兆平,文方德,王小菁.非洲菊耐热变异株系的筛选和田间鉴定.中国农业科学,2010,43(2):380-387.
    彭文博,王向阳,赵会杰,等.不同光温条件对小麦旗叶生理特性及粒重的影响,植物生理学通讯,1992,28(6):421-423.
    任雪莹.龙须菜世代差异表达基因和泛素基因的克隆及功能分析.中国海洋大学,2006.
    施巧琴,吴松刚等.工业微生物育种学,科学出版社,2009
    孙雪,张学成,茅云翔等.几种江蓠属海藻的ISSR标记分析.高技术通讯,2003,9:89-93.
    汤坤贤,焦念志,游秀萍,陈敏儿,沈东煜,林亚森,林泗彬.菊花心江蓠在网箱养殖区的生物修复作用.中国水产科学,2005,12(2):156-161.
    王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系.植物生理学报,1989,15(1):46-51.
    王高鸿,黄久常.蛋白质的选择性降解.生命科学,1999,11:24-30.
    王广策,尤丽莉,林祥志,曾呈奎.龙须菜原生质体的分离纯化及再生成植株的方法.中国,A01H4/00(2006.01)I,200410050542.6,2006.04.05.
    王荣富.植物抗寒指标的种类及其应用.植物生理学通讯.1987,(3):49-55.
    王素娟.海藻生物技术.上海科学技术出版社,1994.
    王悠.海带对高温胁迫的生理生化响应和耐高温机理的初步研究.青岛:中国海洋大学,2003.
    王悠,唐学玺.不同海带品系抗氧化系统活性与耐热性的相关性研究.应用生态学报,2005,16(8):1507-1510.
    王钟霞.龙须菜原生质体制备、融合和再生及孢子融合的研究.中国海洋大学.2011.
    徐建荣.两种江蓠果孢子的融合研究.青岛海洋大学学报,1992,22(1):111-122.
    徐姗楠,温珊珊,吴望星,何培民.真江蓠(Gracilaria verrucosa)对网箱养殖海区的生态修复及生态养殖匹配模式.2008,28(4):1466-1475.
    徐永健,钱鲁闽,焦念志.江蓠作为富营养化指示生物及修复生物的氮营养特性.中国水产科学,2004,11(3):276-280.
    徐永健,陆开宏,管保军.不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响.农业工程学报,2006,22(8):209-213.
    杨锐.大型海藻的遗传育种及应用,海洋湖沼通报,2009,1:113-122.
    杨锐,张晓龙,徐丽宁,等.坛紫菜耐高温胁迫机理之初步研究.中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集,2007.
    严兴洪.紫外线辐射与条斑紫菜原生质体后代发育和变异.上海水产大学学报,1992,1(1-2):71-78.
    姚元干,石雪晖,杨建国,王淑英,刘勇.辣椒叶片耐热性生理生化指标探讨.湖南农业大学学报.1998,24(2):119-122.
    余江.大型海藻龙须菜对环境胁迫的响应及其在医学上的应用初探.暨南大学.2008.
    于晓英.瓜叶菊(Senecio×hybridus)对热胁迫的反应及耐热变异体的研究.湖南农业大学,2006.
    臧晓南,张学成,张璐,刘滨,任雪莹,徐涤.藻类高温胁迫分子响应的研究进展.武汉大学学报(理学版).2008,54(6):732-738.
    曾呈奎,陈椒芬.真江蓠的繁殖习性和幼苗的室内培育.科学通报,1959,6:202-203.
    曾淑芳,刘思俭,揭振英,等.江蓠新品种培育.湛江水产学院学报,1990,10(1):23-27.
    张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990(4):62-65.
    张峻甫,夏邦美.中国的真江蓠和英国江蓠.海洋与湖沼.1985,16(3):175-180.
    张全胜,刘升平,曲善村,田铸平,郭占明,丛义周,李志凌.“901”海带新品种培育的研究.海洋湖沼通报,2001,2:46-53.
    张伟,张壮志,罗世菊,钱瑞.二氧化锗对裙带菜细胞系中硅藻的杀灭作用.齐鲁渔业,2006,23(6):39.
    张学成,张锦东,隋正红,谭桂英,董宝贤.江篱属藻胆蛋白的研究Ⅰ诱变、突变体筛选及藻胆蛋白的光谱特性.青岛海洋大学学报,1996,26(3):318-326.
    张学成,秦松等.海藻遗传学,中国农业出版社,2005.
    张学成,时艳侠,孟振.小球藻紫外线诱变及高产藻株筛选.中国海洋大学学报,2007,37(5):749-753.
    张学成,费修绠.全国水产原良种审定委员会审定品种981龙须菜及其栽培技术介绍.科学养鱼,2008,6:21-22.
    张学成,费修绠,王广策,林祥志,陈伟洲,隋正红,徐涤,臧晓南.江蓠属海藻龙须菜的基础研究与大规模栽培.中国海洋大学学报,2009,39(5):947-954.
    张扬.龙须菜琼胶合成相关基因的克隆及其表达调控的研究.中国海洋大学,2010.
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546.
    赵淑清,林春,杨小贺,武维华。拟南芥耐低钾突变体的筛选及遗传分析,植物学报(英文版),2001,43(1):105–107.
    郑小林,董仁瑞.水稻热激反应的研I:幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报,1997,23(2):109-113.
    Alamsjah M A. Producing new variety of Gracilaria Sp. through cross breeding. Research Journalof Fisheries and Hydrobiology,2010,5(2):159-167.
    Alscher R G, Erturk N, Heath S L. Role of superoxide dismutases (SODs) in controlling oxidativestress in plants. Journal of Experimental Botany,2002,53(37):1331–1341.
    Anderson P. Mutagenesis. Methods Cell Biol.1995,48:31-58.
    Asada, K and Takahashi, M. Production and scavenging ofactive oxygen in photosynthesis. InPhotoinhibition (Topics in Photosynthesis)(Vol.9)(Kyle, D.J. et al., eds),1987, pp.227–287,Elsevier.
    Kobiyama A, Tanaka S, Kaneko Y, Lim P, Ogata T. Temperature tolerance and expression of heatshock protein70in the toxic dinoflagellate Alexandrium tamarense (Dinophyceae). HarmfulAlgae,2010,9:180–185.
    Beuf L, Kurano N, Miyachi S. Rubisco activase transcript (rca) abundance increases when themarine unicellular green alga Chlorococcum littorale is grown under high-CO2stress. PlantMol. Biol.1999,41,627–635.
    Bird C J, McLachlan J. Some underutilized taxonomic criteria in Gracilaria. Bot. mar.1982,25:557-562.
    Bird C J. A review of recent taxonomic concepts and developments in the Gracilariaceae(Rhodophyta). Journal of Applied Phycology,1995,7:255-267.
    Borowitzka L J. Solute accumulation and regulation of cell water activity. In: Paleg LG, AspinallD, eds. The physiology and biochemistry of drought resistance in plants. New York:Academic Press,1981,97-130.
    Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plant. PlantMol Biol,1996,32(1-2):191-222.
    Bowen J, Michael L Y, Plummer K I M, Ferguson I A N. The heat shock response is involved inthermotolerance in suspension-cultured apple fruit cells. J Plant Physiol,2002,159:599–606.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry.1976,72:248-254.
    Burke J J, O'Mahony P J, Oliver M J. Isolation of arabidopsis mutants lacking components ofacquired thermotolerance. Plant Physiology,2000,123:575-587.
    Callis J, Pollmann L, Wettern M, Shanklin J, Vierstra R D. Sequence of a cDNA fromChlamydomonas reinhardtii encoding a ubiquitin52amino acid extension protein. NucleicAcids Research,1989,17:8377.
    Cheng, Q, Hallmann, A, Edwards, L, Miller, S M. Characterization of a heat-shock-induciblehsp70gene of the green alga Volvox carteri. Gene,2006,371:112–120.
    Conner T W, LaFayette P R, Nagao R T, Key J L. Sequence and expression of a HSP83fromArabidopsis thaliana. Plant Physiol.1990,94:1689-1695.
    Choo K, Snoeijs P, Pedersén M. Oxidative stress tolerance in the filamentous green algaeCladophora glomerata and Enteromorpha ahlneriana. J. Exp. Mar. Biol. Ecol.2004,298,111–123.
    Chen Y, Li D F, Lu W Q, Xing J J, Hui B D, Han Y S. Screening and characterization ofastaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnol Lett,2003,25:527–529.
    Craigie J S, Wen Z C, van der Meer J P. Interspecific, intraspecific and nutritionally-determinedvariations in the composition of agars from Gracilaria spp.. Botanica Marina,1984,17:55-61.
    Dai J X, Yang Z, Liu W S, et a1. Seedling production using enzymatically isolated thallus cellsand its application in Porphyra cultivation. HydrobioIogia,2004,512:127-131.
    Dawson E Y. Studies of northeast Pacific Gracilariaceae. Allan Hancock Foundation Publs, occ.Pap.1949,7:1-105.
    FAO,1995. Aquaculture Production Statistics1984-1993. FAO Fisheries Circular No.815,Revision7.
    Fei X G. Solving the coastal eutrophication problem by large scale seaweed cultivation.Hydrobiologia,2004,512:145–151.
    Gan S Y, Qin S, Othman R Y, Yu D, Phang S M. Transient expression of lacZ in particlebombarded Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol,2003,15:351–353.
    Gargiulo G M, Morabito M, Genovese G., Masi F. D. Molecular systematics and phylogenetics ofGracilariacean species from the Mediterranean Sea. Journal of Applied Phycology,2006,18:497–504.
    Gupta V, Baghel R S, Kumar M, et al. Growth and agarose characteristics of isomorphicgametophyte (male and female) and sporophyte of Gracilaria dura and their marker assistedselection. Aquaculture.2011,318:389–396.
    Gu Y H, Zhang X, Lu N et al.. Cloning and transcription analysis of hsp70-1and hsp70-2ofGracilaria lemaneiformis under heat shock. Aquaculture.2012,358-359:284-291.
    Huang Q M, Xie J, Zhang H F, Yang F, Yang W S. Mutational screening of fungal strain with highyield of laccase and enzyme production condition of the mutant. Mycosystema,2006,25(2):263-272.
    Jain M. Tissue culture derived variation in crop improvement. Euphytica,2001,118,153–166.
    Jiang Y W, Huang B R. Drought and Heat Stress Injury to Two Cool-Season Turfgrasses inRelation to Antioxidant Metabolism and Lipid Peroxidation. Crop Science,2001,41(2),436-442.
    Lee T M, Chang Y C. An increase of ornithine δ-aminotransferase-mediated proline synthesis inrelation to high-temprature injury in Gracilaria tenuistipitata (Gigartinales, Rhodophyta). JPhycol.1999,35:84-88.
    Levy I and Friedlander M. Strain selection in Gracilaria sp. I. Growth, pigment, andCarbohydrates characterization of G. corfferta and G. verrucosa (Rhodophyta, Gigartinales).Botanica Marina.1990a,33:339—345.
    Levy I, Beer S, Friedlander M.Strain selection in Gracilaria spp.2.Selection for high and lowtemperature resistance in G. verrucosa sporelings.J Appl Phycol,1990b,2:163-171.
    Lewis S, Handy R D, Cordi B, Billinghurst Z., Depledge M H. Stress proteins (HSP’s): Methodsof Detection and Their Use as an Environmental Biomarker. Ecotoxicology,1999,8:351-368.
    Lewis S, Donkin M E, Depledge M H. Hsp70expression in Enteromorpha intestinalis(Chlorophyta) exposed to environmental stressors. Aquat Toxicol,2001,51:277-291.
    Li X F, Sui Z H, Zhang X C. Application of RAPD in genetic diversity study on Gracilarialemaneiformis III. Phase and sex related markers. Chin J Oceanol Limnol,1998,16,147–151.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitativePCR and the2-△△CT Method. Methods,2001,25:402-408.
    Li R Z, Chong R Y, Meng Z C. A preliminary study of raft cultivation of Gracilaria verrucosaand Gracilaria sjoestedtii. Hydrobiologia,1984,116/117:252-254.
    Liu F, Pang S J. Stress tolerance and antioxidant enzymatic activities in the metabolisms of thereactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmata.Journal of Experimental Marine Biology and Ecology,2010,382:82–87.
    Liu X Z, Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creepingbentgrass. Crop Sci.2000,40:503–510.
    Luo H,Morchen M,Engel C R,et a1.Characterization of microsatellite markers in the red algaGracilaria gracilis.Mol.Ecol.1999,8(4):700-702.
    Mallick N, Mohn F H. Reactive oxygen species: response of algal cells. Journal of PlantPhysiology,2000,157:183-193.
    Martinez E A, Destombe C, Quillet MC, Valero M. Identification of random amplifiedpolymorphic DNA (RAPD) markers highly linked to sex determination in the red algaGracilaria gracilis. Mol. Ecol.,1999,8:1533–1538.
    Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants.TRENDS in Plant Science,2004,9(10):490-498.
    Mullarkey M and Jones P. Isolation and analysis of thermotolerant mutants of wheat. Journal ofExperimental Botany.2000,51(342):139-146.
    Mallick N, Mohn H F. Reactive oxygen species: response of algal cells. Journal of PlantPhysiology.2000,157:183-193.
    Ong S C, Kao C Y, Chiu S Y, Tsai M T, Lin C S. Characterization of the thermal-tolerant mutantsof Chlorella sp. with highgrowth rate and application in outdoor photobioreactor cultivation.Bioresource Technology,2010,101:2880–2883
    Papenfuss G F. Notes on algal nomenclature V. Various Chlorophyceae and Rhodophyceae.Phykos,1967,5(1/2):95-105.
    Patwary M U, van der Meer J P. Genetics and Breeding of Cultivated Seaweeds. The KoreanJournal of Phycology,1992,7(2):281-318.
    Purohit M, Srivastava S, Srivastava P S. Stress tolerant plants through tissue culture. In: Srivastava,P.S.(Ed.), Plant Tissue Culture and Molecular Biology: Application and Prospects. NarosaPublishing House, New Delhi,1998,554–578.
    Rai M K, Kalia R K, Singh R, Gangola M P, Dhawan A K. Developing stress tolerant plantsthrough in vitro selection—An overview of the recent progress. Environmental andExperimental Botany,2011,71:89–98.
    Ren G Z, Wang J C, Chen M Q. Cultivation of Gracilaria by means of low rafts. Development inHydrobiology,11th International Seaw eeds Symposium. Hydrobiologia,1984,116/117:72-76.
    Roosens N H, Thu T T, Iskandar H M, Jacobs M. Isolation of the ornithine-δ-aminotransferasecDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol.1998,117:263–271.
    Sandesh K B, Vidhyavathi R, Sarada R, Ravishankar G A. Enhancement of carotenoids bymutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants.Bioresour Technol,2008,99:8667–8673.
    Schroda M, Vallon O, Wollman F A, Beck C F. A chloroplast targeted heat shock protein70(hsp70) contributes to the photoprotection and repair of photosystem II during and afterphotoinhibition. Plant Cell,1999,11:1165-1178.
    Scoccianti V, Penna A, Penna N, Magnani M. Effect of heat stress on polyamine content andprotein pattern in Skeletonema costatum. Marine biology,1995,121:549-554.
    Shen D, Wu M. Chromosomal and mutagenic study of the marine macroalga, Gracilariatenuistipitata. Journal of Applied Phycology.1995,7:25-31.
    Shimogawara K, Muto S. Heat shock induced change in protein ubiquitination in Chlamydomonas.Plant and Cell Physiology,1989,30:9-16.
    Sies H. Strategies of antioxidant defense. European Journal of Biochemistry,1993,215:213-219.
    Sinha R P and H der D P. UV-induced DNA damage and repair: a review. Photoche Photobiol Sci,2002,1:225–236
    Tal M. In vitro selection for salt tolerance in crop plants: Theoretical and practical considerations.In Vitro Cell Dev. Biol.-Plant,1994.30,175-180.
    Troell M, Halling C, Nilsson A, et al. Integrated marine cultivation of Gracilaria chilensis(Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact andincreased economicout put. Aquaculture,1997,156:45-61.
    Tseng C K, Xia B M. On the Gracilaria in the Westem Pacific and the Southeastern Asia region.Botanica Marina,1999,42:209-217.
    Uppalapati S R, Fujita Y. A simple method for mass isolation of protoplasts from species ofMonostroma, Enteromorpha and Ulva (Chlorophyta, Ulvales). J Appl Phycol.2002,14:165-168.
    Van der Meer J P. Genetics contributions to research on seaweeds.Progress in PhycologicalResearch.1986,4:1-38.
    Vayda M E, Yuan M L. The heat shock response of an antarctic alga is evident at5°C. Plant MolBiol.1994,24(1):229-233.
    Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids,2008,35:753–759.
    Vierling E. The role of heat shock proteins in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol.1991,42,579–620.
    Wahid A, Gelani S, Ashraf M, Foolad M R. Heat tolerance in plants: An overview. Environ andExp Bot,2007,61:199-223.
    Wang Z P, Ye Q F, Cui H R, Xu B J, Wu M W (1998) Selection of the mutant of SpirulinaPlatensis with extra-long filaments and morphology and growth of the mutant. Acta AgricNucl Sin12(3):146-150
    Wang Z Y, Wang G C, Niu J F, Wang W J, Peng G. Optimization of conditions for tetrasporerelease and assessment of photosynthetic activities for different generation branches ofGracilaria lemaneiformis Bory. Chinese Journal of Oceanology and Limnology,2010,28(4):738-748.
    Xu S, Li J L, Zhang X Q, Wei H, Cui L J. Effects of heat acclimation pretreatment on changes ofmembrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts intwo cool-season turfgrass species under heat stress. Environmental and Experimental Botany,2006,56:274–285.
    Yan X H and Wang S J. Regeneration of whole plants from Gracilaria asiatica Chang et Xiaprotoplasts (Gracilariaceae, Rhodophyta). Hydrobiologia,1993,260/261(1):429-436.
    Ye N H, Wang H X, Wang G C. Formation and early development of tetraspores of Gracilarialemaneiformis (Gracilaria, Gracilariaceae) under laboratory conditions. Aquaculture,2006,254:219–226.
    Zhang J H, Huang, W D, Liu, Y P, Pan, Q H. Effects of temperature acclimation pretreatment onthe ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu)under cross-temperature stresses. J. Integr. Plant Biol.,2005,47:959–970.
    Zhang X C, van der Meer J P. A genetic study on Gracilaria sjoestedtii. Can. J. Bot,1988,66:2022-2026.
    Zhang X C, Fei X G. Cultivation and Hybridization Experiments on Gracilaria tenuistipitata.Tokyo: Fuji Technology Press Ltd,1990.213-214.
    Zhou Y, Yang H S, Hu H Y et al.. Bioremediation potential of the macroalga Gracilarialemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China.Aquaculture,2006,252:264–276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700