低压低氧环境下纸箱堆垛火的实验和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾是人类社会中发生最频繁其极具毁灭性的灾害之一,而低压环境下的火灾研究是我国火灾研究领域的一个较新的方向。一方面,西藏地处高原,是我国藏传佛教的圣地,古建筑众多,这些古建筑在西藏文化中占有极其重要的地位,也是我国珍贵的历史文化遗产。但这些古建筑,年代久远并且多为木质结构,其内部更是存在着大量的可燃物以及点火源,火灾风险大,而且近年来随着西藏经济的发展,用火、用电量的增加,导致每年发生的火灾事故也呈现出上升趋势。另一方面,高空飞行器在巡航状态时也是处于一种低压低氧状态,一旦发生火灾,将损失巨大。因此,研究低气压环境下火灾的燃烧特性和发展规律,对各种低气压特殊环境下火灾安全防治的研究具有重要的现实意义。
     环境压力的降低不仅影响着气相空间的化学反应速率,同时也能够影响气相空间、气—固相之间的热量传递,这些变化必然将对燃料的点火过程、火焰的蔓延传播过程、烟气的运动蔓延过程等产生影响。大量的实验研究表明,低气压环境将会降低小尺寸油池火和木材堆垛火的燃烧速率,也会对火焰温度场分布、辐射强度造成影响,但低气压环境下大尺寸固体火灾的基础实验数据相对匮乏,而热释放速率的实验数据则更少。因此,根据氧耗法原理在拉萨搭建全尺寸热释放速率平台,可使我们能够直接燃烧的热释放速率。本文选用了火灾中常用的等效火灾载荷纸箱作为实验燃料,分别在合肥和拉萨的全尺寸热释放速率平台下进行燃烧实验,以揭示低压环境对固体火灾燃烧速率、燃烧效率等燃烧特性的影响。
     为了研究低压环境对不同尺寸和形状的火灾载荷的影响,本文对12中不同纸箱个数和不同摆放方式的纸箱堆垛火进行了测量,特征尺寸范围约为0.5-1.5m,每个工况至少重复3次实验。本文分别直接测量了合肥和拉萨纸箱堆垛火的热释放速率,其燃烧释放的热量均集中在峰值附近,因此可采用三角形特征化模型对其进行特征化处理,以方便火灾建模人员的使用。通过对测量所得热释放速率、燃烧速率、火焰温度以及火焰辐射等参数的对比分析,我们发现:(1)低压环境的燃烧更不充分,表现在固体可燃物的不完全热解以及可燃热解气的不完全燃烧,拉萨的有效燃烧热值约为合肥的71%;(2)低压环境对火灾发展的影响集中表现在燃烧特征时间的增加,无量纲燃烧速率与无量纲时间的曲线基本不随压力变化;(3)在本文的火灾规模范围内,对流热传导在热量传递中起主导地位,其燃烧速率或热释放速率峰值与火灾压力模型一致,即无量纲的燃烧速率正比与格拉晓夫数的1/3次方;不同位置温升上升的时间差间接证明了低压环境下的火焰传播速度正比于压力的2/3次方,也与火灾压力模型一致;(4)拉萨的火焰羽流温度分布并不完全符合经典的火羽流模型,表现为靠近火源时温度偏低,而远离火源时偏高,低压环境下的经典羽流模型可能需要通过更为细致的实验来验证和修正;(5)合肥和拉萨所测量的辐射热通量基本相等,说明拉萨的辐射分数要大于合肥,可能由于低压环境的不完全燃烧导致火焰发射率增加。拉萨的火焰温度比合肥低100。C左右,也说明了低压环境下的火焰辐射分数会增大;
     本文在理论分析和实验结果的基础上,还对低压环境下火灾的数值模拟方法进行了探索性的研究。本文采用以试样单位面积热释放速率为基础的模拟预测方法,按照p2/3的比例减小单位面积热释放速率并延长增长时间,对常压和低压环境下的纸箱堆垛火进行了模拟实验。结果表明该模拟方法能够较好的预测常压和低压环境下的火灾发展过程。由于模拟方法无法实现燃料倒塌的过程,因此在较大尺寸时得到的火灾规模会比实际偏大,火焰温度的预测也不够精确。
Fire is one of the most frequent and devastating disasters in human society and the research of its development laws under low-air pressure is a relatively new subject in the field of fire research in China. On one hand, the Tibetan Plateau is the sacred place of Tibetan Buddhism with many ancient buildings. However, those ancient buildings are mostly wooden structure, and there are large amounts of combustible materials and ignition sources, which will easily lead to a fire. Moreover, the rapid increase of the consumption amount of fire, electricity, gas in Tibet also caused a rising trend of fire accidents. On the other hand, tremendous loss would be caused if fire occurs when an aircraft is in the state of cruising, generally low pressure inside. Therefore, it is necessary to study the combustion characteristics and development laws of fires under low pressure and low oxygen concentration.
     Low pressure and low oxygen concentration at high altitude will directly affect the chemical reaction rate, heat transport process in the fire, which will lead to the variation of ignition of combustibles, fire spread rate and smoke spread, etc. Many Researches have indicated that the burning rate of small pool fires and wood crib fire will decrease under low air pressure, and the temperature field and radiation fraction might be also changed. However, there are little researches on the large solid fire in low pressure, and little directly measured data of heat release rate. Therefore, a large-scale heat release rate calorimeter platform was built at Lhasa based on ISO9705standard to measure the heat release rate directly. The cardboard boxes were chosen as the fire load in this research, which was usually treated as typical fuel in fire research, and the fire experiments were performed in the large-scale heat release rate calorimeter platform respectively at Hefei and Lhasa.
     To study the effect of pressure on the fire with different size and layout,12configurations of cardboard boxes layouts have been tested, with characteristic length range from0.5to1.5m. And test for each configuration was repeated at least3times to ensure repeatability. The heat release rate was measured directly, and the curves were characterized by using a triangle approximation for the convenience of fire modelers' use. By comparing the measured heat release rate, burning rate, flame temperature, and flame radiation fraction between Hefei and Lhasa, it was found that:(1) the combustion is more incomplete under low air pressure, which was outstandingly shown in two aspects:incomplete pyrolysis of solid combustible and incomplete combustion of pyrolysis gas;(2) the effect of low air pressure on the fire development mainly manifested in the increase of characteristic combustion time, which means the curves of dimensionless burning rate vs. dimensionless time would overlap together for different ambient pressure;(3) the convection plays a dominant role in energy transfer process within the scale of fire in our research. The peak value of dimensionless heat release rate or mass loss rate was proportional to the1/3power of Grashof number, which was consistent with the pressure model of fire. The time difference of temperature rising between different locations gave indirect evidence to the dependence of fire spread rate on the P2/3, which is also consisted with the pressure model of fire;(4) the fire plume temperature distribution at Lhasa is not entirely conform to the classical plume model. The temperature was higher near the fire than the classical plume model, but lower far from the fire. It is necessary to perform more accurate experiments under low air pressure to verify and correct the classical plume model;(5) the radiative heat flux measured at the same location was equal at Hefei and Lhasa, which means that the radiation fraction at Lhasa was larger than Hefei with the same size of fire load. The flame temperature at Lhasa was about100℃lower than that of Hefei, which also proved this point.
     On the basis of theoretical analysis and experimental results, some exploratory research was made in this paper about the numerical simulation method of fire under low air pressure. In this research, the simulation method based on the heat release rate per unit area was used to predict the heat release rate of the cardboard-box fires. For low air pressure, the peak value of heat release rate per unit area was reduced in proportion to P2/3, and the growth time was also prolonged with the same factor. The simulation result shows that this method could predict the development process of fire under normal and low pressure environment. Because the collapse of cardboard box was difficult to achieve through the simulation method, the predicted heat release rate of larger-size fire would be larger than the measured value. The flame temperature also can't be predicted accurately.
引文
[1]范维澄,王清安,姜冯辉,and周建军,火灾简明学教程.1995,合肥:中国科学技术大学出版社.
    [2]张晓蓉,杨巧红,荆春霞,and吴赤蓬,19940~2005年西藏自治区火灾发生的流行趋势.中华疾病控制杂志,2007.11(3):p.286-288.
    [3]田晓瑞,舒立福,王明玉,and赵凤君,西藏森林火灾时空分布规律研究.火灾科学,2007.16(1).
    [4]李凤泉,对西藏文物古建筑消防工作的探讨.消防科学与技术,2004.4:p.035.
    [5]Fan, W. Fire safety research of historical buildings in china. in Proceedings of Fifth Asia-Oceania Symposium on Fire Safety and Technology, Newcastle, Australia.2001.
    [6]Wikipedia. Air Canada Flight 797.2013; Available from: http://en.wikipedia.org/wiki/Air Canada Flight 797.
    [7]Jomaas, G., X. Zheng, D. Zhu, and C. Law, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures. Proceedings of the Combustion Institute,2005.30(1):p.193-200.
    [8]孙晓乾,李元洲,霍然,曾文茹,李思成,and叶永飞,西藏古建筑常用木材的着火特性试验.中国科学技术大学学报,2006.36(1):p.77—80.
    [9]De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    [10]Ris, J.D., A. Murty Kanury, and M. Yuen. Pressure modeling of fires, in Symposium (International) on Combustion.1973. Elsevier.
    [11]Alpert, R. Pressure modeling of fires controlled by radiation, in Symposium (International) on Combustion.1977. Elsevier.
    [12]Wieser, D., P. Jauch, and U. Willi, The influence of high altitude on fire detector test fires. Fire safety journal,1997.29(2):p.195-204.
    [13]Li, Z.-h., Y. He, H. Zhang, and J. Wang, Combustion characteristics of n-heptane and wood crib fires at different altitudes. Proceedings of the Combustion Institute,2009.32(2):p.2481-2488.
    [14]Fang, J., R. Tu, J.-f. Guan, J.-j. Wang, and Y.-m. Zhang, Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel,2011.90(8):p.2760-2766.
    [15]Hu, X., Y. He, Z. Li, and J. Wang, Combustion characteristics of n-heptane at high altitudes. Proceedings of the Combustion Institute,2011.33(2):p. 2607-2615.
    [16]于春雨,张永明,方俊,沈诗林,and李英,西藏高原环境下点式感烟火灾探测器的灵敏度.中国科学技术大学学报,2007.37(3):p.6.
    [17]Jun, F., C.-Y. Yu, T. Ran, L.-F. Qiao, Y.-M. Zhang, and J.-J. Wang, The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. Journal of hazardous materials,2008.154(1):p.476-483.
    [18]Zarzecki, M., J.G. Quintiere, R.E. Lyon, T. Rossmann, and F.J. Diez, The effect of pressure and oxygen concentration on the combustion of PMMA. Combustion and Flame,2013.
    [19]Kim, C., A. El-Leathy, F. Xu, and G. Faeth, Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1-1.0 atm. Combustion and Flame,2004.136(1):p.191-207.
    [20]Pons, L., N. Darabiha, and S. Candel, Pressure effects on nonpremixed strained flames. Combustion and Flame,2008.152(1):p.218-229.
    [21]Kleinhenz, J., I.I. Feier, S.-Y. Hsu, J.S. T'ien, P.V. Ferkul, and K.R. Sacksteder, Pressure modeling of upward flame spread and burning rates over solids in partial gravity. Combustion and Flame,2008.154(4):p. 637-643.
    [22]Nakamura, Y. and A. Aoki, Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations-for fire safety in space habitats. Advances in Space Research,2008.41(5):p.777-782.
    [23]McAllister, S., C. Fernandez-Pello, D. Urban, and G. Ruff, The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible. Combustion and Flame,2010.157(9):p.1753-1759.
    [24]Hirsch, D., F.-Y. Hshieh, H. Beeson, and M. Pedley, Carbon dioxide Fire suppressant concentration needs for International Space Station environments. Journal of fire sciences,2002.20(5):p.391-399.
    [25]Alpert, R., Pressure modeling of transient crib fires. Combustion Science and Technology,1977.15(1-2):p.11-20.
    [26]Kanury, A.M. Modeling of pool fires with a variety of polymers, in Symposium (International) on Combustion.1975. Elsevier.
    [27]Hirst, R. and D. Sutton, The effect of reduced pressure and airflow on liquid surface diffusion flames. Combustion and Flame,1961.5:p.319-330.
    [28]Most, J.-M., P. Mandin, J. Chen, P. Joulain, D. Durox, and A. Carlos Fernande-Pello. Influence of gravity and pressure on pool fire-type diffusion flames. in Symposium (International) on Combustion.1996. Elsevier.
    [29]李振华,杨满江,张辉,and汪箭,低压低氧环境下油盘火的对比实验与燃烧特性.中国科学技术大学学报,2009(02):p.215-219.
    [30]胡小康,高海拔地区油池火燃烧和烟气特性研究,2012,中国科学技术大学.
    [31]Tu, R., J. Fang, Y.-m. Zhang, J. Zhang, and Y. Zeng, Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proceedings of the Combustion Institute,2012.
    [32]涂然,高原低压低氧对池火燃烧与火焰图像特征的影响机制,2012,中国科学技术大学.
    [33]Tang, F., L. Hu, Q. Wang, K. Lu, and L. Yang, An experimental investigation on temperature profile of buoyant spill plume from under-ventilated compartment fires in a reduced pressure atmosphere at high altitude. International Journal of Heat and Mass Transfer,2012.
    [34]Hu, L., Q. Wang, F. Tang, M. Delichatsios, and X. Zhang, Axial temperature profile in vertical buoyant turbulent jet fire in a reduced pressure atmosphere. Fuel,2012.
    [35]Hu, L., Q. Wang, M. Delichatsios, F. Tang, X. Zhang, and S. Lu, Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel,2013.
    [36]蔡听,高海拔低气压条件对细水雾灭火性能影响的实验研究,2009,中国科学技术大学.
    [37]任彬彬,高原环境下木材着火特性及油池火羽流特性研究,2009.
    [38]Zeng, Y., J. Fang, R. Tu, J. Wang, and Y. Zhang. Study on Burning Characteristics of Small-Scale Ethanol Pool Fire in Closed and Open Space Under Low Air Pressure.2011. ASME.
    [39]Zeng, Y, J. Fang, J. Wang, J. Li, R. Tu, and Y. Zhang, Momentum-dominated Methane Jet Flame at Sub -atmospheric Pressure in The 9th Asia-Oceania Symposium on Fire Science and Technology2012, Procedia Engineering:Hefei.
    [40]Jiusheng, Y, Y. Wei, L. Quanyi, W. Nan, Z. Zhihui, W. Yi, and Z. Hui, Experimental Study of N-Heptane Pool Fire Behaviors under Dynamic Pressures in an Altitude Chamber. Procedia Engineering,2013.52:p. 548-556.
    [1]范维澄,王清安,姜冯辉,and周建军,火灾简明学教程.1995,合肥:中国科学技术大学出版社.
    [2]Kanury, A.M. Modeling of pool fires with a variety of polymers. in Symposium (International) on Combustion.1975. Elsevier.
    [3]Saunders,O., The effect of pressure upon natural convection in air. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences,1936.157(891):p.278-291.
    [4]Hottel, H.C., Fire Modeling, in International Symposium on the Use of Models in Fire Research, W.G. Bert, Editor 1961, National Academy of Sciences, National Research Council.
    [5]Williams, F.A., M. Barrere, and N. Huang, Fundamental aspects of solid propellant rockets,1969, DTIC Document.
    [6]Ris, J.D., A. Murty Kanury, and M. Yuen. Pressure modeling of fires, in Symposium (International) on Combustion.1973. Elsevier.
    [7]Quintiere, J.G., Scaling applications in fire research. Fire safety journal, 1989.15(1):p.3-29.
    [8]Alpert, R. Pressure modeling of fires controlled by radiation. in Symposium (International) on Combustion. 1977. Elsevier.
    [9]Alpert, R, Pressure modeling of transient crib fires. Combustion Science and Technology,1977.15(1-2):p.11-20.
    [10]Quintiere, J.G. and J. Wiley, Fundamentals of fire phenomena.2006:John Wiley England.
    [11]Spalding, D.B., I.C.o. Science, and L.C.F.D.U. Technology, The combustion of liquid fuels. cal,1951.900:p.2.
    [12]Incropera, F. and D. DeWitt, Introduction to heat transfer.1985.
    [13]De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    [1]范维澄,王清安,姜冯辉,and周建军,火灾简明学教程.1995,合肥:中国科学技术大学出版社.
    [2]新华网.西藏成立首家高原火灾安全实验室.2009;Available from: http://news.xinhuanet.com/society/2009-07/04/content 11651489.htm.
    [3]Li, Z.-h., Y. He, H. Zhang, and J. Wang, Combustion characteristics of n-heptane and wood crib fires at different altitudes. Proceedings of the Combustion Institute,2009.32(2):p.2481-2488.
    [4]Hu, X., Y. He, Z. Li, and J. Wang, Combustion characteristics of n-heptane at high altitudes. Proceedings of the Combustion Institute,2011.33(2):p. 2607-2615.
    [5]Jun, F., C.-Y. Yu, T. Ran, L.-F. Qiao, Y.-M. Zhang, and J.-J. Wang, The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. Journal of hazardous materials,2008.154(1):p.476-483.
    [6]Fang, J., R. Tu, J.-f. Guan, J.-j. Wang, and Y.-m. Zhang, Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel,2011.90(8):p.2760-2766.
    [7]Tu, R., J. Fang, Y.-m. Zhang, J. Zhang, and Y. Zeng, Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proceedings of the Combustion Institute,2012.
    [8]Zeng, Y, J. Fang, R. Tu, J. Wang, and Y. Zhang. Study on Burning Characteristics of Small-Scale Ethanol Pool Fire in Closed and Open Space Under Low Air Pressure.2011. ASME.
    [9]Babrauskas, V. and R.D. Peacock, Heat release rate:the single most important variable in fire hazard. Fire safety journal,1992.18(3):p. 255-272.
    [10]张和平,聂磊,张军,杨的,张庆文,and宋卫国,建筑装饰板材的ISOROOM大型热释放.火灾科学,2003.12(2)。
    [11]廖光煊,王喜世,and秦俊,热灾害实验诊断方法.1 ed.2003,合肥:中国科学技术大学出版社
    [12]Thornton, W, The relation of oxygen to the heat of combustion of organic compounds. The London, Edinburgh, and Dublin philosophical magazine and journal of science,1917.33(194):p.196-203.
    [13]Huggett, C., Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials,1980.4(2):p.61-65.
    [14]Babrauskas, V. and S.J. Grayson, Oxygen Consumption Calorimetry, in Heat Release in Fires.1992, Taylor & Francis Group.
    [15]Parker, W.J., Calculations of the heat release rate by oxygen consumption for various applications. Journal of fire sciences,1984.2(5):p.380-395.
    [16]Janssens, M.L., Measuring rate of heat release by oxygen consumption. Fire Technology,1991.27(3):p.234-249.
    [17]Standardization, I.O.f, Fire tests-Full-scale room test for surface products, 1996.
    [18]中华人民共和国公共安全行业标准,表面材料的实体房间火试验方法,1996.
    [19]Wikipedia, Cardboard box.2013.
    [20]洪亮and程利伟,瓦楞纸箱工艺.包装工程,2007.28(12):p.4.
    [21]Hietaniemi, J. and E. Mikkola, Design fires for fire safety engineering. Helsinki:VTT Technical Research Centre of Finland,2010.90.
    [22]DiNenno, P.J., C.L. Beyler, R.L.P. Custer, W.D. Walton, J.M. Watts, D. Drysdale, and J.R. Hall, Book review:SFPE Handbook of Fire Protection Engineering. Fire Engineers Journal,1997.57(Compendex):p.42-42.
    [1]Li, Z.-h., Y. He, H. Zhang, and J. Wang, Combustion characteristics of n-heptane and wood crib fires at different altitudes. Proceedings of the Combustion Institute,2009.32(2):p.2481-2488.
    [2]Jun, F., C.-Y. Yu, T. Ran, L.-F. Qiao, Y.-M. Zhang, and J.-J. Wang, The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. Journal of hazardous materials,2008.154(1):p.476-483.
    [3]Fang, J., R. Tu, J.-f. Guan, J.-j. Wang, and Y.-m. Zhang, Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel,2011.90(8):p.2760-2766.
    [4]Hu, X., Y. He, Z. Li, and J. Wang, Combustion characteristics of n-heptane at high altitudes. Proceedings of the Combustion Institute,2011.33(2):p. 2607-2615.
    [5]Zeng, Y, J. Fang, R. Tu, J. Wang, and Y. Zhang. Study on Burning Characteristics of Small-Scale Ethanol Pool Fire in Closed and Open Space Under Low Air Pressure.2011. ASME.
    [6]Tu, R., J. Fang, Y.-m. Zhang, J. Zhang, and Y. Zeng, Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proceedings of the Combustion Institute,2012.
    [7]Alpert, R., Pressure modeling of transient crib fires. Combustion Science and Technology,1977.15(1-2):p.11-20.
    [8]Kanury, A.M. Modeling of pool fires with a variety of polymers, in Symposium (International) on Combustion.1975. Elsevier.
    [9]Press, W.H., Numerical Recipes 3rd Edition:The Art of Scientific Computing.2007:Cambridge University Press.
    [10]Savitzky, A. and M.J. Golay, Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry,1964.36(8):p. 1627-1639.
    [11]Mowrer, F.W. and R.B. Williamson, Methods to characterize heat release rate data. Fire safety journal,1990.16(5):p.367-387.
    [12]SAITO, K., J.G. QUINTIERE, and F.A. WILLIAMS, Upward Turbulent Flame Spread. Fire Safety Science-Proceedings of the first international symposium,1986.1:p.75-86.
    [13]Quintiere, J., An approach to modeling wall fire spread in a room. Fire safety journal,1981.3(4):p.201-214.
    [14]Friedman, R., Quantification of threat from a rapidly growing fire in terms of relative material properties. Fire and Materials,1978.2(1):p.27-33.
    [15]Markstein, G. and J. De Ris. Upward fire spread over textiles. in Symposium (International) on Combustion.1973. Elsevier.
    [16]Fernandez-Pello, A., A theoretical model for the upward laminar spread of flames over vertical fuel surfaces. Combustion and Flame,1978.31:p. 135-148.
    [17]Heskestad, G. and M.A. Delichatsios. The initial convective flow in fire, in Symposium (International) on Combustion.1979. Elsevier.
    [18]Babrauskas, V. and W.D. Walton, A simplified characterization of upholstered furniture heat release rates. Fire safety journal,1986.11(3):p. 181-192.
    [19]Babrauskas, V., Upholstered furniture heat release rates:Measurements and estimation. Journal of fire sciences,1983.1(1):p.9-32.
    [20]Draper, N.R., H. Smith, and E. Pownell, Applied regression analysis. Vol.3. 1966:Wiley New York.
    [21]Ris, J.D., A. Murty Kanury, and M. Yuen. Pressure modeling of fires. in Symposium (International) on Combustion. 1973. Elsevier.
    [22]Quintiere, J.G. and J. Wiley, Fundamentals of fire phenomena.2006:John Wiley England.
    [23]Most, J.-M., P. Mandin, J. Chen, P. Joulain, D. Durox, and A. Carlos Fernande-Pello. Influence of gravity and pressure on pool fire-type diffusion flames. in Symposium (International) on Combustion.1996. Elsevier.
    [24]Ucuncu, A. and A. Veisilind, Energy recovery from mixed paper waste. Final Report, Duke University, North Carolina,1993.
    [25]De Ris, J.L., P.K. Wu, and G. Heskestad, Radiation fire modeling. Proceedings of the Combustion Institute,2000.28(2):p.2751-2759.
    [26]TU, R., J. LEI, Y. WANG, J. FANG, J.-j. WANG, and Y.-m. ZHANG, Small Scale Pool Fire Burning Rate Under Reduced Atmospheric Pressure Using Pressure Modeling. Journal of Combustion Science and Technology,2010.5: p.016.
    [27]涂然,高原低压低氧对池火燃烧与火焰图像特征的影响机制,2012,中国科学技术大学.
    [28]McCaffrey, B.J. and C.f.F. Research, Purely Buoyant Diffusion Flames: Some Experimental Results.1979.
    [29]Morton, B., G. Taylor, and J. Turner, Turbulent gravitational convection from maintained and instantaneous sources. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1956. 234(1196):p.1-23.
    [30]Heskestad, G., Fire Plumes, in SFPE Handbook of Fire Protection Engineering.2002, NFPA, National Fire Protection Association.
    [31]Chatris, J., J. Quintela, J. Folch, E. Planas, J. Arnaldos, and J. Casal, Experimental study of burning rate in hydrocarbon pool fires. Combustion and Flame,2001.126(1):p.1373-1383.
    [1]Pletcher, R.H., D.A. Anderson, and J.C. Tannehill, Computational Fluid Mechanics and Heat Transfer.2012:CRC Press, Taylor & Francis Group.
    [2]McGrattan, K. and G.P. Forney, Fire Dynamics Simulator (Version 5), User's Guide. NIST special publication,2008.1019(5).
    [3]Smagorinsky, J., GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS:I. THE BASIC EXPERIMENT*. Monthly weather review,1963.91(3):p.99-164.
    [4]王玲玲,大涡模拟理论及其应用综述.河海大学学报:自然科学版,2004.32(3):p.261-265.
    [5]Matala, A., S. Hostikka, and J. Mangs. Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. in Proceedings of the 9th International Symposium of Fire Safety Science IAFSS.2008.
    [6]Lautenberger, C., G. Rein, and C. Fernandez-Pello, The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire safety journal,2006.41(3):p.204-214.
    [7]Biteau, H., T. Steinhaus, A. Simeoni, C. Schemel, G. Marlair, N. Bal, and J.L. Torero, Calculation methods for the heat release rate of materials of unknown composition.2008.
    [8]Hietaniemi, J. and E. Mikkola, Design fires for fire safety engineering. Helsinki:VTT Technical Research Centre of Finland,2010.90.
    [9]Hill, K., Verification and validation of selected fire models for nuclear power plant applications.2006:US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Division of Risk Analysis and Applications.
    [10]ToolBox, E. Solids-Specific Heats.2013; Available from: http://www.engineeringtoolbox.com/.
    [11]Madrzykowski, D. and W.D. Walton, Cook County Administration Building Fire,69 West Washington, Chicago, Illinois, October 17,2003:Heat Release Rate Experiments and FDS Simulations.2004:US Department of Commerce, National Institute of Standards and Technology, Building and Fire Research Laboratory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700