多维多阶正交光信号的传输理论及其数字域损伤补偿与动态识别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信网是信息社会的支撑基础,是国家工业化与信息化融合的重要纽带。近年来高清电视、视频点播和移动宽带业务的快速发展,对光纤通信网络的带宽和容量提出了更高更迫切的需求。随着单通道40Gb/s波分复用(WDM)光纤通信系统的商用部署和单通道100Gb/s光纤通信系统的出现,无论是传输网还是接入网,未来研究趋势都正向着单通道400Gb/s~1Tb/s甚至更高速率发展。因此,寻求新型的光信号传输理论及相关的信号处理模式已成为未来光通信领域面临的重大挑战。
     光纤通信系统发展到今天,有两大难题亟待解决:首先是光纤通信系统的容量极限迫近。据思科统计,到2020年,骨干网容量需求将达到200Tb/s。传统的观点认为光纤通信的频谱资源是无限的,而目前光纤通信系统的可用带宽才100nm,其中可成熟商用的带宽不过60nm。随着系统的容量需求不断增长,要求光通信系统进一步提升频谱效率,这就需要通过探索新的维度以及新型的高阶调制格式来实现。第二个难题是随着云计算等新兴业务的出现,传统的密集波分复用系统已经不适应当前网络的发展,信道资源的灵活调配以及信道速率的自动适配将是未来光网络发展的趋势。
     本论文的研究工作主要针对当前光通信系统中存在的两大问题展开:第一是提升系统的频谱效率以及容量极限,第二是提高信号性能与灵活度。在提升系统频谱效率与容量极限方面,主要通过多维多阶光信号传输理论以及超密集光正交波分复用理论实现;在提高信号性能与灵活度方面,主要通过光信号的数字域损伤补偿算法与变速率光信号的识别与扰动理论实现。
     本论文的主要创新工作如下:
     一、多维多阶正交光信号传输机理
     1)多维度信号的复用/解复用及互扰抑制
     传统的光纤通信系统利用的维度单一,通常只利用光的强度或者相位维度;但光场是一个矢量信号,具备相位、强度、偏振、角动量等多个维度。本文针对光通信系统频谱效率提升的问题,创新性提出了光正交频分复用系统中的矢量信息复用与控制理论,提出了基于偏振相移键控、二进制相移键控与正交频分复用信号的复合传输方案,并采取数值仿真和实验研究手段验证了所提方案的可行性。相关成果连续在光通信系统顶级期刊Optics Express上发表,形成系列论文(共三篇),其中一篇论文的单篇引用达到21次。
     2)基于差分幅度相位调制的高阶光信号
     对高阶光信号而言,需要采用较复杂的信号补偿均衡方法恢复信号性能,这通常是基于辅助序列或者导频实现。目前的数字损伤补偿算法多采用增加导频信息以及均衡阶数来提升系统性能,却忽略了算法的可实现度,包括算法的复杂度及信息的冗余度等。本文首次提出了一种基于差分幅度相位调制的高阶光信号产生方法,由于信号的差分特性,不需要在接收端进行信道均衡处理。不仅因省去冗余辅助信息提高了信号的频带利用率,而且简化了接收端计算复杂度。实验研究结果表明,不采用信道均衡的差分幅度相位调制高阶光信号具有与采用信道均衡的正交幅度调制(QAM)信号相当的误码性能和更优的抗非线性性能。该调制格式的有效信息效率也提升了11%。相关成果发表在Optics Express (OE)上,爱尔兰约克大学相关研究组认为我们提出的算法在光传输系统应用方面很有创造性(见OE,vo1.21,no.2,2013)。
     二、超密集正交波分复用光信号性能研究
     1)基于旁瓣抑制的密集光信号设计
     由于光纤仙农极限的存在,单载波的信息速率不可能无限度的增长,那么密集多子载波并行传输就成为了未来单通道Tbit传输系统的首选方案,此架构已被业界广泛认可。但是,密集并行光传输系统存在一个尚待解决的核心问题——子载波之间的串扰。如果能够降低载波间干扰,就能够进一步提高超密集光信号的传输性能,从而进一步提升系统的频谱效率。论文首次提出了一种基于旁瓣抑制的密集光信号设计方法,从理论和实验两方面深入研究了信号的产生机理,分析了此方法对载波间互扰的改善程度。研究结果表明,基于旁瓣抑制的密集光信号设计方法能够降低载波间互扰,提高信号的传输性能。论文首次将载波间干扰降低达11.5dB,相关成果分别发表在2011年和2012年的光通信系统顶级期刊Photonics Technology Letters (PTL)上,并在2011年的国际光通信会议(OFC)上作了报告。同时,于2012年获得国家广播电影电视总局(省部级)高新技术研究与开发奖一等奖(排名第七),此后,山西省广电网络集团同意将该技术方案列为“三网融合”改造试点工程的推广项目。
     2)基于超连续谱的Tbit级光信号产生方案
     低成本的密集子载波并行光源是实现Tbit级光传输系统的关键。论文研究了基于锁模激光器和高非线性光纤产生超连续谱密集光源的方法,并提出了基于该密集光源的Tbit级光载无线(ROF)接入和光正交频分复用接入系统新方案,实验实现了2.56Tb/s的密集光信号接入系统,获得了良好的性能。相关结果发表在2010年和2012年的Optics Express上,该成果是2012年光接入网达到的最大容量。相关成果在十一五863项目“100Gb/s光传输系统关键技术研究”结题中被认为“达到国际领先水平”,并得到科技部十二五863重大课题"Tbit光传输系统关键技术”的支持,拟基于此技术在武汉到上海之间开通Tbit示范工程,实现多路万兆以太网互通。
     三、基于编码调制的数字域光信号损伤补偿研究
     1)基于低密度奇偶校验码(LDPC)和频域滤波的预补偿方法
     论文提出了一种基于LDPC和频域滤波的预补偿新方案,并在实验研究中成功应用于二维四阶的光正交频分复用信号,以增加信号的非线性容限,提高信号性能。实验实现了277.6Gb/s二维四阶的光正交频分复用信号200km传输。在光信噪比大于14.7dB时,能够达到误码性能。
     2)基于码分复用编码的正交频分复用信号补偿机理
     论文提出了基于码分复用编码的光正交频分复用信号补偿机理,它能够增大信号链路的功率预算,提高信号接收灵敏度。实验实现了基于码分复用编码的4.68Gb/s正交频分复用ROF信号的25km光纤和8m无线传输:与常规正交频分复用ROF信号相比,在同等灵敏度下突破了系统无线传统极限(延长了3m),增加了系统的功率预算。此外,上行拍频噪声是光正交频分复用接入网络的一个国际难题,该方法通过码分复用的分集增益有效解决了该问题。相关成果分别发表在两篇Optics Express上,该方法被美国NEC研究所知名学者N. Cvijetic和OSA Fellow光OFDM系统创始人AJ. Lowery教授一致认为是近年来用于光正交频分复用信号的最具特色技术之一(见JTL, vol.30, no.4,2012; OFT, vol.17, no.5,2011)。
     四、变速率光传输、自适应识别以及光信号的扰动研究
     1)变速率光信号传输方案
     随着数字信号处理技术在光通信系统中的广泛应用,通过物理层感知实现网络扁平化成为了新的研究热点。论文创新性提出了一种基于光正交频分复用的变速率光信号传输方案,此方案不仅能够提高光网络的容量和灵活度,而且能够在同一平台上兼容不同传输速率的信号。基于该方案,首次实现物理层自适应的光纤无线融合变速接入系统,进行了峰值速率为109.92Gb/s的传输实验,并深入研究了不同速率情况下信号的前导感知性能,实验功率代价均小于0.5dB。该系统能够容纳速率从10Gb/s至100Gb/s量级的不同速率信号。相关成果发表在Optics Express上,IEEE/OS A Fellow、荷兰埃因霍温科技大学教授A.M.J.Koonen大段评价了该成果,认为作者“首次研究了光物理层的动态带宽分配”;该成果还获得了2012年教育部优秀成果奖(自然科学类)二等奖(排名第四)。
     2)非线性动态扰动技术
     针对信号的物理层安全问题,论文在国际上首次提出了基于非线性混沌和星座非线性旋转的动态扰动/解扰方案,构建了具备多层密钥和超大密钥空间的扰动模型,并从理论和实验两方面深入分析了上述两种方案的安全性能,得到了良好的实验结果。相关成果连续发表在PTL和JLT上、Optics Express上,形成了系列论文(共6篇)。
     综上,本论文针对光纤通信系统中的频谱效率及系统灵活度两个问题,系统深入地研究了多维多阶正交调制光信号及其损伤补偿方法;研究了变速率光传输、白适应识别以及光信号的扰动/解扰方法,并从理论、数字仿真和实验研究三方面阐述了上述研究工作。作者在IEEE Journal of Lightwave and Technology、 Photonics Technology Letter、OSA Optics Express等光通信国际权威期刊及OFC/ECOC等国际光通信会议上发表了学术论文30余篇,其中第一作者和通讯作者在SCI二区检索论文16篇,论文总引用100余次,单篇最高引用21次。本论文的研究工作为未来灵活、大容量光传输系统的实用化提供了参考。
Fiber communication network is the basis of information society and the belt of national industrialization and informatization. Rcent years, as the fast development of the HDTV, video on demand and mobile broadband service, it puts forward an urgent demand on the requirement of bandwidth and capacity in optical communication network. As the deployment of40Gb/s WDM system and the emergence of100Gb/s optical communication system, the future trend of both transmission and access network is prone to400Gb/s~1Tb/s or even higher speed. Seeking a new theory of optical signal transmission and signal processing mode has become one of major challenges for the future optical communication technologies.
     There are two difficult and urgent problems must to be solved in today's fiber communications system:the first one is the approaching capacity limit of fiber communication system. According to the Cisco statistics, the capacity of single fiber will reach200Tb/s by2020. Traditionally, the spectral resource is thought to be unlimited. However, the available bandwidth in fiber communication system is about100nm, in which the mature used part is less than60nm. As the increasing demand on system capacity, it requires the system to further improve the spectral efficiency (SE), which needs to explore the new dimensional and high-order modulation formats. The second one is caused by the emerging new services such as cloud computing. The traditional DWDM system is not suitable for the development of network, and the flexible resource allocation and variable speed are the trends of future network.
     In view of this, this paper focuses on the two difficult problems existing in today's fiber communication system:the first one is the increase of system spectral efficiency and capacity limit, and the second one is the improvement of signal performance and flexibility. The first term is realized by the transmission theory of multi-dimensional multi-level optical signal and ultra-dense optical orthogonal wavelength multiplexing. The second term is achieved by the DSP compensation of optical signal as well as identification and scrambling theory of variable rate optical signal.
     The main innovative research efforts of this paper are summarized as follows.
     1. Transmission theory of multi-dimensional multi-level orthogonal optical signal
     1) The multiplexing/de-multiplexing of multi-dimensional signal and the interference suppression
     The traditional fiber communication system has utilized single dimension of optical light, such as amplitude or phase. However, the light is a kind of vector signal, which has multiple dimensions of phase, amplitude, polarization and angular. In order to increase the spectral efficiency, this paper proposes a novel multiplexing and control theory of vector information in optical frequency division multiplexing (OFDM) system, including transmission scheme based on polarization shift keying (PolSK), phase shift keying (PSK) and OFDM modulation. The simulation and experiment are executed to demonstrate the feasibility of the proposed scheme. The corresponding results were published as series papers on the top journal of Optics Express, and one of these papers is cited by21times.
     2) High-order optical signal based on multi-differential amplitude and phase modulation
     For high-order optical signal, complicated channel estimation must be performed to ensure the signal performance, which is realized through training sequence or pilots. In order to improve the system performance, people often increases the pilots or estimation tap for the digital compensate algorithm, which ignores the realization of the algorithm, including the complexity and the information redundancy. This paper proposes and experimentally demonstrates a novel multi-ifferential amplitude and phase modulation format for high-order optical signal for the first time. It doesn't require any channel estimation at the receiver due to the differential detection during demodulation. The proposed scheme can reduce the redundancy and complexity while maintaining a high SE for optical system. The experimental results show that the multi-differential amplitude and phase modulated optical signal has equivalent BER performance of mQAM modulated optical while keeping a better resistance to fiber nonlinearity. The efficiency of information is also improved by11%. The corresponding results were published on Optics Express, and the research group of Irish Cork University thought the proposed algorithm is creative in optical transmission system (seen in OE, vol.21, no.2,2013).
     2. Research on performance of ultra-dense WDM optical signal
     1) Optical signal design based on side-lobe suppression
     Due to the Shannon limit, the signal speed of single carrier cannot increase infinitely. The ultra-dense multi-subcarriers parallel transmission has been a preferred scheme for future single channel Tbit transmission, which has also been widely approved in the industry area. However, there is one key problem awaiting to be solved—the interference among subcarriers. If the interference can be reduced, the SE or transmission performance of ultra-dense optical signal can be further improved. This paper proposes a novel ultra-dense optical signal based on side-lobe suppression, studies the generation principle of the signal and analyzes the improvement of interference by both theory analysis and experiment. The results show that the method based on side-lobe suppression can reduce the interference among optical carriers and improve the transmission performance. The interference among subcarriers is firstly reduced by11.5dB. The corresponding results were published on the top journal of Photonics Technology Letters (PTL) in2011and2012, and also presented in OFC'2011. Meanwhile, the author won the first prize of SARFT High-tech Research and Development Award in2012(ranked seventh). Shanxj, radio and television network group agrees to add this technical solution into the renovation project of "Triple Play".
     2) Tbit optical signal based on supercontinuum
     The low cost dense paralleled subcarriers light source is the key point to realize Tbit optical transmission system. This paper studies the supercontinuum ultra-dense light source based on mode-lock laser and high-nonlinear fiber and proposes new schemes of Tbit radio over fiber access (ROF) and optical orthogonal frequency multiplexing access system. A2.56Tb/s ultra-dense optical access system is realized in the experiment, and the results show a good performance of the signal. The corresponding results were published on Optics Express in2011and2012, and achieved the largest optical access capacity in2012. The results were also reviewed to "reach the international advanced level" in the863Project Completion of "Key technologies in100Gb/s optical transmission system". This technology was later supported by the863Major Project "Key technologies in Tbit optical transmission system" to realize a Tbit demonstration project between WuHan and ShangHai, which would connect multiple10Gigabit Ethernet.
     3. Digital compensation of optical signal based on code modulation
     1) Pre-compensation based on LDPC and frequency domain pre-filtering
     A new pre-compensation scheme based on LDPC and frequency domain pre-filtering is proposed and demonstrated in PDM-16QAM orthogornal frequency division multiplexing optical signal. It can increase the tolenrance of fiber nonlinearity and improve the BER performance. In the experiment, a277.6Gb/s PDM-16QAM orthogornal frequency division multiplexing optical signal is transmitted over200km fiber successfully. An error-free performance is achieved at the optcal signa-to-noise ratio of14.7dB.
     2) OFDM signal compensation based on code division multiplexing
     A novel OFDM signal compensation based on code division multiplexing is proposed to increase the power budget of the fiber link and improve the receive sensitivity of signal. In the experiment, a4.68Gb/s code division multiplexed OFDM ROF signal is transmitted over25km fiber and8m air link successfully. Compared with the normal OFDM signal, the result breaks the transmission limit of air link under same receive sensitivity (extended by3m) and increases the system power budget. Besides, the optical beating noise in upstream link is an international problem in optical OFDM access network. The diversity gain of code division multiplexing has well solved this problem. The corresponding results are published on Optics Express twice. The proposed technology is cited by N. Cvijetic from NEC lab and the initiator of optical OFDM system, and they have both thought it as one of the most characteristic technologies applied in recent optical OFDM signal (seen in JTL, vol.30, no.4,2012; OFT, vol.17, no.5,2011).
     4. Variable rate transmission, adaptive identification and optical signal scrambling
     1) New scheme of variable rate optical transmission
     As the wide usage of DSP technology in optical communication system, the flat network by perception at physical layer has been a new research hotpot. This paper proposes a novel variable rate transmission scheme for optical orthogonal frequency division multiplexing signal. It can not only improve the capacity and flexibility of the network, but also be compatible with signals under different speeds. Based on this scheme, a109.92Gb/s transmission system is realized in the experiment, where the performance and interference of these variable rate signals are deeply analyzed. The power penalties are all less than0.5dB. The proposed system can accommodate different optical signals varying from lOGb/s to100Gb/s. The corresponding results are published on Optics Express. The IEEE/OSA fellow of A.M.J.Koonen from Eindhoven University of Technology has cited this method and thought the author study the dynamic bandwidth allocation on optical physical layer for the first time. The author also won the second prize of Outstanding Achievement Award of Ministry of Education (Natural Sciences) in2012(ranked fourth).
     2) Nonlinear dynamic scrambling technology
     In order to increase the physical security of the variable rate optical signal, this paper proposes novel scrambling/descrambling schemes based on nonlinear chaos and constellation rotation for the first time. A scrambling model with multi-level secure key and huge key space is built in this paper. The performance on security is deeply analyzed with theoretical and experimental method, and it gets a good experiment results. The corresponding results were continuously published as series papers on the journals of PTL, JLT and Optics Express (total6journal papers).
     In conclusion, in order to solve the problems about spectral efficiency and system flexibility in fiber communication system, this paper systematically and deeply investigates the multi-dimensional multi-level orthogonal optical signal and its compensation methods, and studies the technologies of variable rate transmission, adaptive identification and optical signal scrambling/descrambling. All the research work is elaborated from theoretical analysis, simulation and experimental study. The author has published more than30papers in top journals of IEEE Journal of Lightwave and Technology, Photonics Technology Letter, OSA Optics Express as well as international conference of OFC and ECOC. As first or corresponding author, he has published16papers indexed by SCI Second Region. These papers were cited more than100, one of which was cited by21times. The research work of this paper will provide references for the practical application of future flexible, large capacity optical transmission system.
引文
[1]延凤平,裴丽,宁提纲,光纤通信系统,科学出版社,2007年。
    [2]国家中长期科学和技术发展规划纲要(2006-2020年),中华人民共和国国务院,2006年。
    [3]大视野——华为发布电信业十大发展,营赢,华为技术有限公司,2009年。
    [4]Y. Miyamoto and S. Suzuki, Advanced Optical Modulation and Multiplexing Technologies for High-Capacity OTN Based on 100-Gb/s Channel and Beyond, IEEE Commun. Mag., S65-S72 (2010).
    [5]H.C. Hansen Mulvad, E. Palushani and H. Hu et al., Ultra-High-Speed Optical Serial-to-Parallel Data Conversion in a Silicon Nanowire, in proc.ECOC'11, paper.Th13.A.2(2011).
    [6]J. Yu, X. Zhou and M. F. Huang, High-speed PDM-RZ-8QAM DWDM Transmission (160×114 Gb/s) over 640 km of Standard Single-Mode Fiber, IEEE Photon. Technol. Lett.21,1299-1301(2009).
    [7]Ivan P. Kaminow, optical fiber telecommunications, Elsevier,2008.
    [8]Jian jun Yu, et al. Generation, transmission and coherent detection of 11.2Tb/s (112×100Gb/s) single source optical OFDM superchannel", in proc. OFC'11, paper.PDPA6(2011).
    [9]Neda Cvijetic, Ming-Fang Huang and Ezra Ip,1.92Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100km SSMF and 1:64 passive split, Optics Express 19,24540-24545 (2011).
    [10]Henning Bulow, Fred Buchali, and Axel Klekamp, Electronic Dispersion Compensation, IEEE J. Lightw. Technol.26,158-167 (2008).
    [11]G. Charlet, J. Renaudier and M. Salsi et al., Efficient mitigation of fiber impairment in an ultra-long haul transmission of 40 Gbit/s polarization-multiplexed data, by digital processing in a coherent receiver, in proc. OFC, paper. PDP17 (2007).
    [12]Giuseppe Talli, and Paul D. Townsend, Hybrid DWDM-TDM Long-Reach PON for Next-Generation Optical Access, IEEE J. Lightw. Technol.24,2827-2834 (2006).
    [13]M. Salsi, H. Mardoyan and P. Tran et al.,155×100Gbit/s coherent PDM-QPSK transmission over 7,200km, in proc.ECOC'09, paper PD2.5 (2009).
    [14]R. Ryf, A. Sierra and R.-J. Essiambre et al., Coherent 1200-km 6X6 MIMO Mode-Multiplexed Transmission over 3-core Microstructured Fiber, in proc.ECOC'11, paper. Th.13.C1 (2011).
    [15]Clemens Koebele, Massimiliano Salsi and Laurent Milord et al.,40km Transmission of Five Mode Division Multiplexed Data Streams at 100 Gb/s with low MIMO-DSP Complexity, in proc.ECOC'11, paper. Th.13.C.3 (2011).
    [16]Sean Kilmurray, Tobias Fehenberger, and Polina Bayvel et al., Comparison of the nonlinear transmission performance of quasi-Nyquist WDM and reduced guard interval OFDM, Optics Express 20,4198-4205 (2012).
    [17]Y. Ma, Q. Yang and Y. Tang et al.,1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access, in proc. OFC'09, paper PDPC1 (2009).
    [18]Z. Meng, G. Stewart and G. Whitenett et al., Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber, IEEE J. Lightw. Technol.24,2179 (2006).
    [19]S.Y. Li, N.Q. Ngo and Z.R. Zhang et al., Tunable Fiber Laser With Ultra-Narrow Linewidth Using A Tunable Phase-Shifted Chirped Fiber Grating, IEEE Photon. Technol. Lett.20,1482-1484 (2008).
    [20]Toshimitsu Kaneko, Yasuyuki Yamauchi and H. Tanaka et al., High-Power and Low Phase Noise Full-Band Tunable LD for Coherent Applications, in proc.OFC.10, paper.OWU7 (2010).
    [21]Firooz Aflatouni and Hossein Hashemi, Light Source Independent Linewidth Reduction of Lasers, in proc.OFC'12, paper.OW1G.6 (2012).
    [22]Zih-Rong Lin, Cheng-Kuang Liu and Yu-Jhu Jhang, Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks, Optics Express 18,17610-17619 (2010).
    [23]J. L. Wei, X. Q. Jin, and J. M. Tang, The Influence of Directly Modulated DFB Lasers on the Transmission Performance of Carrier-Suppressed Single-Sideband Optical OFDM Signals Over IMDD SMF Systems, IEEE J. Lightw. Technol.27, 2412-2419 (2009).
    [24]Jianjun Yu, Zhensheng Jia and Lilin Yi et al., Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators, IEEE Photon. Technol. Lett.18,265-267(2006).
    [25]T. Hoshida, T. Takahara and Y. Akiyama et al., Design optimization of 40 Gb/s RZ-DQPSK transceiver for high OSNR and PMD tolerance under fast polarization changes, in proc.ECOC'07, paper.P064 (2007).
    [26]D.-S. Ly-Gagnon, S. Tsukamoto and K. Katoh et al., Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation, IEEE J. Lightw. Technol.24,12-21 (2006).
    [27]Website:http://www.alcatel-lucent.com/100g-coherent/
    [28]E. Yamada, T.Yasui and A.Ohki et al., Demonstration of 112-Gbit/s DP-QPSK modulation using InP n-p-i-n Mach-Zehnder modulators, in pro.ECOC'10, (2010).
    [29]Thomas Richter, Marcel Kroh and Jin Wang et al., Integrated Polarization-Diversity Coherent Receiver on Polymer PLC for QPSK and QAM signals, in proc.OFC 12, paper.OW3G (2012).
    [30]C. Schmidt-Langhorst, R. Ludwig and L. Molle et al., Terabit/s single-carrier transmission systems based on coherent time-division demultiplexing, in proc.OFC'10, paper OThV3 (2010).
    [31]Jian jun Yu, et al. Generation, transmission and coherent detection of 11.2Tb/s (112×100Gb/s) single source optical OFDM superchannel, in proc.OFC'11, PDPA 6(2011).
    [32]K.Fukuehi, T.Kasamatsu, M.Morie et al,10.92Tb/s triple band/ultra dense WDM optical repeatered transmission experiment, in proc. OFC'11, paper. PD24 1(2011).
    [33]S. Bigo, Y Frignac and GCharlet et al,10.2Tbit/s PDM/WDM transmission over 100km TeraLight fiber with 1.28 bits/Hz spectral efficiency, in proc. OFC'11, PD25-1 (2011).
    [34]B.Bakhshi, M.Manna, and E.A.Golovehenko et al,640Gb/s 12700km RZ-DPSK WDM transmission with 75 km repeater spacing. In proc. ECOC2'05, vol.1, 11-12(2005).
    [35]冯建和,纪越峰,管克俭,前向纠错改善高速光传送网性能分析研究,光通信技术,25(1):35-38(2001).
    [36]J. GProakis, Digital Communications,3rd edition, McGraw-Hill,1995.
    [37]ITU-T G.975, http://www.ptsn.net.cn/standard/std auery/show-itut-2894-1.htm.
    [38]ITU-T Recommendation G.709.Network node interface for the optical transport network (OTN),2001.
    [39]张强,席中娥,杨名,超强FEC技术在超长距离光通信系统中的应用,光通信研究,121(1):29-30(2004).
    [40]张殡,赵坤,高速光传输系统的发展与展望,通讯世界,05期,2011年。
    [41]ITU-T Recommendation G975.1, Forward error correction for high bit rate DWDM submarine systems,2003.
    [42]Deyuan Chang, Fan Yu and Zhiyu Xiao et al., LDPC Convolutional Codes using Layered Decoding Algorithm for High Speed Coherent Optical Transmission, in proc.OFC'12, paper.OW1H.4 (2012).
    [43]M. Kuschnerov, F.N. Hauske and K. Piyawanno et al., Adaptive Chromatic Dispersion Equalization for Non-Dispersion Managed Coherent Systems, in proc.OFC'09, paper.OMTl (2009).
    [44]G. P. Agrawal, in Properties of Glass and Rare-Earth Doped Glasses for Optical Fibers, D. Hewak, Ed.,1998.
    [45]Carsten Behrens, Robert I. Killey, and Seb J. Savory et al., Nonlinear Distortion in Transmission of Higher Order Modulation Formats, IEEE Photon. Technol.22, 1111-1113(2010).
    [46]J. Li, L. Zhang and D. Zhang et al., Electrical Joint Equalization for PMD Induced Performance Degradation in Direct Detection Polarization Multiplexed Transmission Systems, IEEE Photon. Technol.20,1357-1359 (2008).
    [47]Sander L. Jansen, Itsuro Morita, Hideaki Tanaka, Narrowband Filtering Tolerance and Spectral Efficiency of 100GbE PDM-OFDM, in proc.ECOC'09, paper. WD2.3 (2009).
    [48]王秉钧,王少勇,光纤通信系统,电子工业出版社,2004年。
    [49]Ezra Ip, Alan Pak Tao Lau and Daniel J. F. Barros et al., Coherent detection in optical fiber systems, Optics Express 16,753 (2008).
    [1]J. M. Kahn and K.-P. Ho, Spectral efficiency limits and modulation/detection techniques for DWDM Systems, J. Sel. Top. Quantum Electron.10,259-271 (2004).
    [2]S. Tsukamoto, K. Katoh and K. Kikuchi, Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing, IEEE Photon. Technol. Lett.18,1131-1133 (2006).
    [3]S. Benedetto and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun.40,708-721 (1992).
    [4]K. Sekine, N. Kikuchi and S. Sasaki et al.,40 Gbit/s,16-ary (4bit/symbol) optical modulation/demodulation scheme, Electron. Lett.41,430-432 (2005).
    [5]S. J. Savory, G. Gavioli and R. I. Killey et al., Transmission of 42.8 Gbit/s polarization multiplexedNRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation, in proc.OFC'07, paper. OTuA1 (2007).
    [6]Xiang Zhou, Jianjun Yu and Dayou Qian et al., High-Spectral-Efficiency 114-Gb/s Transmission Using PolMux-RZ-8PSK Modulation Format and Single-Ended Digital Coherent Detection Technique, IEEE J. Lightw. Technol. 27,146-152(2009).
    [7]C. W. Chow, Member, C. H. Yeh and C. H. Wang et al., Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks, IEEE Photon. Technol. Lett.21,715-717 (2009).
    [8]Xiang Liu, S. Chandrasekhar and X. Chen et al.,1.12-Tb/s 32-QAM-OFDM Superchannel with 8.6-b/s/Hz Intrachannel Spectral Efficiency and Space-Division Multiplexing with 60-b/s/Hz Aggregate Spectral Efficiency, in prco.ECOC'11, paper. Th.13.B.I (2011).
    [9]Yuki Koizumi, Kazushi Toyoda and Masato Yoshida,1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km, Optics Express 20, 12508-12514(2012).
    [10]Lin Xu, Nan Chi and Leif K. Oxenlowe, A New Orthogonal Labeling Scheme Based on a 40-Gb/s DPSK Payload and a 2.5-Gb/s PolSK Label, IEEE Photon. Technol. Lett.17,2772-2774 (2005).
    [11]C. W. Chow, Y. Liu and C. H. Yeh et al., Signal Remodulation PON without Power Sacrifice using PolSK, in proc.ECOC'08, paper.We.1.F.5 (2008).
    [12]Ernesto Ciaramella, Antonio D'Errico and Roberto Proietti et al., WDM-POLSK Transmission Systems by Using Semiconductor Optical Amplifiers, IEEE J. Lightw. Technol.24,4039-4046 (2006).
    [13]N. Chi, L. Xu, S. Yu, and P. Jeppesen, Generation and transmission performance of a 40 Gb/s polarization shift keying signal," Electron. Lett.41,547-549 (2005).
    [14]Ming-Fang Huang, Jianjun Yu and Gee-Kung Chang, Optical Packet-Switched Network Employing Optically Labeled 114-Gb/s RZ-8PSK Packet Signals Through Straight-Line Optical Wavelength-Selective Switching Nodes, IEEE Photon. Technol. Lett.20,1639-1641 (2008).
    [15]Xiang Zhou and Jianjun Yu, Multi-Level, Multi-Dimensional Coding for High-Speed and High-Spectral-Efficiency Optical Transmission, IEEE J. Lightw. Technol.27,3641-3653 (2009).
    [16]A. H. Gnauck, P. J. Winzer and L. L. Buhl et al.,12.3-Tb/s C-band DQPSK transmission at 3.2 b/s/Hz spectral efficiency, in proc.ECOC'06, paper. Th4.1.2 (2006).
    [17]Lijia Zhang, Chongxiu Yu, Xiangjun Xin and Liu Bo, High-speed optical label switching based on the 8PSK/ASK orthogonal modulation format, in proc.OECC'09, paper.ThP4 (2009).
    [18]X. Liu, F. Buchali, and R. W. Tkach, Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission, IEEE J. Lightwave Technol.27,3632-3640 (2009).
    [19]Q. Zhuge, M. Morsy-Osman, and D. V. Plant, Analysis of dispersion-enhanced phase noise in CO-OFDM systems with RF-pilot phase compensation, Opt. Express 19,24030-24036 (2011).
    [20]S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, Pre-emphasis and RF-pilot tone phase noise compensationfor coherent OFDM transmission systems, in Proc. CLEO'07, paper. MAI.2 (2007).
    [21]N. Kaneda, Q. Yang and X. Liu et al., Realizing real-time implementation of coherent optical OFDM receiver with FPGAs, in Proc. ECOC'09, paper.5.4.4 (2009).
    [1]Etsushi Yamazaki, Fumikazu Inuzuka and Kazushige Yonenaga et al., Digital Compensation of Intercarrier Nonlinear Distortion With Carrier Phase Locking, IEEE J. Lightw. Technol.28,828-837 (2010).
    [2]X. Zhou and J. Yu, Advanced Coherent Modulation Formats and Algorithms: Higher-Order Multi-Level Coding for High-Capacity System Based on 100Gbps Channel, in proc. OFC'10, paper. OMJ3 (2010).
    [3]C.R.S. Fludger, T.Duthel, T.Wuth and C. Schulien, Uncompensated transmission of 86Gbits polarization multiplexed RZ-QPSK over 100km of NDSF employing coherent equalisation, in proc.ECOC06, paper.PDP4.3.3 (2006).
    [4]J.Chen, L. Wosinska, C. Machuca and M. Jaeger, Cost vs. reliability performance study of fiber access network architectures, IEEE Commun. Mag.48,56-65 (2010).
    [5]R.J. Essiambre, G. Foschini and P. Winzer et al, Capacity limits of fiber-optic communicaction systems, in proc.OFC'09, paper. OThL1 (2009).
    [6]Hung-Chang Chien, Jianjun Yu and Zhensheng Jia et al., Performance Assessment of Noise-suppressed Nyquist-WDM for Terabit Superchannel Transmission, IEEE J. Lightw. Technol., forthcoming.
    [7]Dayou Qian, Ming-Fang Huang and Ezra Ip et al., High Capacity/Spectral Efficiency 101.7-Tb/s WDM Transmission Using PDM-128QAM-OFDM over 165-km SSMF within C- and L-Bands, IEEE J. Lightw. Technol.30,1540-1548 (2012).
    [8]A. Sano, H. Masuda and T. Kobayashi et al.,69.1-Tb/s (432×171-Gb/s) C-and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection, in Proc. OFC'10, paper.PDPB7 (2010).
    [9]Ze Dong, Xinying Li and Jianjun Yu et al.,6×128-Gb/s Nyquist-WDM PDM-16QAM Generation and Transmission over 1200-km SMF-28 with SE of 7.47b/s/Hz, IEEE J. Lightw. Technol., forthcoming.
    [10]W. Shieh, X. Yi, Y. Ma and Y. Tang, Theoretical and experimental study on PMDsupported transmission using polarization diversity in coherent optical OFDM systems, Optics Express 15,9936-9947 (2007).
    [11]I. Kang, X. Liu and S. Chandrasekhar, Energy-efficient 0.26-Tb/s coherent-optical OFDM transmission using photonic-integrated all-optical discrete Fourier transform, Optics Express 20,896-864 (2012).
    [12]Junwen Zhang, Jianjun Yu and Li Tao et al., Generation of Coherent and Frequency-lock Optical Subcarriers by Cascading Phase Modulators Driven by Sinusoidal Sources, IEEE J. Lightw. Technol., forthcoming.
    [13]T. Kawanishi, T. Sakamoto and S. Shinada et al., Optical Frequency Comb Generator Using Optical Fiber Loops with Single-Sideband Modulation, IEICE Electronics Express 1,217-221 (2004).
    [14]Y. Ma, Q. Yang and Y Tang et al.,1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access, Optics Express 17,9421-9427 (2009).
    [15]M. Abramowitz and I.A.Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York,1972.
    [16]H. Sanjoh, E. Yamada and Y. Yoshikuni, Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to lbit/s/Hz, in proc. OFC'02, paper. ThD1 (2002).
    [17]D. Hillerkuss, R. Schmogrow and T. Schellinger et al.,26 Tbits-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing, Nature Photonics 5(6),364-371 (2011).
    [18]K. Lee, C. T. Thai and J. K. Rhee, All optical discrete Fourier transform processor for 100 Gbps OFDM transmissions, Optics Express 16(6),4023-4028 (2008).
    [19]Ze Dong, Jianjun Yu and Hung-Chang Chien et al., Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection, Optics Express 19,11100-11105(2011).
    [20]R. Schmogrow, M. Winter and M. Meyer et al., Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM, Optics Express 20, 317-337(2012).
    [21]G. Bosco, V. Curri and A. Carena et al., On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers, IEEE J. Lightwave Technol.29,53-61 (2011).
    [22]H. Nyquist, Certain topics in telegraph transmission theory, Trans. Am. Inst. Electr. Eng.47,617-644 (1928).
    [23]W. Shieh, H. Bao and Y. Tang, Coherent optical OFDM:theory and design, Optics Express 16,841-859 (2008).
    [24]Zhensheng Jia, Jianjun Yu and Hung-Chang Chien et al., Field Transmission of 100G and Beyond:Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology, IEEE J. Lightw. Technol., forthcoming.
    [25]R.W. Chang, Orthogonal Frequency Division Multiplexing, U.S.A patent no. 3488445 (1970).
    [26]L.J.Cimini, Analysis and simulation of a digital mobile channel using Orthogonal FDivision Multiplexing, IEEE Trans. Communications 33,665-675 (1985).
    [27]J. Armstrong, Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering, Electronics letters 38,246-247 (2002).
    [28]Q. Pan and R.J. Green, Bit-error-rate Performance of Lightwave Hybrid AM/OFDM Systems with Comparison with AM/QAM Systems in The Presence of Clipping Impulse Noise, IEEE Photon. Technol. Lett.8,278-280 (1996).
    [29]J.M. Tang, P.M Lane and K.A.Shore, High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs, IEEE J. Lightw. Technol.24,429-41 (2006).
    [30]Zhenbo Xu, Maurice O'Sullivan and Rongqing Hui, OFDM system implementation using compatible SSB modulation with a dual-electrode MZM, Optics Letters 35,1221-1223 (2010).
    [31]Pak S. Cho and Moshe Nazarathy, Bias Control for Optical OFDM Transmitters, IEEE Photon. Technol. Lett.22,1030-1032 (2010).
    [32]M. Nazarathy, J. Khurgin and R.Weidenfeld et al., Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links, Optics Express 16,15777-15810(2008).
    [33]S.B. Weinsten and P.M. Ebert, Data Transmission by Frequency-division Multiplexing Using the Discrete Fourier Transform, IEEE Trans. Communications 19,628-634 (1971).
    [34]Qunbi Zhuge, Mohammad E. Mousa-Pasandi and Mohamed Morsy-Osman et al., Demonstration of Dispersion-Enhanced Phase Noise in RGI CO-OFDM Systems, IEEE Photon. Technol. Lett.24,1446-1448 (2010).
    [35]X. Liu, S. Chandrasekhar and B. Zhu et al.,448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultralarge-area fiber and five 80-GHz-grid ROADMs, IEEE J. Lightw. Technol.29,483-490 (2011).
    [36]Chun-Ting Lin, Yu-Min Lin and Jason (Jyehong) Chen et al., Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression, Optics Express 16, 6065-6072 (2008).
    [37]Shu-Hao Fan, Jianjun Yu and Dayou Qian et al., A Fast and Efficient Frequency Offset Correction Technique for Coherent Optical Orthogonal Frequency Division Multiplexing, IEEE J. Lightw. Technol.29,1997-2004 (2011).
    [38]Xian Zhou, Keping Long and Rui Li et al., A simple and efficient frequency offset estimation algorithm for high-speed coherent optical OFDM systems, Optics Express 20,7350-7361 (2012).
    [39]Jianjun Yu, Gee-Kung Chang and Arshad Chowdhury, Detecting Burst-Mode Optical Label or Payload Generated by OCSS Technique Using Conventional Receivers, IEEE Photon. Technol. Lett.17,1567-1569(2007).
    [40]P. Domachuk, N. A.Wolchover and M. Cronin-Golomb et al., Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs, Optics Express 16,7161-7168 (2008).
    [41]Teppei Nakasyotani, Hiroyuki Toda, Member and Toshiaki Kuri et al., Wavelength-Division-Multiplexed Millimeter-Waveband Radio-on-Fiber System Using a Supercontinuum Light Source, IEEE J. Lightw. Technol.24,404-410 (2006).
    [42]T. Kuri, T. Nakasyotani and H. Toda et al., Characterizations of supercontinuum light source for WDM millimeter-wave-band radioon-fiber systems, IEEE Photon. Technol. Lett.17,1274-1276 (2005).
    [43]G. P. Agrawal, Nonlinear Fiber Optics,3rd Edition, Elsevier,2001.
    [44]J. J. Vegas Olmos, Toshiaki Kuri and Ken-ichi Kitayama, Dynamic Reconfigurable WDM 60-GHz Millimeter-Waveband Radio-Over-Fiber Access Network:Architectural Considerations and Experiment, IEEE J. Lightw. Technol. 25,3374-3380 (2007).
    [45]Zizheng Cao, Jianjun Yu and Hui Zhou et al., WDM-RoF-PON Architecture for Flexible Wireless and Wire-Line Layout, J. Opt. Commun. Netw.2,117-121 (2010).
    [46]A. Chowdhury, H.-C. Chien, and J. Yu, A novel 50-GHz spaced DWDM 60-GHz millimeter-wave radio-over-fiber system using optical interleaver, in proc. OFC'09, paper. OTuB1 (2009).
    [47]Zhiyuan Huang, Juhao Li and Su Zhang et al., Investigations of SPM Suppression by PAPR Reduction in Coherent Optical OFDM Systems, in proc. ACP'09, paper. ThO5 (2009).
    [48]Jie Pan and Chi-Hao Cheng, Nonlinear Electrical Compensation for the Coherent Optical OFDM System, IEEE J. Lightw. Technol.29,215-221 (2011).
    [49]Neda Cvijetic, Milorad Cvijetic and Ming-Fang Huang et al., Terabit Optical Access Networks Based on WDM-OFDMA-PON, IEEE J. Lightw. Technol.30, 493-503 (2012).
    [50]E. Hugues-Salas,-R. P. Giddings and X. Q. Jin et al., REAM intensity modulator-enabled lOGb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiberbased bidirectional PON architecture, Opt. Express 20,21089-21100 (2012).
    [51]J. L. Wei, E. Hugues-Salas and R. P. Giddings et al., Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators, Opt. Express 18,9791-9808(2010).
    [1]X. Zhou et al.,32 Tb/s (320 × 114Gb/s) PDM-RZ-8QAM Transmission over 580 km of SMF-28 Ultra-Low-Loss Fiber, in proc.OFC'09, paper.PDPB4 (2009).
    [2]Ilya Lyubomirsky, Quadrature Duobinary for High-Spectral Efficiency 100G Transmission, IEEE J. Lightw. Technol.28,91-96(2010).
    [3]P. J. Winzer, G. Raybon, H. Song and A. Adamiecki et al.,100-Gb/s DQPSK transmission:From laboratory experiments to field trials, IEEE J. Lightw. Technol.26,3388-3402 (2008).
    [4]Xiang Liu, Fred Buchali and Robert W. Tkach,Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission, IEEE J. Lightw. Technol.27,3632-3640 (2009).
    [5]K. Forozesh, S. L. Jansen and S. Randel et al., The influence of the dispersion map in coherent optical OFDM transmission systems, IEEE LEOS Summer Topic Meetings, Coherent Optical Communications Systems, paper WC2.4(2008).
    [6]M. Salsi et al,155 × 100Gb/s Coherent PDM-QPSK Transmission over 7,200km, in proc. ECOC'09, paper. PD 2.5(2009).
    [7]D. v. d. Borne, N. E. Hecker-Denschlag, G. D. Khoe and H. d. Waardt, PMD-induced transmission penalties in polarization-multiplexed transmission, IEEE J. Lightw. Technol.23,4004-4015 (2005).
    [8]Diego Vieira Souto, Bengt-Erik Olsson and Christina Larsson et al., Joint-Polarization and Joint-Subchannel Carrier Phase Estimation for 16-QAM Optical Systems, IEEE J. Lightw. Technol.30,3185-3191 (2012).
    [9]Sander L. Jansen, Itsuro Morita, Tim C. W. Schenk and Hideaki Tanaka, Long-haul transmission of 16×52.5 Gbits/s polarization-division multiplexed OFDM enabled by MIMO processing, J. Opt. Netw.7,173-182(2008).
    [10]W. Shieh, Maximum-likelihood phase estimation for coherent optical OFDM, in proc. ECOC'07, paper.Tu4.2.2 (2007).
    [11]Maurizio Magarini, Luca Barletta and Arnaldo Spalvieri et al., Pilot-Symbols-Aided Carrier-Phase Recovery for 100-G PM-QPSK Digital Coherent Receivers, IEEE Photon. Technol. Lett.24,739-741 (2012).
    [12]苏翼凯,冷鹿峰,高速光纤传输系统,上海交通大学出版社,2009年。
    [13]M. Kuschnerov, O. Agazzi and A. Napoli et al., Advances in Signal Processing, in proc.ECOC'12, paper.We.2.A.1 (2012).
    [14]Nobuhiko Kikuchi and Shinya Sasaki, Long-Distance Standard Single-Mode Fiber Transmission of 40-Gbit/s 16QAM Signal with Optical Delay-Detection and Digital Pre-Distortion of Chromatic Dispersion, in proc.OFC'11, paper.OThE3(2011).
    [15]A. Sano, T. Kobayashi and K. Ishihara et al.,240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver, in Proc.ECOC'09, paper.PDP.PD2 (2009).
    [16]尹长川,罗涛,乐光新,多载波宽带无线通信技术,人民邮电出版社,2004年。
    [17]Hae Young Rha, Byoung Goo Jeon and Hae-wook Choi, Simple Wide Range Carrier Frequency Offset Estimator for Coherent Optical OFDM, IEEE Photon. Technol. Lett., forthcoming (2012).
    [18]S. L. Jansen, I. Morita and T. C. W. Schenk et al., Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF, IEEE J. Lightw. Technol.26,6-15 (2008).
    [19]Timothy M. Schmidl and Donald C. Cox, Robust Frequency and Timing Synchronization for OFDM, IEEE Trans. Commun.45,1613-1621 (1997).
    [20]Brendon J. C. Schmidt and Zuraidah Zan et al.,100 Gbit/s Transmission using Single-Band Direct-Detection Optical OFDM, in proc. OFC'09, paper.PDPD3 (2009).
    [21]樊昌信,曹丽娜,通信原理,国防工业出版社,2006年。
    [22]W. Shieh, X. Yi and Y. Ma et al., Theoretical and experimental study on PMDsupported transmission using polarization diversity in coherent optical OFDM systems, Optics Express 15,9936-9947 (2007).
    [23]N. Cvijetic, L. Xu, and T. Wang, Adaptive PMD Compensation using OFDM in Long-Haul lOGb/s DWDM Systems, in proc. OFC'07, paper. OTuA5 (2007).
    [24]Nikolaos C. Mantzoukis, Constantinos S. Petrou and Athanasios Vgenis, Outage Probability Due to PMD in Coherent PDM QPSK Systems With Electronic Equalization, IEEE Photon. Technol. Lett.22,1247-1249 (2010).
    [25]Wei-Ren Peng, Kai-Ming Feng and Sien Chi, Joint compensation of CD and PMD in directdetected OFDM transmission using polarization-time coding, Optics Express 18,1916-1926 (2010).
    [26]X. Liu and R. W. Tkach, Joint SPM compensation for inline-dispersion-compensated 112-Gb/s PDM-OFDM transmission, in proc. OFC'09, paper. OTuO5 (2009).
    [27]Maurizio Magarini, Rene-Jean Essiambre and Bert E. Basch et al., Concatenated Coded Modulation for Optical Communications Systems, IEEE Photon. Technol. Lett.22,1244-1246(2010).
    [28]Ivan B. Djordjevic, PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM, Optics Express 15,3692-3701 (2007).
    [29]A. J. Lowery, Fiber nonlinearity pre-and post-compensation for long-haul optical links using OFDM, Opt. Express 15,12965-12970 (2007).
    [30]Q. Yang, N. Kaneda and X. Liu et al., Demonstration of frequency-domain averaging based channel estimation for 40-Gb/s CO-OFDM with high PMD, in proc. OFC'09, paper OWM6 (2009).
    [31]A. J. Lowery, S.Wang, and M. Premaratne, Calculation of power limit due to fiber nonlinearity in optical OFDM systems, Opt. Express 15,13282-13287 (2007).
    [32]C. Mackaydj, Good error-correcting codes based on very sparse matrices, IEEE Trans Inform Theory 45,399-431 (1999).
    [33]Benyuan Zhu, S. Chandrasekhar and Xiang Liu et al., Transmission Performance of a 485-Gb/s CO-OFDM Superchannel With PDM-16QAM Subcarriers Over ULAF and SSMF-Based Links, IEEE Photon. Technol. Lett.23,1400-1402 (2011).
    [34]Y. Kotani, H. Iwamura and H. Tamai et al., Demonstration of 1.25 Gb/s S, times, S8-channels ECDM using eight-chip electrical coding, IEEE Photon. Technol. Lett.22,875-877(2010).
    [35]Lin Chen, J. G. Yu and Shuangchun Wen, A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System, IEEE J. Lightw. Technol.27,2786-2791 (2009).
    [36]D. Ziba, X. Yu, C. Peucheret, P. eppesen, and I. T. Monroy, "Digital coherent receiver for phase-modulated radio-over-fiber optical links," IEEE Photon. Technol. Lett.21,155-157(2009).
    [37]I. Gasullal, and J. Capmany, Phase-modulated radio over fiber multimode links, Optics Express 20,11710-11717 (2012).
    [38]C.-H. Chang, P.-C. Peng and H.-H. Lu et al., Simplified radio-over-fiber transport systems with a low-cost multiband light source, Optcis Letters 35,4021-4023 (2010).
    [39]P.-T. Shih, C.-T. Lin and W.-J. Jiang et al., Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format, Optics Express 17,19501-19508 (2009).
    [1]Joseph C. Palais, Fiber Optic Communications, fifth edition,电子工业出版社(译),2010年。
    [2]何一心,文杰斌,王韵等,光传输网络技术——SDH与DWDM,人民邮电出版社,2008年。
    [3]J.M.Kahn, Spectral efficiency limits and modulation/detection techniques for DWDM systems, IEEE J. Selected Topics in Quantum Electronics 10, 259-272(2004).
    [4]Elaine Wong, Next-Generation Broadband Access Networks and Technologies, IEEE J. Lightw. Technol.30,597-608(2012).
    [5]H. Zhang, J.-X. Cai and H. G. Batshon et al.,16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance, Optics Express 20, 11688-11693(2012).
    [6]W. Sheih, OFDM for Flexible High-Speed Optical Networks, IEEE J. Lightw. Technol.29,1560-1577(2011).
    [7]C. H. Yeh, C. W. Chow and H. Y. Chen et al., Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON, Optics Express 19,26150-26160(2011).
    [8]E. Giacoumidis, J. L. Wei, X. Q. Jin and J.M. Tang, Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix, Optics Express 16,9480-9494(2008).
    [9]M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, Optical layer security in fiber-optic networks, IEEE Trans, on Information Forensics and Security 6, 725-736(2011).
    [10]Osamu Matoba, Takanori Nomura and Elisabet Pe'rez-Cabre'et al., Optical Techniques for Information Security, in Proceedings of IEEE Issue on Optics and Photonics for Security and Defense (Dept. of Comput. Sci.& Syst. Eng., Kobe Univ., Kobe) 97,1128-1148(2009).
    [11]B. B. Wu and E. E. Narimanov, A method for secure communications over a public fiber-optical network, Optics Express,14,3738-3751(2006).
    [12]Steven Gringeri, Bert Basch and Vishnu Shukla et al., Flexible Architectures for Optical Transport Nodes and Networks, IEEE Communications Magazine, 40-50(2010).
    [13]Yawei Yin, Ke Wen and David J. Geisler et al., Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks, Optics Express 20, 1798-1804(2012).
    [14]T. Wuth, M.W. Chbat and V.F. Kamalov, Multi-rate (100G/40G/10G) Transport over Deployed Optical Networks, in proc.OFC 08,1-9(2008).
    [15]J. Ma, J. Yu and C. Yu et al., Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation, Opt. Commun,280,317-326 (2007).
    [16]X. Xin, B. Liu, L. Zhang and J. Yu,40-Gb/s FSK modulated WDM-PON with variable-rate multicast overlay, Optics Express 19,12515-12523(2011).
    [17]J. Yu, Z. Jia, T. Wang and G. K. Chang, Centralized Lightwave Radio-Over-Fiber System With Photonic Frequency Quadrupling for High Frequency Millimeter Wave Generation, IEEE Photon. Technol. Lett.19,1499-1501(2007).
    [18]V.Kalinin and D.Kavalov, Application of a SAW Aritificial Neural Network Processor to Digital Modulation Recognition, IEEE Ultrasonics Symposium, 51-54(2000).
    [19]A.帕普里斯,S.U.佩莱,概率、随机变量与随机过程,西安交通大学出版社(译),2004年。
    [20]E.Azzouz and A.K.Nandi, Automatic identification of digital modulation types, Signal Processing 47,55-69(1995).
    [21]S.-L. Chen, T. T. Hwang, and W.-W. Lin, Randomness enhancement using digitalized modified logistic map, IEEE Trans. Circuits Syst, II Express Briefs 57, 996-1000(2010).
    [22]X.Q. Jin, R.P. Giddings and E. Hugues-Salas et al., Realtime demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers, Optics Express 17,20484-20493(2009).
    [23]C. E. Shannon, Communication theory of secrecy systems, Bell Syst. Tech. J.28, 656-715(1949).
    [24]L. Nazaryan, E. A. Panaousis and C. Politis, End-to-edn security protection, IEEE Vehicular Technol. Mag.,85-90(2010).
    [25]M. Christopher, "And the world's fastest supercomputer in 2012 Is-technology review," website:http://www.technologyreview.com/view/421600/and-the-world-fastest-supercomputer-in-2012-is/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700