个体化三维数字模型辅助内镜侧颅底全景解剖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章个体化三维数字模型辅助翼腭窝、颞下窝相关区域内镜全景解剖
     目的设计一个个体化三维数字模型辅助内镜下解剖翼腭窝、颞下窝、颅中窝底的全新解剖学方法,从经上颌窦翼突入路和经耳前颞下入路两种不同入路更深入理解该区域颅底内外侧面的解剖特点,为手术提供全面的解剖学信息,并用于术前手术模拟、指导手术入路选择,拓宽经鼻和经颅两种入路的手术适应证。
     方法将血管灌注后的12例头颅标本行320排螺旋CT薄层扫描,然后将DICOM格式图像数据导入3DView软件重建翼腭窝/颞下窝/颅中窝底骨质、颈内动脉、颌内动脉及其终末分支等结构,并整合为个体化三维数字模型(three-dimensional digital model,3D-DM),模拟经上颌窦翼突入路和经耳前颞下入路解剖翼腭窝、颞下窝及其相关区域,明确相关解剖标志并定量测量定位标志与该区域重要结构间的距离。随后分别行两种入路内镜解剖。对比解剖前3D-DM模拟与术中解剖相关测量数据;对比两种入路的暴露范围,明确各自的优势、不足以及手术适应证。
     结果经上颌窦翼突入路可暴露翼腭窝、颞下窝、颅中窝底等结构。内镜经颞下入路在不损伤颞下颌关节和下颌神经的情况下可暴露卵圆孔下方20mm颞下窝区域以及翼腭窝上部。通过术前个体化3D-DM模拟打开上颌窦后壁时未损伤颌内动脉分支血管。可通过蝶腭孔、翼管开口、圆孔、卵圆孔等组合解剖标志互相定位。翼管、翼管开口有助于颈内动脉前膝的定位。个体化3D-DM可提供与内镜实际操作一样的视野,其相关结构的定量测量也与实际测量相符。
     结论经上颌窦翼突入路可直接安全暴露翼腭窝、颞下窝、颅中窝底等结构。内镜经颞下入路在不损伤颞下颌关节和下颌神经的情况下可暴露卵圆孔下方20mm颞下窝区域以及翼腭窝上部结构。在个体化3D-DM的辅助下,我们可以术前了解该区域的三维结构,可立体测量相关骨质、血管间的距离,并可将这些测量数据用于指导内镜解剖。结合经上颌窦翼突入路和颞下入路两种不同的视角可以改善该区域的立体视野,更好地理解颅中窝内外侧面的神经血管关系,并有助于术中重要神经血管的保护。比较两种入路的优势与不足有助于手术方案的制定,也为分期或联合入路的选择提供有用的解剖信息。
     第二章个体化三维数字模型辅助岩尖区内镜全景解剖
     目的运用个体化三维数字模型辅助内镜下经鼻入路和经颞下入路解剖岩尖区硬膜内外结构,从两种不同视角更深入理解该区域解剖特点,为手术提供全面的解剖学信息,并用于术前手术模拟、指导手术入路选择,拓宽经鼻和经颅两种入路的手术适应证。通过术前后个体化3D-DM的量化对比,评估该模型用于模拟岩尖骨窗形成中价值,优化手术计划。
     方法在解剖前将血管灌注后的12例头颅标本行320排螺旋CT薄层扫描,然后将DICOM格式图像数据导入3DView软件重建颈内动脉、岩尖周围骨质等结构,并整合为个体化3D-DM,模拟经鼻蝶窦入路与翼突入路和经耳前颞下入路解剖岩尖及其相关区域,从内外侧面分别明确相关解剖标志与颈内动脉间的距离,模拟岩尖骨窗形成,磨除Day菱形区内骨质。随后分别行两种入路内镜解剖。对比术前3D-DM模拟与术中解剖相关测量数据与暴露范围,明确两者之间的相关性。将解剖后的标本行CT薄层扫描,重建术后个体化3D-DM,并与术前三维模型对比评估该模型用于术前模拟岩尖骨窗形成的准确性和安全性。
     结果经鼻经蝶窦入路可暴露岩尖前内侧,经鼻经翼突入路磨除蝶窦下外侧壁和翼突根部可显露岩尖后外侧。切开岩斜区硬膜可暴露桥小脑角和脑干腹内侧结构。可通过翼管开口、斜坡凹陷、颈内动脉隆起、视神经颈内动脉陷窝等组合标志来定位颈内动脉。蝶窦下壁可用于定位椎基底动脉连接处(vertebro-basilarartery junction,VBJ),具体的个体化解剖标志可通过3D-DM术前个体化明确。个体化3D-DM辅助下可通过棘孔、卵圆孔、面神经裂孔等组合标志“锁定”岩骨段ICA。通过岩浅大神经、弓状隆起、棘孔、鼓膜张肌、锤骨等组合定位标志可多方式定位内耳道口。内镜经颞下入路可暴露颅中窝结构,通过磨除Day菱形区骨质可暴露中上斜坡以及脑干后外侧面结构。个体化3D-DM可以很好地显示颅底内外侧面岩尖周围的骨性标志和颈内动脉等结构,可模拟经鼻入路和经颞下入路岩尖骨窗形成,其立体测量相关解剖标志间的距离与术中解剖测量数据行配对T检验无统计学显著性差异。内镜下视觉与术前模拟所见视觉高度一致。结论个体化3D-DM可在术前准确模拟岩尖骨窗形成,可量化不同角度下骨质磨除的大小,改善内镜下骨窗设计,提高术中岩尖磨除的准确性和安全性。并能提供完美的详尽的立体视角,有助于术者感知深度,对神经外科医师特别低年资医师是具有重要的培训意义和教育意义。通过术后3D-DM数据验证,有助于分析术中骨质切除的程度,也使得术前的重建、模拟更趋合理。
     组合解剖标志可提高术中定位内听道口、颈内动脉的准确性;个体化3D-DM可用于精确“锁定”岩骨段颈内动脉;也可协助岩尖手术入路设计。
     内镜经鼻入路可通过蝶窦入路和翼腭窝入路显露岩尖的前内侧和后外侧。内镜颞下锁孔入路磨除岩尖可充分显露中上斜坡结构。个体化3D-DM辅助下经鼻扩大入路、颞下入路从两个不同视角360度对岩尖区进行解剖,可全面了解岩尖区神经血管结构,大大缩短术者整合颅底内外两面解剖结构的时间;也可在术前明确解剖变异,手术入路的选择提供解剖依据。
     第三章个体化三维数字模型辅助颈静脉孔、咽旁间隙内镜全景解剖
     目的:通过分析和比较个体化3D-DM辅助下内镜经鼻入路和内镜辅助下远外侧入路对下斜坡颈静脉孔区及咽旁间隙的解剖,探讨个体化3D-DM在两种手术入路中的应用价值,以及明确两种入路各自的解剖标志、显露优势与不足,为术前计划的制定,手术入路的选择以及指导手术操作提供依据。
     方法:首先将血管灌注后的12例头颅标本行320排螺旋CT薄层扫描,然后将DICOM格式图像资料导入3DView软件重建后颅窝骨质、椎动脉、颈内动脉、颈内静脉等结构,并整合为个体化3D-DM,模拟内镜经鼻入路和远外侧入路解剖下斜坡颈静脉孔区及咽旁间隙区域,明确相关解剖标志并定量测量解剖标志与该区域重要结构间的距离。随后分别行两种入路内镜解剖。对比术前3D-DM与术中解剖相关测量数据与暴露范围,明确各自的手术适应证。
     结果:个体化3D-DM可模拟手术操作,与术中所见视觉相一致。术前3D-DM立体测量与术中相关测量间比较无统计学差异。个体化3D-DM可术前明确重要结构的部位、形态、走行及毗邻。内镜经鼻入路可以很好显示下斜坡颈静脉孔、咽旁间隙区域双侧结构,髁上沟是下斜坡最重要的定位标志,通过枕髁部骨质的磨除,可增加横径长约3.5mm垂直径长10mm的暴露范围,可方便直接进入后颅窝的椎动脉硬膜入口。通过磨除舌下神经管上方颈静脉结节骨质可多获得外侧手术通道的垂直长度达8mm,这样就可以暴露后组颅神经的远侧脑池部分。
     咽鼓管、翼内侧板、翼外侧板、卵圆孔、棘孔等是显露咽旁间隙最重要的解剖标志。经鼻入路可较好的显示咽旁间隙颈静脉孔前方结构,即颈内动脉、舌咽神经、迷走神经和颈内静脉前内侧面。而远外侧入路髁旁扩展可较好地显示颈静脉孔后外侧部结构,对舌下神经、副神经、椎动脉的显露也优于腹侧经鼻入路。运用“逆向骨窗形成技术”个体化3D-DM可模拟准确设计远外侧入路骨窗,未见损伤乙状窦。内镜辅助远外侧入路可增加腹侧脑干的显露范围,也可使骨窗范围缩小。另外,个体化3D-DM辅助下均可在术中准确定位椎动脉、舌下神经管、颈静脉孔结构等。
     结论:
     1.通过经鼻和经远外侧入路的两种不同视角比较,可以改善下斜坡颈静脉孔及咽旁间隙区域的全面立体认识。通过尸颅解剖的应用可见,个体化三维数字模型技术可以实现术前模拟,提高人们的立体感知,在明确解剖结构位置、特点及变异方面具有无可比拟的优势。
     2.与远外侧入路相比较,内镜经鼻入路可以提供更大的下斜坡腹内侧暴露空间以及咽旁间隙前部空间;而远外侧入路对下斜坡背外侧和咽旁间隙后部的暴露更充分,内镜辅助下远外侧入路可以增加腹内侧结构暴露。
     3.个体化3D-DM辅助下,明确并采用组合定位标志可提高椎动脉、舌下神经管、基底动脉、颈静脉孔等重要结构的定位精准性。
     4.手术入路的选择应尽量避免跨重要神经血管操作,也要考虑术者的经验和强调团队的重要性。内镜颈静脉孔及咽旁间隙区域手术应审慎选择病例,切忌盲目开展。
Chapter1Individual three-dimensional digital model forendoscopic panoramic anatomy of pterygopalatine fossa,infratemporal fossa and its related regions
     Objective In order to guide the surgical approach,broaden the surgical indications,and make a comprehensive understanding of pterygopalatine fossa, infratemporalfossa, middle cranial fossa and its related regions, we report an endoscopic transnasaltransmaxillary transpterygoid approach and subtemporal approach to these regionswith individual3D digital model assisted.
     Methods Twelve adult cadaveric heads were used to develop the endoscopicapproach and to identify the salient surgical landmarks. Red and blue silicone rubberdyes were respectively injected into the great vessels of the neck.Digital data (inDICOM format)acquired from a high resolution320-slice spiral CT scan was importedto a3DView software for reconstruction of the internal carotid artery,maxillaryartery and its final branch, bone of middle cranial fossa.Then,integrated thesestructures for individual3D-DM.Finally,the3D-DM was used to simulate transnasaltransmaxillary transpterygoid approach and subtemporal dissection of thepterygopalatine fossa, infratemporal fossa and the related regions,to identify thesalient surgical landmarks and anatomic variations.With the guide of 3D-DM,endoscopic endonasal and subtemporal dissection of these regions wererespectively completed under conditions that mimicked our operating suite. Then,wecompared the relevant measurement data and vision of3D-DM and endoscopicanatomy.Additionally,we compared exposure range,advantages and disadvantages ofthe two endoscopic approaches.
     Results The endoscopic endonasal approach was divided into three stages: entryinto the maxillary sinus, entry into the infratemporal fossa,infratemporal fossa and theother related strutures, and entry into the middle cranial fossa. Endoscopicsubtemporal approach can expose infratemporal fossa20mm below the foramen ovaleas well as the upper part of the pterygopalatine fossa,without damaging thetemporomandibular joint and mandibular nerve. When coupled with pre-operationsimulation of individual3D-DM guidance,the endoscopic endonasal approachwouldn’t injure internal maxillary artery and its final branches while openningposterior wall of the maxillary sinus.Additionally,the endonasal approach can providethe flexibility to tailor the size and location of the middle fossa craniotomy. Duringendoscopic dissection,anatomic landmarks such as sphenopalatine foramen, pterygoidcanal, foramen ovale and foramen rotundum can locate each other guided byindividual3D-DM. Pterygoid canal can be used to locate the genu of internalcarotid artery.3D-DM provided the same vision as endoscopic anatomy, quantitativemeasurements of the related structures in3D-DM are also consistent with the actualendoscopic measurement.
     Conclusions The endoscopic transnasal transmaxillary transpterygoid approachprovides safe and direct access to the infratemporal fossa,infratemporal fossa,middlecranial fossa and the other related structures,eliminating the need for brain retraction,temporalis muscle manipulation, or an external incision. Endoscopic subtemporalapproach can expose infratemporal fossa20mm below the foramen ovale as well asthe upper part of the pterygopalatine fossa. Some relevant neurovascular structuresmay limit the extension of the approach and the view via both routes. Assisted byindividual3D-DM, we can preoperatively understand the three-dimensionalvision,measure the bone and vascular structures.Then,the data can be used to assist endoscopic dissection. Incorporating the endoscopic endonasal transmaxillary andsubtemporal perspectives ensures a better understanding of the intracranial andextracranial neurovascular relationships. The combination of the2approaches mayimprove the visualization and may be helpful for preservation of the neurovascularduring surgery in or around this challenging area.The anatomic advantages andlimitations have been considered to evaluate the appropriate selection of each of theabove-mentioned approaches. The comparison of these2routes may provide usefulintraoperative information in the case of staged or combinedendonasal/subtemporal approaches.
     Chapter2Individual three-dimensional digital model forendoscopic panoramic anatomy of petrous apex
     Objective The aims of this study were to apply a individual three-dimensionaldigital model to endoscopic endonasal approach and subtemporal approach to analyzethe bony and artery anatomy of this area, quantify preoperatively bone removal,measure the distance of related structures and optimize surgicalplanning.Meanwhile,to evaluate the feasibility of the purely endoscopic extraduraltranscranial approach to petrous apex through a subtemporal keyhole and endonasalapproaches, and to understand potential distortions of the related anatomy better viaendoscopy.
     Methods Investigators dissected12human cadaveric heads at the Laboratory ofSurgical NeuroAnatomy of Third Hospital of Sun Yat-sen University.Before andafter each dissection, a320-slice computed tomography (CT) scan was performed tocreate a three-dimensional digital model of the endoscopic endonasal approach andsubtemporal approach performed in the dissection room. The procedures were asfollows:(1) a preliminary exploration of each specimen using the preoperative CTscan,(2) creation of a computer-generated three-dimensional digital model of the twoapproaches, simulation of petrous apex bone resection,and location of ICA;(3)cadaveric anatomic dissection of petrous apex via endonasal and subtemporal routes,and (4) compare predissection and postdissection digital imaging,3D-DM images andendoscopic ones, to evaluate the value of individual3D-DM in preoperativesimulation for endoscopic petrous apex dissection.
     Results Endoscopic endonasal transsphenoidal approach can expose the area ofrostral petrous apex, while the caudal petrous apex can be exposed throughendoscopic endonasal transmaxillary transpterygoid approache by removal of partialbones of sphenoid and pterygoid. The cerebellopontine angle and ventromedialbrainstem structures come into view after petroclival dura mater incision. Someanatomic landmarks,such as pterygoid canal, clivus recess,process of ICA and optic nerve-internal carotid artery recess, can be used to locate the internal carotid arteryjointly.The inferior wall of sphenoid sinus can be used to locate the VBJ.However,thespecific anatomic landmarks for ICA or VBJ should be decided individually by3D-DM simulation preoperatively.
     Endoscopic infratemporal approach can expose the structure of the middle cranialfossa.After removing the bone in “Day rhombus area”,the corridor can visit middle/upper clivus,as well as posterolateral brainstem. Assisted by individual3D-DM,wecan “lock” the horizontal ICA segment through the foramen spinosum,foramenovale and/or facial nerve hiatus. Likewise,we can locate the internal auditory meatusby superficial petrosal nerve,arcuate eminence,foramen spinosum,tensor tympanimuscle and malleus.
     Individual3D-DM can be a good indication of the structure of skull base aroundpetrous apex, and can be use to simulate bone window formation of petrousapex.There was no statistically significant difference between the three-dimensionalmeasurement data in3D-DM and endoscopic intraoperative anatomical measurementdata by paired T-test. Endoscopic vision was highly consistent with preoperativesimulation by individual3D-DM.The three-dimensional digital model was useful todefine the exact boundaries of the endoscopic endonasal craniectomy of petrous apex.Conclusions:Aside from laboratory anatomic dissection itself, this model is veryeffective in providing a depiction of bony landmarks and visual feedback of theamount of bone removed, improving the design of the craniectomy of petrous apexin endoscopic endonasal approach and endoscopic subtemporal approach. Endoscopicapproach to the petrous apex is anatomically feasible via the two corridor, and, aidedby individual3D-DM,could extend the scope to access highly-selected lesions in theposterior cranial fossa and cerebellopontine angle.
     The combination of anatomic landmarks can improve the accuracy of thepositioning of the internal auditory canal.The individualized3D-DM can be used to"lock" the horizontal segment of ICA accurately.
     Incorporating the endoscopic endonasal and subtemporal perspectives ensures abetter understanding of the neurovascular relationships in petrous apex. The combination of the2approaches may improve the visualization and may be helpfulfor preservation of the neurovascular during surgery around this area.
     Chapter3Individual three-dimensional digital model forendoscopic panoramic anatomy of jugular tubercle and upperparapharyngeal regions
     Objective: The main aim of our study was to analyze and compare the surgicalanatomy of jugular tubercle and upper parapharyngeal pertinent to theendoscopic-assisted far lateral approach to that of the endoscopic endonasalapproaches, to provide useful landmarks by comparing transnasal perspectives withexternal ones, and to identify safe corridors through the endonasal route to providemore lateral exposure of the inferior third of the clivus and craniocervicaljunction.To apply an individual three-dimensional digital model to various endoscopicapproaches to analyze the bony anatomy of these areas, quantify preoperatively boneremoval, and optimize surgical planning.
     Methods Red and blue silicone dyes were respectively injected into the greatvessels of the neck of12cadaveric specimens. Digital data acquired from a highresolution320-slices CT scan was imported to a3DView system to form individual3D-DM. With the data and view of3D-DM support,An endoscopic endonasaldissection of the jugular tubercle and upper parapharyngeal regions were completedunder conditions that mimicked our operating suite.Likewise, the same spaces weredissected through endoscopic-assisted far lateral approach.Then,to provide usefullandmarks by comparing transnasal perspectives with external ones.Quantity boneremoval of occipital condyle by postoperatively3D-DM and compare with thepreoperative ones simulated by3D-DM,to analyze physical percent complete of boneexcision and optimize preoperative planning.
     Results Individual3D-DM can simulate surgical landmarks,locate importantstructures(such as VA, hypoglossal canal and jugular foramen),and identifyanatomical variation.Three-dimensional model was useful to define the exactboundaries of the endoscopic endonasal and far lateral craniectomy. The visionacquired by3D-DM was consistent with the intraoperative findings. Preoperativemeasurement of related landmarks in3D-DM was no significant difference from themeasurement of cadaveric head specimens.
     Completion of a unilateral ventromedial condyle resection opens a3.5mm(transverse length)×10mm (vertical length) lateral surgical corridor, facilitatingdirect access to the vertebral artery at its dural entry point into the posterior fossa. Thesupracondylar groove is a reliable landmark for locating the hypoglossal canal inrelation to the condyle. The hypoglossal canal is used as the posterior limit of thecondyle removal to preserve more than half of the condylar mass. The transjugulartubercle approach is accomplished by drilling above the hypoglossal canal, andincreases the vertical length of the lateral surgical corridor by8mm, allowing forvisualization of the distal cisternal segment of the lower cranial nerves. Combinationof anatomic landmarks like eustachian tube,medial pterygoid plate, lateral pterygoidplate, foramen ovale and foramen spinosum were reliable way for locating theparapharyngeal space.
     The comparison of the2endoscopic surgical perspectives (endonasal and farlateral approach) allowed us to define2subregions over inferior third of the clivusand its relevant area (jugular tubercle and upper parapharyngeal). The definition ofthese subregions was based on the identification of some anatomic landmarks (jugulartubercle, occipital condyle and the hypoglossal canal) that limit lateral expansion viathe endonasal route and the natural well-established corridors via the far lateral route.The hypoglossal nerve, vertebral artery and hypoglossal canal divide the lower thirdof the clivus into ventromedial and dorsolateral compartments. The endonasalapproach provides significantly larger exposure of the brainstem in the ventromedialcompartment compared to the far lateral approach. The far lateral approach provides awide exposure of the brainstem in the dorsolateral compartment. The exposure of the brainstem in the dorsolateral compartment is not possible using the endonasalroute. The surgical corridor from one compartment to the other, through the lowercranial nerves, was significantly larger on the far lateral approach than on theendonasal route.Additionally,endoscopic endonasal route can provide a better showof front section of the jugular foramen in parapharyngeal space, including ICA,glossopharyngeal nerve, vagus nerve and anterolateral jugular vein. However, thefar-lateral approach provide a better show of posterolateral structures of the jugularforamen than the ventral approach,such as hypoglossal nerve, accessory nerve,vertebral artery and so on.
     Conclusions The endoscopic transnasal approach offers a safe, wide exposure ofjugular tubercle and upper parapharyngeal regions. The far lateral approach is mostsuitable for lesions located dorsolateral to the lower cranial nerves.The combinationof the2approaches may improve the visualization in this challenging area. Thecomplex3-dimensionality of the jugular tubercle and the upper parapharyngeal spaceneeds a sound knowledge of the surgical anatomy. The ability to orientate oneself inthis complex area is related to an accurate knowledge of its anatomy throughcomparison of endoscopic transnasal and external perspectives.
     The endonasal approach provides significantly larger exposure of the brainstemin the ventromedial compartment compared to the far lateral approach. The far lateralapproach provides a wide exposure of the brainstem in the dorsolateral compartment.Far-lateral approach assisted by endoscopy can increase the ventromedial structureexposed.
     This3D-DM is very effective in providing a depiction of surgical landmarks andvisual feedback of the amount of bone removed, improving the design of thecraniectomy in the endoscopic endonasal and endoscopic-assisted far-lateral approachapproach.
     The vertebral artery and hypoglossal canal are the most important landmarks toguide surgical planning. Although precise knowledge of the surgical anatomy relatedto this approaches is crucial, team experience and meticulous preoperative study ofeach patient and lesion remain to be vital for successful selection of the therapeutic strategy. A modern skull base team of surgeons must be prepared to offer eitherapproach. We should carefully selected suitable cases, not blindly carry outendoscopic endonasal approach or far lateral approach.
引文
1.邱建华,黄维国,卢连军等.Le Fort I型截骨进路切除侵入翼腭窝、颞下窝巨大鼻咽纤维血管瘤[J].耳鼻咽喉-头颈外科,2002,9(6):328-331.
    2.尹林,刘宁,邢光前等.Le FortⅠ型截骨入路在颅底肿瘤切除中的应用[J].口腔颌面外科杂志,2003,13(2):132-133.
    3.张黎,郭京,王峰等.面部移位入路手术切除颅底肿瘤的颅底修补与重建(附38例报告)[J].中国耳鼻咽喉颅底外科杂志,2007,13(5):343-345.
    4.魏宇魁.扩大经蝶窦手术入路的显微、内镜解剖学研究和临床应用[D].中国协和医科大学,2008.
    5.赵澎,宋明,裴傲等.神经内镜在颅底中线区域手术中的应用[J].中华神经外科杂志,2006,22(9):579-580.
    6.宋明,裴傲,赵澎等.经鼻入路显露颅底中线区的内镜解剖研究[J].中华神经外科杂志,2012,28(3):245-247.
    7. M.Tschabitscher, R. J. Galzio. Central skull base anatomy as seen through theendoscope. Cavernous Sinus.2009:53-57
    8.刘丕楠,王忠诚,张亚卓等.内镜下经鼻腔-蝶窦入路垂体腺瘤切除术[J].中华神经外科杂志,2001,17(4):220-222.
    9.张亚卓,王忠诚,赵德安等.内镜经鼻蝶手术治疗颅底脊索瘤[J].中华神经外科杂志,2007,23(3):163-166.
    10. N Fatemi,JR Dusick,MA de Paiva Neto,et al.Endonasal versus supraorbitalkeyhole removal of craniopharyngiomas and tuberculum sellae meningiomas.Neurosurgery.2009,64[ONS Suppl2]:ons269–ons287.
    11. Kassam A, Snyderman CH, Mintz A, et al. Expanded endonasal approach: therostrocaudal axis. Part I. Crista galli to the sella turcica.Neurosurg Focus.2005Jul15;19(1):E3.
    12. Solares CA, Ong YK, Snyderman CH. Transnasal endoscopic skull base surgery:what are the limits. Curr Opin Otolaryngol Head Neck Surg.2010.18(1):1-7.
    13. Snyderman CH, Pant H, Carrau RL, et al. What are the limits of endoscopic sinussurgery?: the expanded endonasal approach to the skull base. Keio J Med.2009.58(3):152-60.
    14. Dehdashti AR, Ganna A, Witterick I, Gentili F. Expanded endoscopic endonasalapproach for anterior cranial base and suprasellar lesions: indications andlimitations. Neurosurgery.2009Apr;64(4):677-87; discussion687-9.
    15. van Huijzen C. Anatomy of the skull base and the infratemporal fossa. AdvOtorhinolaryngol.1984;34:242-53.
    16.钱海鹏,万经海,李学记等.侧颅底沟通性脑膜瘤的手术治疗[J].中华神经外科杂志,2012,28(8):780-782.
    17. Adam M. Zanation, Carl H. Snyderman, Ricardo L. Carrau,et al.EndoscopicEndonasal Surgery for Petrous Apex Lesions. Laryngoscope,119:19–25,2009
    18. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasalapproach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum.Neurosurg Focus.2005Jul15;19(1):E4.
    19. Yazar F, Cankal F, Haholu A, et al.CT evaluation of the Vidian canal localization.Clin Anat.2007;20(7):751-754.
    20. Birou G, Garcier JM, Guillot M,et al. A study of the lateral pterygoid muscle:anatomic sections and CT appearances. Surg Radiol Anat.1991;13(4):307-11.
    21. Barloon TJ, Yuh WT, DeMarino DP, et al.Infratemporal fossa meningioma: CTand MR findings. J Comput Assist Tomogr.1987Nov-Dec;11(6):1050-3.
    22. Prevedello DM, Kassam AB, Snyderman C, et al.Endoscopic cranial base surgery:ready for prime time? Clin Neurosurg.2007;54:48-57.
    23. Ciporen JN, Moe KS, Ramanathan D,et al.Multiportal endoscopic approaches tothe central skull base: a cadaveric study.World Neurosurg.2010Jun;73(6):705-12.
    24. Villavicencio AT, Leveque JC, Bulsara KR, et al.Three-dimensional computedtomographic cranial base measurements for improvement of surgical approachesto the petrous carotid artery and apex regions.Neurosurgery.2001Aug;49(2):342-52; discussion352-3.
    25. Hosseini SM, Razfar A, Carrau RL, et al. Endonasal transpterygoid approach tothe infratemporal fossa:correlation of endoscopic and multiplanar CT anatomy.Head Neck.2012Mar;34(3):313-20.
    26. Cai WW, Zhang GH, Yang QT, et al. Endoscopic endonasal anatomy ofpterygopalatine fossa and infratemporal fossa: comparison of endoscopic andradiological landmarks. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2010Oct;45(10):843-8.
    27.李文胜,王辉,何海勇,等.三维个体化数字解剖方法在桥脑小脑角肿瘤显微手术中的应用.中华显微外科杂志.2012;35(3):39-41.
    28. Devaiah AK, Reiersen D, Hoagland T. Evaluating Endoscopic and Endoscopic-Assisted Access to the Infratemporal Fossa: A Novel Method for Assessment andComparison of Approaches. Laryngoscope.2013Feb16.
    29. Zhang Q, Feng K, Ge C, et al. Endoscopic endonasal management of trigeminalschwannomas extending into the infratemporal fossa. J Clin Neurosci.2012Jun;19(6):862-5.
    30. Prosser JD, Figueroa R, Carrau RI,et al. Quantitative analysis of endoscopicendonasal approaches to the infratemporal fossa. Laryngoscope.2011Aug;121(8):1601-5.
    31. Dallan I, Lenzi R, Bignami M,et al. Endoscopic transnasal anatomy of theinfratemporal fossa and upper parapharyngeal regions: correlations withtraditional perspectives and surgical implications. Minim Invasive Neurosurg.2010Oct;53(5-6):261-9.
    32. Taniguchi M, Kohmura E. Endoscopic transnasal transmaxillary transpterygoidapproach to the parapharyngeal space: an anatomic study. Minim InvasiveNeurosurg.2010Oct;53(5-6):255-60.
    33. Rivera-Serrano CM, Terre-Falcon R, Fernandez-Miranda J, et al. Endoscopicendonasal dissection of the pterygopalatine fossa, infratemporal fossa, andpost-styloid compartment.anatomical relationships and importance of eustachiantube in the endoscopic skull base surgery. Laryngoscope.2010;120Suppl4:S244.
    34.薛湛,莫大鹏,伊志强等.Dextroscope虚拟现实系统对经上颌窦至侧颅底入路的定量解剖学研究[J].中华神经外科杂志,2012,28(8):792-795.
    35.吴皓.侧颅底外科的现状与挑战[J].中华耳鼻咽喉头颈外科杂志,2008,43(8):561-563.
    36. Zhu MH, Zheng HL, Chen SC, et al.Surgical management and reconstruction ofpetrous internal carotid artery involved in malignant tumors of lateral skullbase.Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2012Dec;47(12):1008-12.
    37. Komatsu F, Komatsu M, Di Ieva A,et al. Endoscopic Extradural SubtemporalApproach to Lateral and Central Skull Base: A Cadaveric Study. World Neurosurg.2012Dec13.
    38. Cavallo LM, Cappabianca P, Galzio R,et al. Endoscopic transnasal approach tothe cavernous sinus versus transcranial route: anatomic study. Neurosurgery.2005.56(2Suppl):379-89; discussion379-89.
    39. d'Avella E, Tschabitscher M, Santoro A,et,al.Blood supply to the intracavernouscranial nerves: comparison of the endoscopic and microsurgical perspectives.Neurosurgery.2008May;62(5Suppl2):ONS305-10; discussion ONS310-1.
    40. Iaconetta, Giorgio,Fusco, Mario,Cavallo, et al.The Abducens Nerve:Microanatomic and Endoscopic Study. Neurosurgery.2007,61(3):593-601.
    1. Alfieri A, Jho HD, Schettino R, et al. Endoscopic endonasal approach to thepterygopalatine fossa: anatomic study.Neurosurgery.2003;52(2):374-78;discussion378-80.
    2.李华斌,张绍祥,许庚等.经鼻内窥镜翼腭窝手术的应用解剖学基础[J].中国临床解剖学杂志,2001,19(2):101-103.
    3. Cavallo LM, Messina A, Gardner P,et al. Extended endoscopic endonasalapproach to the pterygopalatine fossa: anatomical study and clinicalconsiderations. Neurosurg Focus.2005;15;19(1):E5.
    4.焦燕,姜晓钟,纪荣明等.翼腭窝内神经血管的定位研究及其临床意义[J].中国临床解剖学杂志,2005,23(6):586-589.
    5.蔡伟伟,张革化,杨钦泰等.翼腭窝和颞下窝三维影像学与经鼻内镜解剖学对照研究[J].中华耳鼻咽喉头颈外科杂志,2010,45(10):843-848.
    6.薛湛,莫大鹏,伊志强等.Dextroscope虚拟现实系统对经上颌窦至侧颅底入路的定量解剖学研究[J].中华神经外科杂志,2012,28(8):792-795.
    7. Prosser JD, Figueroa R, Carrau RI, et al. Quantitative analysis of endoscopicendonasal approaches to the infratemporal fossa. Laryngoscope.2011Aug;121(8):1601-5.
    8.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜颞下锁孔入路岩斜区解剖中的应用.实用医学杂志.2012,28(19):198-200.
    9.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜经鼻颞骨岩部解剖中的应用.中国临床解剖学杂志,2012,30(5):498-502.
    10.李文胜,王辉,何海勇,等.三维个体化数字解剖方法在桥脑小脑角肿瘤显微手术中的应用.中华显微外科杂志.2012;35(3):39-41.
    11. Kassam AB, Gardner P, Snyderman C, et al. Expanded endonasal approach: fullyendoscopic, completely transnasal approach to the middle third of the clivus,petrous bone, middle cranial fossa, and infratemporal fossa.Neurosurg Focus.2005Jul15;19(1):E6.
    12. Cavallo LM, Messina A, Cappabianca P, et al.Endoscopic endonasal surgery ofthe midline skull base:anatomical study and clinical considerations. NeurosurgFocus.2005;15;19(1):E2.
    13. Hofstetter CP, Singh A, Anand VK, et al. The endoscopic,endonasal,transmaxillary transpterygoid approach to the pterygopalatine fossa,infratemporalfossa, petrous apex, and the Meckel cave. J Neurosurg.2010;113(5):967-74.
    14. Robinson S, Patel N, Wormald PJ. Endoscopic management of benign tumorsextending into the infratemporal fossa: a two-surgeon transnasalapproach.Laryngoscope.2005Oct;115(10):1818-22.
    15. Hartnick CJ, Myseros JS, Myer CM3rd. Endoscopic access to the infratemporalfossa and skull base: a cadaveric study. Arch Otolaryngol Head Neck Surg.2001Nov;127(11):1325-7.
    16. Komatsu F, Komatsu M, Di Ieva A, et al.Endoscopic extradural subtemporalapproach to lateral and central skull base: a cadaveric study, World Neurosurgery(2013),doi:10.1016/j.wneu.2012.12.018.
    17. Yoshida K, Kawase T, Tomita T, et al. Surgical strategy for tumors located in orextending from the intracranial space to the infratemporal fossa-Advantages ofthe transcranial approach (zygomatic infratemporal fossa approach) and theindications for a combined transcranial and transcervical approach. Neurol MedChir (Tokyo).2009;49(12):580-6.
    18. Salma A, Alkandari A, Sammet S, Ammirati M. Lateral supraorbital approach vspterional approach: an anatomic qualitative and quantitativeevaluation.Neurosurgery.2011;68(2Suppl Operative):364-72; discussion371-2.
    19. Wanebo JE, Chicoine MR. Quantitative analysis of the transcondylar approach tothe foramen magnum. Neurosurgery,2001,49:934-41; discussion941-3.
    20. El Morsy SM, Khafagy YW. Transnasal endoscopic management of angiofibromaextending to pterygopalatine and infratemporal fossae. J Laryngol Otol.2011Jul;125(7):701-5.
    21. Dallan I, Lenzi R, Bignami M, et al. Endoscopic transnasal anatomy of theinfratemporal fossa and upper parapharyngeal regions: correlations withtraditional perspectives and surgical implications. Minim InvasiveNeurosurg.2010Oct;53(5-6):261-9.
    22. Rivera-Serrano CM, Terre-Falcon R, Fernandez-Miranda J, et al. Endoscopicendonasal dissection of the pterygopalatine fossa, infratemporal fossa, andpost-styloid compartment.Anatomical relationships and importance of eustachiantube in the endoscopic skull base surgery. Laryngoscope.2010;120Suppl4:S244.
    23. Solari D, Magro F, Cappabianca P, et al. Anatomical study of the pterygopalatinefossa using an endoscopic endonasal approach: spatial relations and distancesbetween surgical landmarks. J Neurosurg,2007,106:157-163.
    24.李增宏.翼腭窝及其相关区域内镜手术应用解剖学研究[D].中山大学,2010.
    25.王小路,李健,单希征等.翼腭窝三维可视模型的建立及内镜下解剖结构分析[J].中国组织工程研究与临床康复,2010,14(52):9764-9767.
    26. Castelnuovo P, Dallan I, Battaglia P, et al. Endoscopic endonasal skull basesurgery: past, present and future. Eur Arch Otorhinolaryngol.2010May;267(5):649-63.
    27. Hosseini SM, Razfar A, Carrau RL, et al. Endonasal transpterygoid approach tothe infratemporal fossa:correlation of endoscopic and multiplanar CT anatomy.Head Neck.2012Mar;34(3):313-20.
    28.胡玉婷,韩卉,庞刚等.翼腭窝区的多层螺旋CT解剖学研究[J].中国临床解剖学杂志,2005,23(6):566-569.
    29.张旭,柳澄.MSCT图像后处理在显示翼腭窝结构中的价值[J].中国临床解剖学杂志,2010,28(3):285-289.
    30. Eloy JA, Murray KP, Friedel ME, et al. Graduated endoscopic multiangleapproach for access to the infratemporal fossa: a cadaveric study with clinicalcorrelates. Otolaryngol Head Neck Surg.2012Aug;147(2):369-78.
    31. Zhang Q, Feng K, Ge C, et al. Endoscopic endonasal management of trigeminalschwannomas extending into the infratemporal fossa. J Clin Neurosci.2012Jun;19(6):862-5.
    32. El-Sayed I, Pletcher S, Russell M, et al. Endoscopic anterior maxillotomy:infratemporal fossa via transnasal approach. Laryngoscope.2011Apr;121(4):694-8.
    33. Ramakrishnan VR, Suh JD, Chiu AG, et al. Septal dislocation for endoscopicaccess of the anterolateral maxillary sinus and infratemporal fossa. Am J RhinolAllergy.2011Mar-Apr;25(2):128-30.
    34. Harvey RJ, Sheehan PO, Debnath NI,et al. Transseptal approach for extendedendoscopic resections of the maxilla and infratemporal fossa. Am J RhinolAllergy.2009Jul-Aug;23(4):426-32.
    35. Zhang QH, Liu HS, Kong F. Endoscopic endonasal surgery for tumors ofpetroclival region and infratemporal fossa. Zhonghua Er Bi Yan Hou Tou JingWai Ke Za Zhi.2005Jul;40(7):488-92.
    36. Zhang QH, Chen G, Kong F, et al.Endoscopic endonasal surgery of trigeminalschwannoma extending into the infratemporal fossa. Zhonghua Wai Ke Za Zhi.2010Oct1;48(19):1454-8.
    37. Chan JY, Li RJ, Lim M, et al. Endoscopic transvestibular paramandibularexploration of the infratemporal fossa and parapharyngeal space: a minimallyinvasive approach to the middle cranial base. Laryngoscope.2011Oct;121(10):2075-80.
    38.秦时强,丁学华,廖建春等.内窥镜辅助颞下锁孔入路的应用解剖[J].中国临床解剖学杂志,2003,21(5):429-431,434.
    39.蔡梅钦,李文胜,王辉,等.CT仿真内镜在垂体微腺瘤经蝶显微手术的应用[J]。中华显微外科杂志,2009,32(5):374-377.
    40. Falcon RT, Rivera-Serrano CM, Miranda JF, et al. Endoscopic endonasaldissection of the infratemporal fossa:Anatomic relationships and importance ofeustachian tube in the endoscopic skull base surgery. Laryngoscope.2011Jan;121(1):31-41.
    41. Zimmer LA, Hart C, Theodosopoulos PV. Endoscopic anatomy of the petroussegment of the internal carotid artery. Am J Rhinol Allergy.2009Mar-Apr;23(2):192-6.
    42. Rysz M, Bakoń L. Maxillary sinus anatomy variation and nasal cavitywidth:structural computed tomography imaging. Folia Morphol (Warsz).2009Nov;68(4):260-4.
    43. Abuzayed B, Tanriover N, Gazioglu N, et al. Extended endoscopic endonasalapproach to the pterygopalatine fossa: anatomic study.J Neurosurg Sci.2009Jun;53(2):37-44.
    44.周定标,张纪,段国升,等.颞下窝-颅中窝沟通瘤的手术治疗.中华神经外科杂志,1994,10:196-98.
    45.王忠诚,张俊廷,倪明,等.额颞联合耳前颞下入路切除中颅窝底鞍旁肿瘤.中华神经外科杂志,1995,11:63-5.
    46. Komatsu M, Komatsu F, Di Ieva A, et al. Endoscopic reconstruction of themiddle cranial fossa through a subtemporal keyhole using a pedicled deeptemporal fascial flap: a cadaveric study. Neurosurgery,2012,70:157-61;discussion162.
    47. Fortes FS, Carrau RL, Snyderman CH, et al. Transpterygoid transposition of atemporoparietal fascia flap: a new method for skull base reconstruction afterendoscopic expanded endonasal approaches. Laryngoscope.2007Jun;117(6):970-6.
    1.张新中,朱贤立,王仲伟.岩斜区侧方手术入路相关血管神经显微外科解剖[J].中国临床解剖学杂志,2004,22(2):162-164.
    2.惠鲁生,胡军,席炜滨等.经Kawase入路切除岩尖周围跨颅中后窝的肿瘤[J].中华显微外科杂志,2004,27(2):157.
    3. Gagliardi F, Boari N, Roberti F, et al.Extradural subtemporal transzygomaticapproach to the clival and paraclival region with endoscopic assist. J CraniofacSurg.2012Sep;23(5):1468-75.
    4.李文胜,王辉,何海勇,等.三维个体化数字解剖方法在桥脑小脑角肿瘤显微手术中的应用.中华显微外科杂志[J].2012.35(3):39-41.
    5.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜颞下锁孔入路岩斜区解剖中的应用.实用医学杂志.2012,28(19):198-200.
    6.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜经鼻颞骨岩部解剖中的应用.中国临床解剖学杂志,2012,30(5):498-502.
    7. Day JD, Giannotta SL, Fukushima T. Extradural temporopolar approach tolesions of the upper basilar artery and infrachiasmatic region[J].J Neurosurg.1994,81(2):230–235.
    8. Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R. Expanded endonasalapproach: fully endoscopic, completely transnasal approach to the middle third ofthe clivus, petrous bone, middle cranial fossa, and infratemporal fossa[J].Neurosurg Focus.2005;19(1):E6.
    9. Komatsu F, Komatsu M, Di Ieva A, Tschabitscher M, Endoscopic extraduralsubtemporal approach to lateral and central skull base: a cadaveric study, WorldNeurosurgery (2013),doi:10.1016/j.wneu.2012.12.018.
    10. Salma A, Wang S, Ammirati M.Extradural endoscope-assisted subtemporalposterior clinoidectomy: a cadaver investigation study[J]. Neurosurgery,2010,67(3):43-48.
    11. Emanuelli E, Ciorba A, Bianchini C, et al.Transnasal endoscopic management ofpetrous apex and clivus selected lesions. EurArch Otorhinolaryngol.2012Oct26.
    12.张秋航,孔锋,严波等.内镜经鼻岩尖病变的外科治疗[J].中国微侵袭神经外科杂志,2006,11(10):435-437.
    13. Razek AA, Huang BY. Lesions of the petrous apex: classification and findings atCT and MR imaging. Radiographics.2012Jan-Feb;32(1):151-73.
    14. Iseli TA, Yahng J, Leung R, et al. Anatomic comparison of nasal versus lateralsurgical access to the petrous apex. Clin Anat.2012Jun13.
    15. Ian Jackson.Hrayr K. Shahinian, M. Kabil, R. Jarrahy, M.-P. Thill.EndoscopicSkull Base Surgery: A Comprehensive Guide with Illustrative Cases[J].Europeanjournal of plastic surgery,2008,31(3):155-155.
    16.孔锋,张秋航,魏宇魁等.内镜经鼻岩尖手术中序贯性组合式解剖标志的确立[J].中国微侵袭神经外科杂志,2010,15(9):416-419.
    17. Kassam AB,Vescan AD,Carrau RL,et al.Expanded endonasal approach:vidiancanal as a landmark to the petrous internal carotid artery[J].J Neurosurg,2008,108:177-183.
    18. Osawa S, Rhoton AL Jr, Seker A,et al.Microsurgical and endoscopic anatomy ofthe vidian canal[J]. Neurosurgery,2009,64(5):385-411.
    19. Barges-Coll J,Fernandez-Miranda JC,Prevedello DM,et al.Avoiding Injury to theAbducens Nerve During Expanded Endonasal Endoscopic Surgery:Anatomic andClinical Case Studies[J].Neurosurgery.2010,67(1):144-54; discussion154.
    20. Iaconetta G, Fusco M, Samii M. The sphenopetroclival venous gulf: amicroanatomical study[J]. J Neurosurg.2003;99(2):366-375.
    21. Kawase T,Toya S,S hiobara R,et al.Transpetrosal approach for aneurysns of thelower basilar artery[J].J Neurosurgery,1985,63(6):857-861.
    22.邹华元.岩斜区脑膜瘤显微手术治疗预后及相关因素分析:附71例病例报告[D].中南大学,2011.
    23.张敬泉,陈坚.颞下入路的显微解剖及临床应用[J].实用医学杂志,2006,22(8):906-908.
    24. Glasscock ME3rd. Middle fossa approach to the temporal bone. An otologicfrontier. Arch Otolaryngol.1969Jul;90(1):15-27.
    25.林毅兴,史继新,樊友武等.颞下入路显露岩骨段颈内动脉的一种改进的定位法[J].中华神经外科杂志,2007,23(7):529-532.
    26. Adam M. Zanation, Carl H. Snyderman, Ricardo L. Carrau,et al.EndoscopicEndonasal Surgery for Petrous Apex Lesions[J]. Laryngoscope,2009,119:19–25.
    27. Cappabianca P, Cavallo LM, Esposito F, et al.Extended endoscopic endonasalapproach to the midline skull base: the evolving role of transsphenoidalsurgery[J]. Adv Tech Stand Neurosurg.2008;33:151-199.
    28. Pichierri A, D'Avella E, Ruggeri A, et al. Endoscopic Assistance in the EpiduralSubtemporal Approach and Kawase Approach: Anatomic Study [J].Neurosurgery,2010,67(3):29-37.
    29.吴哲褒,于春江,诸葛启钏等.影响岩尖脑膜瘤显微切除的因素分析[J].中华显微外科杂志,2005,28(1):84-85.
    30. Yang J, Ma SC, Fang T, et al. Subtemporal transpetrosal apex approach: study onits use in large and giant petroclival meningiomas. Chin Med J (Engl).2011Jan;124(1):49-55.
    31. Komatsu M, Komatsu F, Di Ieva A,et al. Endoscopic reconstruction of the middlecranial fossa through a subtemporal keyhole using a pedicled deep temporalfascial flap: a cadaveric study[J]. Neurosurgery,2012,70(1):157-162.
    32.张秋航,郭宏川,王振霖等.内镜经口入路颈静脉孔区神经鞘瘤切除术[J].中华耳鼻咽喉头颈外科杂志,2012,47(5):363-367.
    33.吴臣义,兰青.乙状窦前经迷路锁孔入路的显微解剖[J].中华显微外科杂志,2007,30(3):172-175,插3-1.
    34.张秋航,刘海生,孔锋等.经鼻内镜岩斜坡及颞下窝肿瘤的外科治疗[J].中华耳鼻咽喉头颈外科杂志,2005,40(7):488-492.
    1. Sedney CL, Nonaka Y, Bulsara KR, Fukushima T. Microsurgical management ofjugular foramen schwannomas. Neurosurgery.2013;72(1):42-6; discussion46.
    2. Benet A, Prevedello DM, Carrau RL, et al. Comparative Analysis of theTranscranial "Far Lateral" and Endoscopic Endonasal "Far Medial" Approaches:Surgical Anatomy and Clinical Illustration. World Neurosurg,2013, doi:10.1016/j.wneu.2013.01.091.
    3. Dallan I, Lenzi R, Bignami M,et al.Endoscopic transnasal anatomy of theinfratemporal fossa and upper parapharyngeal regions: correlations withtraditional perspectives and surgical implications. Minim Invasive Neurosurg.2010,53(5-6):261-9.
    4.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜经鼻颞骨岩部解剖中的应用.中国临床解剖学杂志,2012,30(5):498-502.
    5.李文胜,王辉,何海勇,等.三维个体化数字解剖方法在桥脑小脑角肿瘤显微手术中的应用.中华显微外科杂志.2012;35(3):39-41.
    6. Sedney CL, Nonaka Y, Bulsara KR, et al. Microsurgical management of jugularforamen schwannomas. Neurosurgery.2013;72(1):42-6; discussion46.
    7. Wu A,Zabramski JM,Jittapiromsak P,et al.Quantitative analysis of variantsof the far-lateral approach: condylar fossa and transcondylarexposures. Neurosurgery2010;66:191-198; discussion198.
    8. Makiese O, Chibbaro S, Marsella M, et al. Jugular foramen paragangliomas:management, outcome and avoidance of complications in a series of75cases.Neurosurg Rev.2012;35(2):185-94; discussion194.
    9. Sutiono AB, Kawase T, Tabuse M, et al.Importance of preserved periosteumaround jugular foramen neurinomas for functional outcome of lower cranialnerves: anatomic and clinical studies.Neurosurgery.2011Dec;69(2SupplOperative):ons230-40; discussion ons240.
    10. Rhoton AL Jr. The far-lateral approach and its transcondylar, supracondylar,andparacondylar extensions. Neurosurgery.2000;47(3Suppl):S195-209.
    11. Wen HT, Rhoton AL Jr, Katsuta T, et al. Microsurgical anatomy of thetranscondylar, supracondylar, and paracondylar extensions of the far-lateralapproach. J Neurosurg.1997;87(4):555-85.
    12.田喜光.扩大的内镜下经鼻蝶入路至斜坡及枕骨大孔腹侧区的应用解剖学研究[D].南方医科大学,2009.
    13. Seker A, Inoue K, Osawa S,et al. Comparison of endoscopic transnasal andtransoral approaches to the craniovertebral junction. World Neurosurg2010;74(6):583-602.
    14. Kassam A, Snyderman CH, Mintz A, et al.Expanded endonasal approach: therostrocaudal axis. Part II.Posterior clinoids to the foramen magnum.Neurosurg Focus2005;19(1):E4.
    15. Koutourousiou M, Gardner PA, Tormenti MJ, et al. Endoscopic endonasalapproach for resection of cranial base chordomas: outcomes and learning curve.Neurosurgery.2012;71(3):614-24; discussion624-5.
    16. Yadav Y, Sachdev S, Parihar V, et al. Endoscopic endonasal trans-sphenoidsurgery of pituitary adenoma. J Neurosci Rural Pract.2012Sep;3(3):328-37.
    17. Barazi SA, Pasquini E, D'Urso PI, et al.Extended endoscopic transplanum-transtuberculum approach for pituitary adenomas. Br J Neurosurg.2012Nov26.
    18.张亚卓,王忠诚,刘业剑,等.内镜经鼻蝶入路手术治疗垂体瘤[J].中国微侵袭神经外科杂志,2007,12(2):51-54.
    19.张亚卓,王忠诚,宗绪毅等.神经内镜在颅底脊索瘤外科治疗中的应用[J].中华医学杂志,2011,91(25):1734-1738.
    20.张亚卓,王忠诚,赵德安等.内镜经鼻蝶手术治疗颅底脊索瘤[J].中华神经外科杂志,2007,23(3):163-166
    21. Morera VA, Fernandez-Miranda JC, Prevedello DM, et al."Far-medial" expandedendonasal approach to the inferior third of the clivus: the transcondylar andtransjugular tubercle approaches. Neurosurgery,2010,66:211-9; discussion219-20.
    22. Benet A,Morera VA,Fernandez-Miranda JC,et al. Endoscopic endonasaltransclival approach to the jugular tubercle. Neurosurgery,2012,71:146-58;discussion158-9.
    23.彭志强,李少华,田广永等.内镜辅助下远外侧髁后锁孔手术入路的解剖学研究[J].中国临床解剖学杂志,2008,26(1):17-20.
    24. Lanzino G, Paolini S, Spetzler RF.Far-lateral approach to the craniocervicaljunction. Neurosurgery2005;57:367-371; discussion367-371.
    25. Al-Sheibani S, Zanation AM, Carrau RL, et al. Endoscopic endonasaltranspterygoid nasopharyngectomy. Laryngoscope.2011;121(10):2081-9.
    26. Devaiah AK, Reiersen D, Hoagland T. Evaluating Endoscopic andEndoscopic-Assisted Access to the Infratemporal Fossa: A Novel Method forAssessment and Comparison of Approaches. Laryngoscope,2013, Feb16.
    27. Dallan I, Seccia V, Muscatello L,et al. Transoral endoscopicanatomy of theparapharyngeal space: a step-by-step logical approach with surgicalconsiderations. Head Neck2011;33(4):557-61.
    28.何海勇,李文胜,王辉,等.个体化三维数字模型在内镜颞下锁孔入路岩斜区解剖中的应用.实用医学杂志.2012,28(19):198-200.
    29. Zhang QH, Guo HC, Wang ZL, et al. Surgery for jugular foramen schwannomasvia a pure endoscopic transoral approach.Zhonghua Er Bi Yan Hou Tou Jing WaiKe Za Zhi,2012,47(5):363-7.
    30. Hwang SH, Joo YH, Seo JH, et al. Three-dimensional computed tomographyanalysis to help define an endoscopic endonasal approach of the pterygopalatinefossa. Am J Rhinol Allergy.2011;25(5):346-50.
    31. Samii M, Klekamp J, Carvalho G. Surgical results for meningiomas of thecraniocervical junction. Neurosurgery.1996Dec;39(6):1086-94; discussion1094-5.
    32. Kawashima M, Tanriover N, Rhoton AL Jr, et al. Comparison of the far lateraland extreme lateral variants of the atlanto-occipital transarticular approach toanterior extradural lesions of the craniovertebral junction. Neurosurgery.2003Sep;53(3):662-74; discussion674-5.
    33. Komatsu F, Komatsu M, Di Ieva A, et al. Endoscopic far-lateral approach to theposterolateral craniovertebral junction: an anatomical study. Neurosurg Rev,2012Nov29.
    34. El-Sayed IH,Roediger FC,Goldberg AN,et al.Endoscopic reconstruction ofskull base defects with the nasal septal flap. Skull Base2008;18:385-394.
    35.董玉科.内镜下经鼻颅颈交界腹侧区手术的应用解剖[D].南方医科大学,2009.
    36. Lanzino G, Paolini S, Spetzler RF.Far-lateral approach to the craniocervicaljunction. Neurosurgery2005;57:367-371; discussion367-371.
    37. Taniguchi M, Kohmura E. Endoscopic transnasal transmaxillary transpterygoidapproach to the parapharyngeal space: an anatomic study. Minim InvasiveNeurosurg.2010;53(5-6):255-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700