猪的诱导性多潜能干细胞向视网膜感光细胞分化的体内及体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨猪的诱导性多潜能干细胞(piPSC)在体外分化成视网膜神经细胞的方法。研究piPSC移植治疗猪的视网膜损伤的效果。
     材料与方法:piPSC在放射处理后的SNL细胞上培养并传代。取第28代、第40代和第43代piPSC分别悬浮培养3天后形成胚胎体,再将胚胎体转至未稀释基质胶,1:10和1:20稀释的基质胶以及层粘连蛋白-纤维连接蛋白基质上粘附培养以使其分化。用免疫荧光染色和实时PCR技术检测piPSC以及分化细胞中干细胞标志物OCT4、ABCG2、Nanog、Sox2,神经细胞标志物TUBB3,感光细胞标志物RCVRN、NRL、RHO、IRBP、ROM1和ARR3以及视杆细胞型双极细胞标志物PRKCA的表达,计数表达上述标志物的细胞的比例以及在形态上具有外节结构细胞的比例。用带IRBP-GFP基因的慢病毒感染分化后的细胞,使视锥型和视杆型感光细胞表达绿色荧光蛋白(GFP)。碘乙酸(IAA)静脉注射建立猪视杆细胞损伤的动物模型,将感染GFP的piPSC分化细胞移植入的一侧病眼视网膜下,对侧病眼视网膜下注射DMEM/F12培养液作为对照。分别在用药前及细胞移植术后三周检测视网膜电生理反应(ERG)。术后3周摘取视网膜,切片,通过免疫荧光染色观察移植后的细胞在病变视网膜中的整合情况。
     结果:实时PCR和免疫荧光染色显示分化后的细胞失去干细胞特异性基因OCT4、Nanog和Sox2的表达,转而表达视网膜感光细胞基因RCVRN、NRL、RHO、IRBP、ROM1和cone-arrestin。其中有30.91±7.2%的分化细胞表达转录因子NRL,25.61±8.5%表达RCVRN,6.765±2.083%表达RHO,此外还有2.6±0.4%的细胞表达PRKCA。以层粘连蛋白—纤维连接蛋白为细胞外基质可以分化出更多的RHO阳性细胞,但其外形更类似普通神经细胞。以基质胶为细胞外基质可以分化出更多的具有视杆细胞形态的细胞,即有外节结构的细胞。用携带IRBP-GFP基因的病毒感染分化细胞后,约44%的细胞表达GFP。这些细胞已经定向分化成视网膜感光细胞前体细胞或成熟细胞。移植到视网膜下后可检测到RHO阳性的细胞在视网膜各层均有表达,其主要表达部位在视网膜外核层,即正常的感光细胞所在的位置。在这些整合入视网膜的移植细胞中,有一部分细胞具有外节结构。
     结论:piPSC能在体外高效地分化成视网膜神经细胞并且部分细胞具有与原代培养的视杆细胞类似的外节样结构。将这些分化的细胞移植入视杆细胞损伤的猪视网膜下方,移植细胞可以整合入受损视网膜。部分移植细胞在眼内分化出外节结构,这可能有助于视觉功能的恢复。
Purpose:A two-step protocol was developed for efficient differentiation of porcine induced pluripotent stem cells (piPSC) into rod photoreceptors for transplantation into a swine model of rod photoreceptor loss.
     Materials and Methods:piPSC were cultured on the irradiate inactivated SNL feeder cell layer. P28, P40 and P43 piPSC were used for the differentiation. The cells were put in floating culture to form embryoid bodies followed by three weeks of differentiation in adherent culture. We examined the effect of substratum for adhesion culture and media composition on differentiation to rod photoreceptor lineage. Real time PCR and immunostaining were used to follow iPSC differentiation and the morphology of the cells was examined as well. We analyzed expression of the stem cell markers Oct4, ABCG2, Nanog, Sox2; rod lineage markers including RCVRN, NRL, RHO, IRBP, ROM1, cone-arrestin and rod bipolar cell marker PRKCA. Differentiated cells were then infected with the IRBP-GFP lentivirus. Differentiated cells were then transplanted into the subretinal space of swine treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, retinal sections were immunostained to follow engrafted cells.
     Results:Real time PCR and immunostaining demonstrated loss of expression of the stem cell specification gene OCT4, Nanog, Sox2 and induction of rod photoreceptor gene markers including RCVRN, NRL, RHO, IRBP, ROM1, cone-arrestin and rod bipolar cell marker PRKCA. Immunostaining results and statistic analysis showed among the differentiated cells,30.91±7.2% were positive for NRL,25.61±8.5% were positive for RCVRN,6.765±2.083% expressed RHO, and 2.6±0.4% expressed PRKCA. Adherent culture on laminin-fibronectin led to a higher number of RHO+ cells while Matrigel led to a morphology resembling primary cultures of rod photoreceptors and to concentration of RHO and ROM1 in outer segment-like projections. After infection by the IRBP-GFP lentivirus, about 44% of differentiated cells were GFP+, which reflected rod and cone photoreceptors. After transplantation, RHO+ cells were evident in all retinal layers, but they were concentrated in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had projections resembling outer segments.
     Conclusions:Skin-derived swine iPSC can efficiently differentiate to express markers of rod lineage and they morphologically resemble rods in culture concentrating RHO and ROM1 into projections resembling outer segments. These cells can integrate into the outer nuclear layer following rod photoreceptor loss, and some of engrafted cells display outer segment-like projections suggesting transition to functional morphology.
引文
[1]Sung CH, Chuang JZ. The cell biology of vision. J Cell Biol 2010;190:953-963.
    [2]Karl MO, Reh TA. Regenerative medicine for retinal diseases:activating endogenous repair mechanisms. Trends Mol Med 2010; 16:193-202.
    [3]Lamba DA, Karl MO, Reh TA. Strategies for retinal repair:cell replacement and regeneration. Prog Brain Res 2009; 175:23-31.
    [4]Karl MO, Hayes S, Nelson BR, et al. Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A.2008;105:19508-19513.
    [5]Ooto S, Akagi T, Kagevama R, et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A. 2004; 101:13654-13659.
    [6]Potter ED, Ling ZD, Carvey PM, et al. Cytokine induced conversion of mesencephalic derived progenitor cells into dopamine neurons. Cell Tissue Res 1999; 296:235-246.
    [7]Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 2009;4:73-78.
    [8]MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006;444:203-207.
    [9]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell.2006; 126:663-676.
    [10]Jin ZB, Okamoto S, Mandai M, et al. Induced pluripotent stem cells for retinal degenerative diseases:a new perspective on the challenges. J Genet.2009;88:417-424.
    [11]Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol.2008;26:215-224.
    [12]Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett.2009;458:126-131.
    [13]Oron-Karni V, Farhy C, Elgart M, et al. Dual requirement for Pax6 in retinal progenitor cells. Development.2008;135:4037-4047.
    [14]Krigel A, Felder-Schmittbuhl MP, Hicks D. Circadian-clock driven cone-like photoreceptor phagocytosis in the neural retina leucine zipper gene knockout mouse. Mol Vis.2010;16:2873-2881.
    [15]Zou J, Luo L, Shen Z, et al. Whirlin Replacement Restores the Formation of the USH2 Protein Complex in Whirlin Knockout Photoreceptors. Invest Ophthalmol Vis Sci.2011:52:2343-2351.
    [16]Szel A, Rohlich P, Caffe AR, et al. Distribution of Cone Photoreceptors in the Mammalian Retina Microsc Res Tech.1996;35:445-462.
    [17]Hendrickson A, Hichs D. Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res.2002;74:435-444.
    [18]Telugu BP, Ezashi T, Roberts RM. The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Rev.2010;6:31-41.
    [19]Esteban MA, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem.2009;284:17634-17640
    [20]Wu D, Hamilton B, Martin C, et al. Generation of induced pluripotent stem cells by reprogramming human fibroblasts with the stemgent human TF lentivirus set. J Vis Exp.2009; pii:1553. doi:10.3791/1553.
    [21]Ezashi T, Telugu BP, Alexenko AP, et al. Derivation of induced pluripotent stem cells from pig somatic cells.Proc Natl Acad Sci U S A.2009; 106:10993-10998.
    [22]Lamba DA, Karl MO, Ware CB, et al. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:12769-12774.
    [23]Zayas-Santiago A, Kang A, Derwent JJ. Preservation of intact adult rat photoreceptors in vitro:study of dissociation techniques and the effect of light. Mol Vis 2009; 15:1-9.
    [24]Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol.2009 Feb;118(1):69-77. Epub 2008 Nov 22.
    [25]Osakada F, Ikeda H, Sasai Y, et al. Stepwise differentiation of pluripotent stem cells into retinal cells. Nature Protocols 2009;4:811-824.
    [26]Ghosh F, Arner K. Cell Type Differentiation Dynamics in the Developing Porcine Retina. Dev Neurosci 2010;32:47-58.
    [27]Dunn FA, Doan T, Sampath AP, et al. Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 2006;26:959-970.
    [28]Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 2010;5:e8763.
    [29]Liras A. Future research and therapeutic applications of human stem cells:general, regulatory, and bioethical aspects. J Transl Med.2010;8:131.
    [30]Kong CW, Akar FG, Li RA. Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair:insights from experimental models. Thromb Haemost.2010;104:30-38.
    [31]Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 2009;106:16698-16703.
    [32]Ivannikov MV, Sugimori M, Llinas RR. Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium.2010;47:507-513
    [33]Liang L, Katagiri Y, Franco LM, et al. Long-term cellular and regional specificity of the photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Vis Neurosci. 2008;25:167-177.
    [34]Fischer AJ, Schmidt M, Omar G, et al. BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Muller glia in the retina. Mol Cell Neurosci.2004;27:531-542.
    [35]Hendrickson A, Bumsted-O'Brien K, Natoli R, et al. Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res.2008;87:415-26.
    [36]Jastrzebska B, Debinski A, Filipek S, et al. Role of membrane integrity on G protein-coupled receptors:Rhodopsin stability and function. Prog Lipid Res. 2011;50:267-227
    [37]Phillips MJ, Otteson DC, Sherry DM. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-2089.
    [38]Sakami S, Maeda T, Bereta G, et al. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations. J Biol Chem.2011;286:10551-10567.
    [39]Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000;26:270-271.
    [40]West EL, Pearson RA, Barker SE, et al.Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation.Stem Cells.2010;28:1997-2007
    [1]Sung CH, Chuang JZ. The cell biology of vision. J Cell Biol 2010;190:953-963.
    [2]Carter-Dawson LD, LaVail MM. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol.1979; 188:245-262.
    [3]Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature.1999;397:520-522.
    [4]Smith SO. Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys.2010;39:309-328.
    [5]Jacobs, G.H. Primate photopigments and primate color vision. Proc. Natl. Acad. Sci. U.S.A.1996;93:577-581.
    [6]Szel A, Rohlich P, Caffe AR, et al. Distribution of Cone Photoreceptors in the Mammalian Retina. Microsc Res Tech.1996;35:445-462.
    [7]Hendrickson A, Bumsted-O'Brien K, Natoli R, et al. Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res.2008;87:415-426.
    [8]Smith SO. Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys.2010;39:309-312
    [9]Takimoto N, Kusakabe T, Tsuda M. Origin of the vertebrate visual cycle. Photochem Photobiol.2007;83:242-247
    [10]Phillips MJ, Otteson DC, Sherry DM. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-2089.
    [11]Sakami S, Maeda T, Bereta G et al. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations. J Biol Chem.2011;286:10551-10567.
    [12]Yamashita T, Liu J, Gao J, et al. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa. J Neurosci.2009;29:9748-9760.
    [13]Zuber ME, Gestri G, Viczian AS, et al. Specification of the vertebrate eye by a network of eye field transcription factors. Development.2003;130:5155-5167
    [14]Swindell EC, Liu C, Shah R, et al. Eye formation in the absence of retina. Dev Biol.2008;322:56-64.
    [15]Tetreault N, Champagne MP, Bernier G. The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev Biol.2009;327:541-550.
    [16]Lagutin OV, Zhu CC, Kobayashi D, et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 2003;17:368-379.
    [17]Tsukiji N, Nishihara D, Yajima I, et al. Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE. Dev Biol. 2009;326:335-346.
    [18]Graw J. Eye development. Curr Top Dev Biol.2010;90:343-86.
    [19]Ashery-Padan R, Gruss P. Pax6 lights-up the way for eye development. Curr Opin Cell Biol.2001:13:706-714.
    [20]Hennig AK, Peng GH, Chen S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res.2008; 1192:114-133.
    [21]Guduric-Fuchs J, Ringland LJ, Gu P, Immunohistochemical study of pig retinal development. Mol Vis.2009;15:1915-1928.
    [22]Koike C, Nishida A, Ueno S, et al. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol.2007;27:8318-8329.
    [23]Hennig AK, Peng GH, Chen S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res.2008;1192:114-133.
    [24]Srinivas M, Ng L, Liu H, et al. Activation of the blue opsin gene in cone photoreceptor development by retinoid-related orphan receptor beta. Mol Endocrinol.2006;20:1728-1741.
    [25]Jia L, Oh EC, Ng L, et al. Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A.2009;106:17534-17539.
    [26]Mitton KP, Swain PK, Chen S, et al. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J Biol Chem.2000;275:29794-29799.
    [27]Oh EC, Cheng H, Hao H, et al. Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. Brain Res.2008; 1236:16-29.
    [28]Chen J, Rattner A, Nathans J. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes.
    [29]Lu A, Ng L, Ma M, et al. Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice. Endocrinology.2009; 150:1536-1544.
    [30]Ng L, Hurley JB, Dierks B, et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet.2001 Jan;27(1):94-8.
    [31]Smallwood PM, Wang Y, Nathans J. Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proc Natl Acad SciUS A.2002;99:1008-1011
    [32]Roberts MR, Hendrickson A, McGuire CR, et al. Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest Ophthalmol Vis Sci.2005;46:2897-2904.
    [33]Karl MO, Reh TA. Regenerative medicine for retinal diseases:activating endogenous repair mechanisms. Trends Mol Med 2010; 16:193-202.
    [34]Lamba DA, Karl MO, Reh TA. Strategies for retinal repair:cell replacement and regeneration. Prog Brain Res 2009; 175:23-31.
    [35]Marc RE, Jones BW, Watt CB, et al. Neural remodeling in retinal degeneration. Prog Retin Eye Res.2003;22:607-655.
    [36]Dyer MA, Cepko CL. Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci.2000;3:873-880.
    [37]Ooto S, Akagi T, Kagevama R et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A. 2004;101:13654-13659.
    [38]Osakada F, Ooto S, Akagi T, et al. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci.2007;27:4210-4219.
    [39]Karl MO, Hayes S, Nelson BR et al. Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A.2008;105:19508-19513.
    [40]Seiler MJ, Aramant RB. Transplantation of neuroblastic progenitor cells as a sheet preserves and restores retinal function. Semin Ophthalmol.2005;20:31-42.
    [41]Peng Q, Thomas BB, Aramant RB, et al. Structure and function of embryonic rat retinal sheet transplants. Curr Eye Res.2007;32:781-789.
    [42]Ghosh F, Engelsberg K, English RV, et al. Long-term neuroretinal full-thickness transplants in a large animal model of severe retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol.2007;245:835-846.
    [43]Yang PB, Seiler MJ, Aramant RB, et al. Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp Eye Res.2010;91:727-738.
    [44]Chacko DM, Rogers JA, Turner JE, et al. Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun.2000;268:842-846.
    [45]Qiu G, Seiler MJ, Mui C, et al.Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp Eye Res.2005;80:515-525.
    [46]Klassen H, Kiilgaard JF, Zahir T et al. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 2007;25:1222-1230.
    [47]MacLaren RE, Pearson RA, MacNeil A et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006;444:203-207.
    [48]West EL, Pearson RA, Barker SE, et al.Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells.2010;28:1997-2007
    [49]Henning RJ. Stem cells in cardiac repair. Future Cardiol.2011;7:99-117
    [50]Ikeda H, Osakada F, Watanabe K, et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A.2005;102:11331-11336
    [51]Osakada F, Ikeda H, Sasai Y et al. Stepwise differentiation of pluripotent stem cells into retinal cells. Nature Protocols 2009;4:811-824.
    [52]Osakada F, Ikeda H, Mandai M et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol.2008;26:215-224.
    [53]Lamba DA, Karl MO, Ware CB et al. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:12769-12774.
    [54]Meyer JS, Shearer RL, Capowski EE et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 2009;106:16698-16703.
    [55]Telugu BP, Ezashi T, Roberts RM. The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Rev.2010;6:31-41.
    [56]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell.2006; 126:663-676.
    [57]Esteban MA, Xu J, Yang J et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem.2009;284:17634-17640
    [58]Wu D, Hamilton B, Martin C et al. Generation of induced pluripotent stem cells by reprogramming human fibroblasts with the stemgent human TF lentivirus set. J Vis Exp.2009; pii:1553. doi:10.3791/1553.
    [59]Ezashi T, Telugu BP, Alexenko AP et al. Derivation of induced pluripotent stem cells from pig somatic cells.Proc Natl Acad Sci U S A.2009;106:10993-10998.
    [60]Ross PJ, Suhr ST, Rodriguez RM, et al. Human-induced pluripotent stem cells produced under xeno-free conditions. Stem Cells Dev.2010;19:1221-1229.
    [61]Jincho Y, Araki R, Hoki Y, Generation of genome integration-free induced pluripotent stem cells from fibroblasts of C57BL/6 mice without c-Myc transduction. J Biol Chem.2010;285:26384-26389.
    [62]Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 2009;4:73-78.
    [63]Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci.2009; 12:44-52.
    [64]Bunker CH, Berson EL, Bromley WC, et al. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 1984;97:357-365.
    [65]Grondahl J. Estimation of prognosis and prevalence of retinitis pigmentosa and Usher syndrome in Norway. Clin Genet.1987; 31:255-264.
    [66]Novak-Laus K, Suzana Kukulj S, Zoric-Geber M, et al. Primary tapetoretinal dystrophies as the cause of blindness and impaired vision in the republic of Croatia. Acta Clin Croat.2002;41:23-27
    [67]Tsang SH, Tsui I, Chou CL, et al. A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am J Ophthalmol.2008; 146:780-88
    [68]Tuntivanich N, Pittler SJ, Fischer AJ, et al. Characterization of a canine model of autosomal recessive retinitis pigmentosa due to a PDE6A mutation. Invest Ophthalmol Vis Sci.2009;50:801-813.
    [69]Kraft TW, Allen D, Petters RM, et al. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis. 2005;11:1246-1256.
    [70]Travis, G.H., Golczak, M., Moise, A.R., et al. Diseases caused by defects in the visual cycle:retinoids as potential therapeutic agents. Ann. Rev. Pharmacol. Toxicol.2007;47,469-512.
    [71]Redmond, T.M., Poliakov, E., Yu, S., et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. U.S.A.2005; 102:13658-13663.
    [72]Stein L, Roy K, Lei L, et al. Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis. Expert Opin Biol Ther.2011;11:429-439.
    [73]Booij JC, Florijn RJ, ten Brink JB, et al. Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J Med Genet.2005;42:e67
    [74]Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet.1998;20:344-351.
    [75]Rohrer B, Goletz P, Znoiko S, et al. Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. Invest Ophthalmol Vis Sci.2003;44:310-315.
    [76]Kostic C, Crippa SV, Pignat V, et al. Gene therapy regenerates protein expression in cone photoreceptors in Rpe65(R91W/R91 W) mice. PLoS One.2011;6:e16588.
    [77]Stein L, Roy K, Lei L, et al. Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis. Expert Opin Biol Ther.2011; 11:429-439.
    [78]Annear MJ, Bartoe JT, Barker SE, et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Ther.2011;18:53-61
    [79]Berson EL, Rosner B, Sandberg MA, et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol.2010;128:403-411.
    [80]Pasantes-Morales H, Quiroz H, Quesada O. Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa:a 3-year follow-up study. Metab Brain Dis.2002; 17:183-197.
    [81]Li Y, Tao W, Luo L, ETAL. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS One.2010;5:e9495.
    [82]Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda).2010;25:8-15
    [83]Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med.2010;10:802-823.
    [84]Kaarniranta K, Hyttinen J, Ryhanen T, et al. Mechanisms of protein aggregation in the retinal pigment epithelial cells. Front Biosci.2010;2:1374-1384.
    [85]Lamba D, Karl M, Reh T. Neural regeneration and cell replacement:a view from the eye. Cell Stem Cell.2008;2:538-549.
    [86]Raya A, Rodriguez-Piza I, Navarro S, et al. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc.2010;5:647-60.
    [87]Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature.2009;460:53-59.
    [88]Jin ZB, Okamoto S, Osakada F, et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One.2011;6:e17084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700