转化生长因子-β1基因修饰的人视网膜色素上皮细胞移植治疗老年性黄斑变性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人转化生长因子-β1(hTGF-β1),在多种组织细胞的增殖分化、间质形成、组织损伤修复、骨质再生、胚胎发育以及免疫调控中起着重要的作用。目前已经证实TGF-β1 是一种强效免疫抑制因子,其功能比环孢素A 还要强大约104-106倍。
    本研究以hTGF-β1 为目的基因,构建了TGF-β1 真核表达载体,并成功地转染到体外培养的人视网膜色素上皮(RPE)细胞,建立了稳定表达TGF-β1的基因工程化RPE 细胞。将TGF-β1 的基因工程化RPE 细胞移植到兔视网膜下腔,移植术后通过眼底照相、眼底荧光造影、组织病理等方法对移植细胞的存活状态、TGF-β1 表达情况及宿主对移植细胞的排异情况进行观察。结果显示,与实验对照组比较,TGF-β1 基因修饰的RPE 细胞在兔视网膜下腔可以较长期存活,无明显荧光渗漏,移植区域脉络膜层无明显的组织细胞浸润。上述结果表明hTGF-β1 基因修饰的RPE 细胞异体移植是可行的,并有望成为老年性黄斑变性等RPE 细胞变性性疾病的一种有效的治疗手段。
With the development of mental and material civilization, age-related maculardegeneration (ARMD) has been one of the most common ophthalmopathies causingblindness among the olds. Especially to exudative ARMD, neovascular membraneunder fovea centralis exudes, hemorrhages and scars repeatedly, which would effectthe visual function seriously. Since neovascular membrane of fovea centralis or scarsare resected by operating, the serious loss and lesion of RPE cells are inevitable. Thedefect of RPE would affect visual cells and choroid capillary plate once more. It notonly couldn,t improve the visual function, but also be in danger of visual activitydescent.
    In 1983 Gouras was the first to report the transplantation of cultured human RPEinto the retinal cavity of monkey. Since then, many researchers try to transplant RPEcells from healthy donor into the retinal cavity. Twenty years later, manyachievements in animal and clinic experiments have been acquired. RPE cellstransplantation has now been utilized to rebuilt normal anatomic structure andphysiological function of macula at the subretinal space in exudative ARMD withserious visual disturbance. It has also been used to provide suitable support andnutrition for the photoreceptors of fovea centralis, as well as prevent the atrophy ofchoroid capilliary.
    However, transplantation immunologic rejection is an inevitable importantproblem in RPE cells transplantation, the same as other cells transplantation.Although retinal cavity is considered as the immune privilege region for blood-retinalbarrier and chorioretinal barrier, it has been verified that the immune privilege isrelative. Especially, the immune privilege behavior of retinal cavity could bedestructed, following the retinal barriers destruction. Once immunological rejectionoccurrence, it would not only effect the long-term living of donor RPE cells at thesubretinal space, but also destruct the blood-retinal barrier, even lead to hemorrhage,exudation or edema of the transplant region and visual activity descent.
    Recently, the immune rejection has been prevented with environment intervention.Particularly, the tissue and organ transplantation are successful in the application ofthe new type immuno-suppressive drugs. But they are harmful to the body. We applyCiclosporin A (CsA) in clinic, that could prevent T cells activating and lymphokinesreleasing. It would lead to liver-kidney toxicity, hypertension and retinal toxicity inlong-term use. Gene therapy is another important progress to block transplantationimmunological rejection with environment intervention. At present, the establishmentof engineered transgenic cells and the transplantation of RPE cells have rathermaturated. We should make use of the immunosupression factor gene to modify thecultured RPE cells in vitro, which could express products in RPE cells stably andregulate the xenograft reject reaction in the subretinal space. It would be helpful tosolve the short of cell source and the ill effect of immuno-supressive drugs. Moreover,it could replace the RPE cells completely and break a new pathway to treat ARMD. The objective gene TGF-β1 in our research is a powerful immunosupressionfactor, whose function is 104-106 times stronger than CsA. TGF-β1 could take part inthe transplantation immunity with downregulation the non-specificimmunosuppressive action of lymphocytes and macrophage. Even more, it couldinhibit the expression of MHC and co-sitmulating factor on the surface of DC,decrease antigen presentation function of DC and confuse DC differentiation to inductspecific donor transplantation tolerance. We extracted TGF-β1 from human blood andamplified by clone. Then eukaryotic expression plasmid of pcDNA3-hTGF-β1 wasconstructed successfully and it was transferred into cultured RPE cells in vitro withlipofectamine. At last, the RPE cells of expression TGF-β1 stably were transplantedinto the subretinal space of rabbit and the transplantation immunological rejection wasobserved. PartⅠConstruction and identification of eukaryotic expression plasmid of hTGF-β1 The hTGF-β1 cDNA (1200bp) was RT-PCR amplified, purified and connectedwith pGEM-T by TA clone. The positive recombinant plasmid was renamed pGEM-T-hTGF-β1.It was digested with double enzyme EcoR and Xhol I. The plasmidpcDNA3-hTGF-β1 was constructed successfully with inserting the objective genefragment of pGEM-T-hTGF-β1 into the eukaryotic expression plasmid pcDNA3. Thestudy would be applied to study engineered RPE cells with expression the hTGF-β1stably and the subretinal transplantation of hTGF-β1 gene modified RPE cells to treatRPE cells degenerative disease.
    PartⅡCulture and identification of RPE cells Accidental death eyes were studied. The death time is no more than 4 hours. Theeye bulbs were washed externally with D-Hanks. The anterior segment with cornea,iris, lens and vitreous was removed. The posterior segment was fixed into whiterubber tray, and RPE patches were separated gently from neural retina under adissection microscope. After washing in D-Hanks, 0.25% trypsin and 0.01% EDTAwere added, bathing the RPE cells for a 30 min digestion cycle. Loosened RPE cellswere boasted and transferred to centrifuge tubes containing DMEM supplementedwith 10% fetal calf serum. The cellular suspension centrifuged at 1000 rpm for 10 min,was resuspended in DMEM/F12/10% FCS, plated in culture bottles and incubated in95% O2 and 5% CO2 atmosphere at 37 °C. The initial cell seeding density was80,000-100,000 cells/ml. The primary cultured RPE cells were round in shape. Theydrifted in the culture medium and contained large amount of pigments. We could notwatch nucleus by invert microscope. After attaching to culture bottles, RPE cellsstretched out pseudopodium, then they changed into irregular multiangle shapes. Thecentral round hyalomere was nucleus. RPE cells expressed cytokeratin, which ischaracteristic of epithelial cells. The cells were around and maldistribution aftercryopeservating the third passages, cells. By 24 hours, they were attached and beganto proliferate. 72 hours later, the RPE cells contacted each other. The cryopeservatedcells were positive with anti-cytokeratin staining too. The hRPE cells were cultured successfully and cryopeservation of RPE couldmaintain biological activities of cells after thawing. It would provide target cells forexperiments in vitro and benefit on cells transplantation. Part ⅢEstablishment and evaluation of gene modified RPE cells with stably expressing the TGF-β1 The gene introduction system is the core of gene therapy. Eukaryotic expressionplasmid pcDNA3-hTGF-β1 was transferred into RPE cells with the help oflipofectamine. The positive cells clones were selected with G418. The cells werecultured in media of least fatal dose G418. In 2 weeks, most of the cells were dead,except for the resistant cells transferred pcDNA3-hTGF-β1. G418-resistant colonieswere picked up and grown in medium in the presence of G418 for 4 weeks. Theexpression of TGF-β1 in RPE cells was detected by Western blot andimmunocytochemical analysis. It was resulted that TGF-β1 mRNA and TGF-β1protein were stably expressed in RPE cells transferred pcDNA3-hTGF-β1. Geneticengineered RPE cells with stably expressing the hTGF-β1 are established and it wasuseful to subretinal transplantation.
引文
1. 刘家琦,李凤鸣主编.实用眼科学,人民卫生出版社,北京,第二版,2000: 509.
    2. 张承芬主编.眼底病学,人民卫生出版社,北京,第一版,1998:331-348.
    3. 夏群,张伟,张尧贞,等. 老年人盲和低视力的病因分析[J].中华老年医学杂志,2004,23(2):96-98.
    4. Alello LP, Avery RL, Arrigg PG, et al. VEGF in ocular fluid of patients with diabtic retinopathy and other retinal disorders. N Engl J Med, 1994, 331:1880-1887.
    5. Bressler NM, Bressler SB, Fine SL. Agerelated macular degeneration. Surv Ophthalmol, 1998,32:375-413.
    6. Frei B. Reactive oxygen species and antioxidant vitamins: mechanism of action. Am J Med, 1994, 1:5-13.
    7. Mori F, Konno S, Hikichi T, et al. Pulsatile ocular blood flow J Ophthalmol, 1995,120:757-766.
    8. Ross R, Barofsky J, Cohen G, et al. Presumed macular choroidal watershed vascular filing, choroidal neovascularization, and systemic vascular desease in patients with age-related macular degeneration. Br J Ophthalmol, 1998, 125(1):71-80.
    9. Krinsky NI. Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med, 1992,200:248-254.
    10. Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of age-related maculopathy. Am J Ophthamol, 1997, 123:199-206.
    11. Myers SM, Greene T, Guttman FA. A twin study of age-related macular degeneration. Arch Ophthalmol, 1995, 120:757-766.
    12. 寺田佳子,白神史雄. 光动力学疗法,ぁたらし眼科,2003,20(12): 1509-1514.
    13. 梁晓文. 老年性黄斑变性治疗的新进展. 国外医学眼科学分册. 2002,26 (5):306-310.
    14. Regillo CD. Curr Opin Ophthalmol, 2000, 11(2):166.
    15. 小田亮,玉置泰裕. TTT とPDT.眼科.2004,46(2):185-191.
    16. 祃红燕,陈松. 老年性黄斑变性脉络膜新生血管的药物治疗研究进展.中华眼底病杂志.2004,20(5):331-334.
    17. Honda M, Sakamoto T, Ishibashi T, et al. Experimental sub retinal neovascula-rization is inhibited by adenovirus-mediated soluble VEGF/flt-l-receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related mcular degeneration. Gene Ther.2000, 7:978-985.
    18. Diana ML, Maureen GM, Stuart LF, et al. A model of the incidence and consquence of choroidal neovascularization secondary to age-related macular degeneration. A rch Ophthalmol, 1998,116(8):1045-1052.
    19. Allikmets R. Molecular genetics of age-related macular degeneration:current status. Eur J Ophthalmol, 1999,9:255-265.
    20. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija. M.Retinal pigment epithelial cell count, distribution, and correlations in normalhuman eyes [J], Am J Ophthalmol, 1996,121:181-189.
    21. Allikmets R. Molecular genetics of age-related macular degeneration:current. Eur J Ophthalmol. 1999,9(3):255-266.
    22. Kwak N, Okamoto N. VEGFis major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci .2000,41:3158-3164.
    23. Gouras P, Flood MT, Eggers H M, et al. Transplantation of human retinal epithelium to Bruch, s me mbrane of monkey eye[J].Invest Ophthalmol Vis Sci,1983,24(1):142.
    24. Gouras P, Lopez R, Brittis M, et al. The ultrastructure of transplanted rabbit retinal epithelium. Graefe,s A rch Ciin Exp Ophthalmol.1992,230:468.
    25. Gouras P, Flood MT, Kjelbye H, et al.Transplantation of cultured human retinal epithelium to Bruch,s membrane of the owl monkey,s monkey eye. Curr Eye Res.1985, 4:253.
    26. Lai C et al. Invest Ophthalmol Vis Sci, 2000,41 (10) :3134.
    27. 王丰,徐萍,吴继红,等.绿色荧光蛋白基因修饰的人视网膜色素上皮细胞异体移植的长期观察[J].生物化学与生物物理学报.2002,34(5):643-649.
    28. 张静蕊. 免疫抑制剂在器官移植中应用的研究进展.国外医学药学册. 2004, 31(3):140-144.
    29. 李毅斌. 视网膜色素上皮细胞移植免疫.国外医学眼科学分册.2001,25(4): 234-239.
    30. Penfold PL et al .J Neuroimmunol, 1993,45:183.
    31. Ma N and Streilein Jw.Invest Ophthalmol Vis Sci, 1998,39(12):3848.
    32. Planck SR et al. Invest Ophthalmol Vis Sci, 1992,33:78.
    33. Willermain F et al Invest Ophthalmol Vis Sci, 2000, 41(11):3485.
    34. Kohen L et al. Ophthalmomic Res, 1997, 29(5):298.
    35. Abe T, Tomita H, Kano T, et al. Autologous iris pigment epithelial cell transplantation in monkey subretinal region. Curr Eye Res, 2000,20:268-275.
    36. De Larco JE, Todaro GJ.Growth factors from murine sarcoma virutransformed cells [J]. Proc Natl Acad Sci USA, 1978,75(8):4001-4005.
    37. Massague J.TGF –βsignal transduction[J].Annu Rev Biochem, 1998, 67(7): 753-791.
    38. Sinha S, Nevett C, Shuttleworth CA, et al.Cellular and extracellular biology of the latent transforming growth factorβbinding proteins[J]. Matrix Biol, 1998, 17(8-9):529-545.
    39. Prud homme GJ, Piccirillo CA.[J].J Autoimmun,2000,14(1):23-42.
    40. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al.Thrombospondin-1 is amajor activator of TGF-β1 in vivo [J]. cell, 1998,93(7):1159-1170.
    41. Piek E, Heldin CH, Ten Dijke p. Specificity, diversity, and regulation in TGF–βsuperfamily signaling [J]. FASEB J, 1999, 13(15):2105-2124.
    42. Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF–β[J].Adv Cancer Res, 1997, 71:165-207.
    43. 董明,李会成.转化生长因子β的研究进展[J].诊断学理论与实践.2004,3(1): 45-48.
    44. 张新华. 树突状细胞、转化生长因子β1 与移植免疫研究进展[J].国外医学免疫学分册.2003,26(1):49-53.
    45. Lutz M B, Suri R M, Niimi M, et al. [J]. Eur J Immund, 2000, 30(7):1813-1822.
    46. Stuart LM, Lucas M, Simpson C, et al. [J]. J Immund, 2002, 168(4):1627-1635.
    47. Thorbecke GJ, Umetsu DT, De Kruyff R H, et al. [J]. Cytokine Growth Factor Rev, 2000, 11(1-2):89-96.
    48. Wahl SM. [J]. Microbes Infect, 1999, 1(15):1247-1249.
    49. Strobl H, Walter K. [J]. Microbes and Infection, 1999,1(15):1283-1290.
    50. Wallick S C, Figari I S, Morris R E, et al. Immunoregulatory role of transforming growth factor beta (TGF-beta) indevelopment of killer cells: comperison of active and latent TGF-beta [J].J Exp Med,1990,172(6):1777.
    51. Waltenbergerdeng J, Miyazono K, Funa K, et al. Transforming growth factor-beta and organ transplantation [J]. Transplant Proc.1993, 25:2038.
    52. Qin L, Chavin KD, Ding Y, et al. Cene transfer for transplantation. Prolongation of allograft survival with transforming growth factor-beta1 [J].Ann Surg, 1994, 220(4):508.
    53. 李志杰,林剑,李辰等. 转化生长因子-β防治角膜移植免疫排斥反应的实验研究[J].眼外伤职业眼病杂志.1998,20(1):36-37.
    54. 冯广忠,崔浩,张旭辉.转化生长因子-β1 对角膜移植术后外周淋巴细胞亚群的影响[J].黑龙江医学.2003,27(3)188-189.
    55. 姜楠. 转化生长因子β在移植排斥反应中的作用[J].中国普外基础与临床杂志.2003,10(2)179-181.
    56. 冯作化主编. 医学分子生物学,人民卫生出版社,北京,2001:258-267.
    57. 杨贵贞主编. 边缘免疫学,科学出版社,北京,第一版,2002:183-189.
    58. 黎晓新,王景昭主编.玻璃体视网膜手术学,人民卫生出版社,北京,2000:7-9.
    59. Derynck R, Jarrett JA, Chen EY, et al. Human transforming growth factor-βcomplementary DNA sequence and expression in normal and transformed cells. Nature, 1985, 316:701-705.
    60. Strobl H, Walter K.[J]. Microbes and Infection, 1999, 1(15):1283-1290.
    61. Michael WC, Webster RG, Fuller, et al. DNA vaccines:protective immunizations by parenteral,mucosal and gene-gun inoculations. Proc Natl Sci USA, 1993,90:11478-11482.
    62. Zhang GL, Ladehoff D, Xu Y, et al. Stable overexpression of TGF beta 1 inatransitional carcinoma cell lineimpact on fibronectin production. J Urol.1998, 160:230-235.
    63. Cheng Z, Radominska PA, Tephly TR. Cloning and expression of human UDP-lucuronosyl transferase (UGT) 1A8ArchBiochemBiophys. 1998, 356: 301-305.
    64. Sipe KJ, Dantzer R, Kelley KW, et al. Expression of the 75kDA TNF receptor and its role in contact-mediated neuronal cell death. Brain Res Mol Brain Res, 1998, 62(2):111-121.
    65. Smith MR, Duhe RJ, Liu Y, et al. Microinjected cDNA encoding JAK2 protein-tyrosine kinase induces DNA synthesis in NIH3T3 cells, Febs Lett, 1997, 408(5): 327-330.
    66. Toby G, Law SF, Golemis EA. Vectors to target protein domains to different cellular compartments. Biotechniques, 1998, 24(11):637-640.
    67. Flood MT, Gouras P, Kjeldbye HTI. Invest Ophthalmol Vis Sci.1980,19:1909.
    68. Grisanti S, Guidry C. Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci. 1995, 36:391-405.
    69. 鄂征.组织培养技术.人民卫生出版社,北京,1988,第一版:13-15.
    70. 易诚庆,郑启新,杜靖远,等.转化生长因子β1 基因转染骨髓基质细胞的体外成骨研[J].中华创伤杂志.2002,18(3):139-143.
    71. Miller AD. Human gene therapy comes of age. Nature, 1992,357(6378): 455-460.
    72. Mulligan RC. The basic science of gene therapy. Science, 1993,260(5110): 926-932.
    73. 成党校, 黄桂君, 前桂生. 新型基因转染阳离子脂质体研究进展. 国外医学药学分册, 2000, 27:257-260.
    74. 张灵芝编著.脂质体制备及其在生物医学中的应用.北京医科大学中国协和医科大学联合出版, 北京, 第1 版, 1998:128.
    75. Otani CM, Galea-lauri J, Georgescu HI. Direct gene delivery to synoviurm. Arthritis Rheum, 1996, 39: 820-828.
    76. Bakhshi A, Jensen JP, Goldman P. et al. Clonig the chromosomal breakpoint of t(14;18)human lymphomas. Cell, 1985,41(6):899-906.
    77. Enzmann V, Hollborn M, Wicdcmann P. Minor influence of the immunosuppressive cytokines IL-10 and TGF-beta on the proliferation and apotosis of human retinal pigment epithelial(RPE) cells in vitro[J].Ocul Immunol Inflamm, 2001, 9(4):259-266.
    78. 阿部俊明.色素上皮细胞を利用した网膜再生医疗の可能性[J].日眼会志, 2002,106(6):778-803.
    79. Stanga PE, Kychenthal A, Fitzke FW, et al. Retinal pigmet epithelium translocation after choridal neovascular membrane removal in age-related macular degeneration [J]. Ophthalmology, 2002, 109(10):1492-1498.
    80. Binder S, Strebs B, Krebs I, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration [J]. a pilot study. Am J Ophthalmol, 2002, 133(2): 215-255.
    81. Lund R, Adamson P, Sauve P, et al. Subretinal transplantation of genetically modified human celllines attenuates loss of visual function in dystrophic rets. Proc Natl Acad Sci U S A.2001, 98(10):9942-9947.
    82. Coffey PJ, Girman S, Wang SM.et al. Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nature Neuroscience.2002, 5:53-56.
    83. Streilein JW, Ma N, Wenkel H, et al. Immunobiology and priv ilege of neuronal retina and pigment epithelium transplants [J]. Vision Res, 2002,42(4) :487.
    84. Jiang LQ, Jorquera M, Streilein JW. Subretinal space and vitreous cavity as immunologically privileged sites for retinal allografat [J]. Invest Ophthalmol Vis Sci 1993,34:3347-3354.
    85. Algvere PV, Berglin L, Gouras P. et al. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovasculari-zation [J]. Graefes Arch Clin & Exp Ophthalmol 1994,232:707-716.
    86. Ye J, Wang HM, Ogden TE. et al. A llotransplantation of rabbit retinal pigment epithelial cells double-labelled with 5-bromodeoxyuridine(BrdU) and natural pigment[J].Curr Eye Res,1993,12:629-639.
    87. 盛耀华,胡毅倩,岑洁. Cyclosporine 玻璃体腔内注射对异种视网膜色素上皮移植的排异抑制作用[J]. 眼科新进展,2001,21(6):389-392.
    88. 广濑朝士,岛田宏之,藤田京子,等.脉络膜新生血管拔去术时の视网膜色素上皮自家移植[J]. 临眼,57(6):1001-1004.
    89. Peyman GA, Blinder KJ, Paris CL, et al.:A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring [J]. Ophthalmic Surg.1991,22:102-108.
    90. Algvere PV, Berglin L, Gouras P, et al. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subioveal neovascularization [J]. Graefes Arch Clin Exp Ophthalmol.1994, 232(11): 707-716.
    91. Algvere PV, Berglin L, Gouras P et al. Transplantation of RPE in age-related macular degeneration :observations in disciform lesions and dry RPE atrophy[J]. Graefes Arch Clin Exp Ophthalmol.1997, 235(3):149.
    92. Siekierka JJ, Sigal NH. FK-506 and cyclosporin A: immunosuppressive mechanism of action and beyond. Curr Eye Res.1992,(4):548-552.
    93. Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK-506. Immunology Today.1992, 13:136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700