FAK信号通路在脉络膜新生血管发生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景脉络膜新生血管(choroidal neovascularization,CNV)是年龄相关性黄斑变性(age related macular degeneration,AMD)导致视力丧失的最主要的原因之一,其发病机制至今尚不十分清楚。视网膜色素上皮(retinal pigment epithelium,RPE)细胞可以通过调节自身多种基因的表达,对缺氧和代谢变化等周围环境的刺激产生快速的应答。在CNV发生的启始阶段,RPE细胞分泌细胞因子和生长因子,促进CNV的生成。随后,增生的脉络膜血管穿破Bruch膜生长至RPE和/或视网膜下,形成CNV。
     CNV的发生机制十分复杂,受到生长因子和细胞黏附信号等多种因素的影响。参与调控CNV生成的RPE细胞接受多种来源的信号,如可溶性细胞因子信号和细胞外基质(extracellular matrix,ECM)信号等。黏着斑激酶(focal adhesion kinase,FAK),一种非受体型酪氨酸激酶,在细胞骨架和整合素/细胞因子受体信号的链接中发挥重要的作用,并参与调控细胞增生、存活、移行和分化等细胞进程。ECM和可溶性细胞因子均可活化FAK。进来的研究还表明,FAK参与了新生血管的应答,并且在病理性视网膜新生血管发生中发挥重要的调控作用。然而,FAK在CNV发生中的作用尚未见相关报道。
     目的和内容探讨FAK在CNV发生中的作用,进一步阐明CNV的发生机制。在建立激光诱导的大鼠CNV模型基础上,观察FAK的表达与CNV生成的相关性;体外观察多种已知与CNV生成相关的危险因素的作用下,培养的人RPE细胞中FAK的表达;运用小干扰RNA(small interfering RNA,siRNA)特异性抑制RPE细胞FAK的表达,观察FAK信号通路在CNV发生中的作用。
     方法⑴激光击穿Bruch膜,建立挪威(Brown Norway,BN)大鼠CNV模型。分别于激光光凝后1、3、7和14天,免疫荧光和Western blot方法观察大鼠CNV中FAK的表达;⑵体外原代培养人RPE细胞,分别暴露于缺氧、H2O2氧化衰老、ECM成分和吞噬光感受器外节膜盘(out segment of photoreceptors,POS)等刺激因素。Western blot方法观察RPE细胞中FAK的表达;⑶运用siRNA技术特异性抑制RPE细胞FAK的表达,RT-PCR、Western blot和ELISA等方法观察缺氧条件下RPE细胞缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)和血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达;⑷原代培养牛脉络膜微血管内皮细胞(choroidal endothelial cells,CEC),建立RPE-CEC共培养体系。采用MTT和结晶紫染色等方法观察特异性抑制FAK表达的RPE细胞对CEC增生和移行的影响。
     结果⑴在激光诱导的BN大鼠CNV生成早期(光凝后1d、3d),RPE-脉络膜复合体中FAK表达显著升高,随后表达逐渐下降。免疫荧光检测显示,FAK的表达上调主要定位于参与CNV生成的RPE细胞中;⑵体外实验表明,目前已知的多种与CNV生成相关的影响因素,如缺氧、氧化衰老、POS代谢产物在胞内堆积以及Bruch膜破裂导致的RPE与ECM成分的接触等,均可不同程度上调RPE细胞内FAK的表达;⑶成功构建了pSilencer/FAK表达载体,通过脂质体介导转染RPE细胞可有效下调FAK的表达。运用siRNA特异性抑制RPE细胞FAK的表达后,可以显著抑制缺氧诱导的RPE细胞HIF-1α和VEGF的表达上调;⑷成功原代培养牛CEC细胞,利用细胞共培养体系观察到RPE细胞与CEC共培养可以刺激CEC的增生和移行,缺氧条件下刺激作用增强。而运用siRNA特异性抑制RPE细胞FAK的表达后,可以显著抑制缺氧条件下RPE细胞对CEC增生和移行的诱导作用。
     结论本研究首次证实FAK信号参与了激光诱导的大鼠CNV的生成,提示CNV发生早期,活化的RPE细胞内FAK表达的上调参与CNV生成的调控。体外实验表明,多种已知与CNV生成相关的刺激因素均可不同程度上调RPE细胞FAK的表达,进一步提示FAK在CNV发生过程中可能发挥重要调控作用。特异性抑制RPE细胞FAK的表达,可以显著抑制缺氧诱导的RPE细胞HIF-1α和VEGF的表达上调,并进而抑制CEC增生和移行,进一步明确了FAK对CNV生成的调控作用。综上,FAK信号参与了CNV生成过程的调控,此类研究在国内外尚未见报道。针对FAK的siRNA可以抑制CNV生成,这将为临床防治CNV性疾病提供新思路。
Background Choroidal neovascularization (CNV) is now known the leading cause of vision loss in age related macular degeneration (AMD), while its pathogenesis is still poorly understood. Retinal pigment epithelium (RPE) cells are known to quickly respond and adapt to environmental stresses such as ischemia and metabolic changes by expressing a number of various genes. In the early stages of CNV development, RPE produce cytokines and growth factors promoting CNV development. Subsequently, proliferating choroidal vessels surmount Bruch’s membrane and spread in the subpigment epithelial and subretinal space to form a CNV membrane.
     The underlying mechanism of CNV is multifactorial and complex. Growth factors and cell adhesion molecules have been implicated in CNV. RPE cells participating in angiogenesis get signals from several sources, such as soluble stimulators and extracellular matrix (ECM). Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a crucial role in linking signals initiated by the integrins or growth factor receptors to intracellular cytoskeletal and signaling proteins, thus controlling essential cellular processes such as growth, survival, migration and differentiation. Extensive evidence has shown that FAK is activated in response to both the ECM and soluble signaling factors. Recent work from several laboratories points out the importance of FAK in influencing distinct steps of the angiogenic response and suggests a critical role of FAK in pathological retinal angiogenesis. But to our knowledge, no study investigating the effect of FAK on CNV formation has been reported previously.
     Purpose It would be helpful for our understanding of CNV to study the effect of FAK on CNV formation. In this study, we investigate the expression of FAK in the experimental CNV models and evaluate the effect of several CNV risk factors on the expression of FAK in cultured RPE cells. Then we used siRNA specific blockade of FAK in RPE cells, seek to evaluate the role of FAK in key steps involved in CNV.
     Methods⑴The BN rats underwent laser rupture of Bruch’s membrane to induce CNV and were killed at 1, 3, 7, and 14 days after laser injury. Immunofluorescenc and Western blot were processed to detect FAK protein.⑵Cultured human RPE cells were exposed to hypoxia, H2O2, ECM and out segment of photoreceptors (POS), differently. The expression of FAK and pFAK in cultured RPE cells were examined by Western blot.⑶RPE cells were cultured under hypoxia and RNA interference (RNAi) technique was used to knock down the FAK gene in RPE cells. Expression of hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells were investigated by RT-PCR and Western blot.⑷Two kinds of coculture models were used to observe the effects of specific blockade of FAK in RPE cells on the proliferation and migration of choroidal endothelial cells (CEC), respectively.
     Results⑴FAK was highly expressed in the rat RPE-choroid tissue after photocoagulation. Immunocytochemistry evaluations suggest that the strong up-regulation of FAK expression was located in RPE cells participating in choroidal neovascularization.⑵In vitro experiment shows hypoxia, H2O2, ECM and POS, which were known initiate CNV response, can induce FAK expression in cultured RPE cells.⑶FAK siRNA-treated RPE cells exhibited an inhibition in the expression of HIF-1 and VEGF in response to hypoxia, which indicated that FAK involved in hypoxia signaling in RPE cells.⑷The absence of FAK in RPE cells show inability in reducing the proliferation and migration of CEC under hypoxia condition.
     Conclusions In summary, we indicate the first time that FAK pathway activation plays a role in the development of laser-induced CNV in rat. In vitro experiment shows FAK pathway involves in several CNV initiated signaling in cultured RPE cells. The absence of FAK effectively reduces gene expression of hypoxia-induced HIF-1αand VEGF in RPE cells in vitro. Furthermore, our data provide strong evidence that specific blockade of FAK in RPE cells resultes in the inhibition of proliferation and migration of CEC. Combining the observation above, this is the first demonstration that FAK modulates the formation of CNV. It is reasonable to propose that FAK siRNA potentially provides a means to attenuate the strong stimuli for neovascularization in CNV-dependent disorder, which could represent a therapeutically relevant strategy for the inhibition of CNV.
引文
1. 王雨生 , 朱洁 . 脉络膜新生血管性疾病的治疗现状 . 第四军医大学学报 2006;27:481-483.
    2. 朱 洁 , 王 雨 生 , 惠 延 年 . 脉 络 膜 新 生 血 管 的 生 成 和 抑 制 . 眼 科 新 进 展 2004;24:57-60.
    3. Russell SR, Mullins RF, Schneider BL, Hageman GS. Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. Am J Ophthalmol 2000;129:205-214.
    4. 朱洁, 王雨生, 惠延年. 细胞外基质与脉络膜新生血管. 中华眼底病杂志 2005;21:60-63.
    5. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85:845-881.
    6. 李德敏,金伯泉. 整合素家族黏附分子的信号转导. 见:金伯泉 主编. 细胞和分子免疫学,第 2 版.北京:科学出版社,2001:639-645
    7. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577-585.
    8. Cary LA, Guan JL. Focal adhesion kinase in integrin-mediated signaling. Front Biosci 1999;4:D102-113.
    9. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003;116:1409-1416.
    10. Polte TR, Naftilan AJ, Hanks SK. Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. J Cell Biochem 1994;55:106-119.
    11. Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 2001;360:255-264.
    12. Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB. Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Vis Sci 2004;45:4463-4469.
    13. Zhang P, Wang Y, Hui Y, et al. Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica 2007;221:411-417.
    14. Wang GL, Jiang BH, Semenza GL. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 1995;212:550-556.
    15. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 1995;113:1538-1544.
    16. Sein TT, Thant AA, Hiraiwa Y, et al. A role for FAK in the Concanavalin A-dependent secretion of matrix metalloproteinase-2 and -9. Oncogene 2000;19:5539-5542.
    17. Avraham HK, Lee TH, Koh Y, et al. Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 2003;278:36661-36668.
    18. Ilic D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995;377:539-544.
    19. Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res 2003;9:2157-2165.
    20. Madri JA. Extracellular matrix modulation of vascular cell behaviour. Transpl Immunol 1997;5:179-183.
    21. Lane TF, Iruela-Arispe ML, Sage EH. Regulation of gene expression by SPARC during angiogenesis in vitro. Changes in fibronectin, thrombospondin-1, and plasminogen activator inhibitor-1. J Biol Chem 1992;267:16736-16745.
    22. Karelina TV, Eisen AZ. Interstitial collagenase and the ED-B oncofetal domain of fibronectin are markers of angiogenesis in human skin tumors. Cancer Detect Prev 1998;22:438-444.
    23. Lima ESR, Kachi S, Akiyama H, et al. Recombinant non-collagenous domain of alpha2(IV) collagen causes involution of choroidal neovascularization by inducing apoptosis. J Cell Physiol 2006;208:161-166.
    24. Bhutto IA, Kim SY, McLeod DS, et al. Localization of collagen XVIII and the endostatin portion of collagen XVIII in aged human control eyes and eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 2004;45:1544-1552.
    25. McAuslan BR, Hannan GN, Reilly W, Stewart FH. Variant endothelial cells. Fibronectin as a transducer of signals for migration and neovascularisation. J Cell Physiol 1980;104:177-186.
    26. Ribatti D, Vacca A, Costantino F, et al. Exogenous heparin induces fibronectin overexpression parallel to angiogenesis in the extracellular matrix of the chick embryo chorioallantoic membrane. Tissue Cell 1997;29:131-136.
    27. Grossniklaus HE, Martinez JA, Brown VB, et al. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 1992;114:464-472.
    28. Jang YC, Arumugam S, Ferguson M, Gibran NS, Isik FF. Changes in matrix composition during the growth and regression of human hemangiomas. J Surg Res 1998;80:9-15.
    29. Nicolo M, Piccolino FC, Zardi L, Giovannini A, Mariotti C. Detection of tenascin-C in surgically excised choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol 2000;238:107-111.
    30. Shen WY, Yu MJ, Barry CJ, Constable IJ, Rakoczy PE. Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat. Br J Ophthalmol 1998;82:1063-1071.
    31. Sakurai E, Taguchi H, Anand A, et al. Targeted disruption of the CD18 or ICAM-1 gene inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:2743-2749.
    32. Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003;22:721-748.
    33. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 1996;93:9764-9769.
    34. Kamizuru H, Kimura H, Yasukawa T, Tabata Y, Honda Y, Ogura Y. Monoclonal antibody-mediated drug targeting to choroidal neovascularization in the rat. InvestOphthalmol Vis Sci 2001;42:2664-2672.
    35. Yasukawa T, Hoffmann S, Eichler W, Friedrichs U, Wang YS, Wiedemann P. Inhibition of experimental choroidal neovascularization in rats by an alpha(v)-integrin antagonist. Curr Eye Res 2004;28:359-366.
    36. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003;48:257-293.
    37. Mousa SA, Lorelli W, Campochiaro PA. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem 1999;74:135-143.
    38. Rakic JM, Lambert V, Munaut C, et al. Mice without uPA, tPA, or plasminogen genes are resistant to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:1732-1739.
    39. Elner SG. Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase. Trans Am Ophthalmol Soc 2002;100:273-299.
    40. Hackett SF, Campochiaro PA. Modulation of plasminogen activator inhibitor-1 and urokinase in retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 1993;34:2055-2061.
    41. Lambert V, Munaut C, Noel A, et al. Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. FASEB J 2001;15:1021-1027.
    42. Lambert V, Munaut C, Carmeliet P, et al. Dose-dependent modulation of choroidal neovascularization by plasminogen activator inhibitor type I: implications for clinical trials. Invest Ophthalmol Vis Sci 2003;44:2791-2797.
    43. Bajou K, Masson V, Gerard RD, et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001;152:777-784.
    44. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001;21:1104-1117.
    45. Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest OphthalmolVis Sci 1998;39:2194-2200.
    46. Kadonosono K, Yazama F, Itoh N, Sawada H, Ohno S. Expression of matrix metalloproteinase-7 in choroidal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 1999;128:382-384.
    47. Yazama F, Kadonosono K, Itoh N, Ohno S. Role of matrix metalloproteinase-7 in angiogenesis associated with age-related macular degeneration. J Electron Microsc (Tokyo) 2002;51:127-131.
    48. Berglin L, Sarman S, van der Ploeg I, et al. Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci 2003;44:403-408.
    49. Kvanta A, Shen WY, Sarman S, Seregard S, Steen B, Rakoczy E. Matrix metalloproteinase (MMP) expression in experimental choroidal neovascularization. Curr Eye Res 2000;21:684-690.
    50. Lambert V, Munaut C, Jost M, et al. Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 2002;161:1247-1253.
    51. Lambert V, Wielockx B, Munaut C, et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 2003;17:2290-2292.
    52. Murata T, Cui J, Taba KE, et al. The possibility of gene therapy for the treatment of choroidal neovascularization. Ophthalmology 2000;107:1364-1373.
    53. Kamei M, Hollyfield JG. TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci 1999;40:2367-2375.
    54. Takahashi T, Nakamura T, Hayashi A, et al. Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol 2000;130:774-781.
    55. Qi JH, Ebrahem Q, Moore N, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 2003;9:407-415.
    56. Majid MA, Smith VA, Easty DL, Baker AH, Newby AC. Adenovirus mediated gene delivery of tissue inhibitor of metalloproteinases-3 induces death in retinal pigment epithelial cells. Br J Ophthalmol 2002;86:97-101.
    57. Qi JH, Ebrahem Q, Yeow K, Edwards DR, Fox PL, Anand-Apte B. Expression ofSorsby's fundus dystrophy mutations in human retinal pigment epithelial cells reduces matrix metalloproteinase inhibition and may promote angiogenesis. J Biol Chem 2002;277:13394-13400.
    58. Pauleikhoff D, Wojteki S, Muller D, Bornfeld N, Heiligenhaus A. [Adhesive properties of basal membranes of Bruch's membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits]. Ophthalmologe 2000;97:243-250.
    59. Chong NH, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 2005;166:241-251.
    60. Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survival on aged submacular human Bruch's membrane. Exp Eye Res 2005;80:235-248.
    61. Cai H, Del Priore LV. Bruch membrane aging alters the gene expression profile of human retinal pigment epithelium. Curr Eye Res 2006;31:181-189.
    62. Zhu ZR, Goodnight R, Ishibashi T, Sorgente N, Ogden TE, Ryan SJ. Breakdown of Bruch's membrane after subretinal injection of vitreous. Role of cellular processes. Ophthalmology 1988;95:925-929.
    63. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 1992;89:5192-5196.
    64. Zachary I, Rozengurt E. Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 1992;71:891-894.
    65. 袁 一 旻 , 姚 真 真 , 焦 炳 华 . 黏 着 斑 激 酶 的 结 构 与 功 能 . 生 命 的 化 学 2006;26:411-413.
    66. Ilic D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 1997;110 ( Pt 4):401-407.
    67. 卞琴, 王拥军, 施杞. 粘附斑激酶信号转导与串话研究进展. 中西医结合学报 2005;3:495-497.
    68. Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000;113 ( Pt 20):3563-3571.
    69. Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K. Uniaxial cyclic stretchinduces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun 2001;288:356-361.
    70. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 1999;259:8-14.
    71. Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001;12:4066-4077.
    72. Bianchi M, De Lucchini S, Vietri M, Villa-Moruzzi E. Reciprocally interacting domains of protein phosphatase 1 and focal adhesion kinase. Mol Cell Biochem 2005;272:85-90.
    73. Yamamoto D, Sonoda Y, Hasegawa M, Funakoshi-Tago M, Aizu-Yokota E, Kasahara T. FAK overexpression upregulates cyclin D3 and enhances cell proliferation via the PKC and PI3-kinase-Akt pathways. Cell Signal 2003;15:575-583.
    74. Marini NJ, Meldrum E, Buehrer B, et al. A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J 1996;15:3040-3052.
    75. Oktay M, Wary KK, Dans M, Birge RB, Giancotti FG. Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 1999;145:1461-1469.
    76. Lin CL, Zhang ZX, Xu YJ, Ni W, Chen SX. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis. Chin Med J (Engl) 2005;118:20-26.
    77. Chiarugi P, Pani G, Giannoni E, et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 2003;161:933-944.
    78. Schaller MD. FAK and paxillin: regulators of N-cadherin adhesion and inhibitors of cell migration? J Cell Biol 2004;166:157-159.
    79. Romer LH, Birukov KG, Garcia JG. Focal adhesions: paradigm for a signaling nexus.Circ Res 2006;98:606-616.
    80. Corley KM, Taylor CJ, Lilly B. Hypoxia-inducible factor 1alpha modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. J Cell Biochem 2005;96:971-985.
    81. Edelman JL, Castro MR. Quantitative image analysis of laser-induced choroidal neovascularization in rat. Exp Eye Res 2000;71:523-533.
    82. Campochiaro PA, Soloway P, Ryan SJ, Miller JW. The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Mol Vis 1999;5:34.
    83. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D'Amore PA. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res 2003;77:593-599.
    84. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997;137:481-492.
    85. Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 1996;135:1109-1123.
    86. Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG. Focal adhesion motility revealed in stationary fibroblasts. Science 1999;286:1172-1174.
    87. Cezar-de-Mello PF, Nascimento-Silva V, Villela CG, Fierro IM. Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 2006;25:122-129.
    88. Dixelius J, Olsson AK, Thulin A, Lee C, Johansson I, Claesson-Welsh L. Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein. Cancer Res 2006;66:2089-2097.
    89. Lu H, Murtagh J, Schwartz EL. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol Pharmacol2006;69:1207-1215.
    90. 杨秀梅, 王雨生, 徐建锋, 张鹏. 激光诱导有色大鼠脉络膜新生血管的形态学观察. 眼科新进展 2006;26:161-166.
    91. 侯慧媛, 王雨生. 脉络膜新生血管的组织病理学特征. 见:王雨生 主编. 脉络膜新生血管性疾病,第一版.北京: 人民卫生出版社,2007:6-16.
    92. Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002;8:119-126.
    93. 朱洁, 王雨生. 脉络膜新生血管相关的细胞成分. 见:王雨生 主编. 脉络膜新生血管性疾病,第一版. 北京: 人民卫生出版社,2007:16-23.
    94. Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 2005;88:269-281.
    95. 王雨生, 密 严, 杨抚华. 视网膜色素上皮细胞培养技术及其应用. 中华眼底病杂志 1994;10:124-128.
    96. Hall MO. Phagocytosis of light- and dark-adapted rod outer segments by cultured pigment epithelium. Science 1978;202:526-528.
    97. Arden GB, Wolf JE. Differential effects of light and alcohol on the electro-oculographic responses of patients with age-related macular disease. Invest Ophthalmol Vis Sci 2003;44:3226-3232.
    98. Seko Y, Takahashi N, Sabe H, Tobe K, Kadowaki T, Nagai R. Hypoxia induces activation and subcellular translocation of focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 1999;262:290-296.
    99. Zalewska T, Makarewicz D, Janik B, Ziemka-Nalecz M. Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. Int J Dev Neurosci 2005;23:657-662.
    100. Mares-Perlman JA, Klein R, Klein BE, et al. Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 1996;114:991-997.
    101. Finnemann SC. Focal adhesion kinase signaling promotes phagocytosis of integrin-bound photoreceptors. EMBO J 2003;22:4143-4154.
    102. Adamis AP, Shima DT, Yeo KT, et al. Synthesis and secretion of vascular permeabilityfactor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 1993;193:631-638.
    103. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431:371-378.
    104. Liu L, Ning X, Sun L, et al. Involvement of MGr1-Ag/37LRP in the vincristine-induced HIF-1 expression in gastric cancer cells. Mol Cell Biochem 2007;303:151-160.
    105. Hoffmann S, Spee C, Murata T, Cui JZ, Ryan SJ, Hinton DR. Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads. Graefes Arch Clin Exp Ophthalmol 1998;236:779-784.
    106. Kornberg LJ, Grant MB. Adenoviruses increase endothelial cell proliferation, migration, and tube formation: partial reversal by the focal adhesion kinase inhibitor, FRNK. Microvasc Res 2007;73:157-162.
    107. Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 1997;235:159-167.
    108. Klagsbrun M, D'Amore PA. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996;7:259-270.
    109. Ohno-Matsui K, Morita I, Tombran-Tink J, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 2001;189:323-333.
    110. Geisen P, McColm JR, Hartnett ME. Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res 2006;82:608-619.
    111. Peterson LJ, Wittchen ES, Geisen P, Burridge K, Hartnett ME. Heterotypic RPE-choroidal endothelial cell contact increases choroidal endothelial cell transmigration via PI 3-kinase and Rac1. Exp Eye Res 2007;84:737-744.
    112. Morse LS, Terrell J, Sidikaro Y. Bovine retinal pigment epithelium promotes proliferation of choroidal endothelium in vitro. Arch Ophthalmol 1989;107:1659-1663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700