基于子波变换的人造视网膜信息提取模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造视网膜是利用电信号直接刺激视网膜内部神经细胞,从而使外部视网膜病变引起的失明得到恢复。人造视网膜的研究在国内外正掀起一个高潮,用以恢复盲人视觉的人造视网膜是人民健康、国家经济和社会发展的需要。世界卫生组织估计全世界有盲人4000万到4500万,其中有很大部分是由视网膜病变引起的。目前,各个国家都注重恢复盲人视觉的人造视网膜研究,用人造视网膜替代外层受损视网膜(年龄相关性黄斑病变和视网膜色素变性疾病引起)的功能,直接把人造视网膜处理之后的信号刺激视网膜内部神经细胞,从而使盲人恢复视觉。
     人造视网膜用微电极阵列直接刺激内部神经细胞,而微电极之前的信号处理需要一个数学模型为基础。虽然目前已经有人造视网膜芯片研制成功,已经移植到人眼内部进行实验,取得了一定的效果,但是离实用化、经济性还有一定的距离;并且在基础理论方面各个国家都没有透露自己的关键技术,没有一个统一的模型。本文的研究工作围绕人造视网膜信息提取的数学模型,进行理论分析,为人造视网膜的基础研究提供一种尝试性方法。
     本文提出一种基于子波变换的灵活可调的人类视觉信息提取模型,用于人造视网膜模型研究。利用子波变换对图像信息处理的灵活方便性,以及子波变换与人类视觉信息提取的相一致性,在目前子波研究的基础上,把子波变换的思想应用于可恢复盲人视觉的人造视网膜信息提取模型之中。
     模拟结果验证了子波变换用于人造视网膜信息提取模型的合理性,为可恢复盲人视觉的人造视网膜研究提供了一种理论上的可行性模型。
Artificial retina is aimed for the stimulation of remained retinal neurons in the patient with degenerated photoreceptors. Many researchers are focus on artificial retina system around the world, as artificial retina is needed for people’s health, developing economy of the country and advancement of the society to cure the blind. The world health organization estimated there are 40 million to 45 million blind around the world. At present, many countries invested much fund in artificial retina research, to substitute the artificial retina for the pathological retina to cure the blind (AMD and RP), by stimulating the inner retinal cells directly with the electrical signals which be produced by artificial retina.
     Microelectrode arrays have been developed for this as a part of stimulator. Design such microelectrode arrays first requires a suitable mathematical model for human retinal information processing. Also the artificial retina chip had been implanted in the retina to cure the blind in some laboratories, the theoretical model was not uniform and the chip is not economical and practical. This paper is focus on the mathematical model for artificial retina, do theory analyzing, and try to present a theoretical model.
     In this paper, a flexible and adjustable human visual information abstracting model is presented, which is based on the wavelet transform. With the flexible of wavelet transform to image information processing and the consistent to human visual information extracting, wavelet transform theory is applied to the artificial retina model for the retinally blind.
     The experiment demonstrates that the visual information extracting model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an artificial retina.
引文
[1]赵家良.我国防盲治盲工作的进展.中华眼科杂志, 2005, 41(8): 697~701
    [2] Brindly G.S., Lewin W.S.. The sensations produced by electrical stimulation of the visual cortex. J. Physiol, 1968, 196: 479~493
    [3] Brindly G.S.. The site of electrical excitation of the human eye. J. Physiol, 1955, 127: 189~200
    [4] Kirsch R.F.. Restoring movement after neurological disorders using functional neuromuscular stimulation. Proceedings of the 2000 American Control Conference, 2000, 5: 3493~3496
    [5] Smith B., Zhengnian T., Johnson M.W. et al. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Transactions on Biomedical Engineering, 1998, 45(4): 463~475
    [6] Robin S., Sawan M., Harvey J.F. et al. A new implantable microstimulator dedicated to selective stimulation of the bladder. Proceedings of the 19th Annual International Conference of the Engineering in Medicine and Biology Society, 1997, 4: 1792~1795
    [7] Loizou P.C.. Mimicking the human ear. IEEE Signal Processing Magazine, 1998, 15(5): 101~103
    [8] Ay S.U., Shen B.J. and Zeng Fan-Gang. High performance programmable biphasic pulse generator design for a cochlear speech processor. Proceedings of the IEEE International Symposium on Circuits and Systems, 1998, 3: 207~210
    [9] Mouine J., Hamida A.B., Chtourou Z. et al. Implementation of an FFT based stimulation algorithm on a fully programmable cochlear prosthesis. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 2: 762~765
    [10] Liang D.H., Lusted H.S. and White R.L.. The nerve-electrode interface of the cochlear implant: current spread. IEEE Transactions on Biomedical Engineering, 1999, 46(1): 35~43
    [11] Hamida A.B., Samet M., Lakhoua N. et al. Sound spectral processing based on fast Fourier transform applied to cochlear implant for the conception of a graphical spectrogram and for the generation of stimulating pulses. Proceedings of the 24th Annual Conference of the Industrial Electronics Society, 1998, 3: 1388~1393
    [12] Chow A., Pardue M., Peyman G. et al. Development and application of subretinal semiconductor microphotodiode array. Vitreoretinal Surg. Techniques, 2001, 3: 576
    [13] Liu W., Vichienchom K., Clements M. et al. A neuro-stimulus chip with telemetry unit for retinal prosthesis device. IEEE J. Solid-St. Circ., 2000, 35(10): 1487~1497
    [14] Zrenner E., Stett A., Weiss S. et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res., 1999, 39: 2555~2567
    [15] Becker M., Eckmiller R. and Hunerman R.. Psychophysical test of a tunable retina encoder for retinal implants. IEEE Trans. Neural Netw., 1999, 1: 192~195
    [16] Yagi T., Hayashida Y.. Implantation of the artificial retina. Nippon Rinsho, 1999, 57: 1208~1215
    [17] Hymen L.. Epidemiology of eye diseases in the elderly. Eye, 1987, 1: 330~341
    [18] Stone J.L., Barlow W.E., Humayun M.S. et al. Morphometric analysis of macular photoreceptor and ganglion cells in retinas with retinitis pigmentosa. Archives of Ophthalmology, 1992, 110: 1634~1639
    [19] Santos A., Humayun M.S., E. De Juan Jr. et al. Inner retinal preservation in retinitis pigmentosa:a morphometric analysis. Archives of Ophthalmology, 1997, 115: 511~ 515
    [20] Humayun M.S., E. De Juan Jr., Dagnelie G. et al. Visual perception elicited by electrical stimulation of the retina in blind humans. Archives of Ophthalmology, 1996, 114: 40~46
    [21] Humayun M.S., E. De Juan Jr., Weiland J.D. et al. Pattern electrical stimulation of the human retina. Vision Research, 1999, 39: 2569~2576
    [22] Hungenahally S.. Mathematical Basis for the Design of an Artificial Retina: Visual Prosthesis for the Retinally Blind. Systems, Man and Cybernetics, 1995, 3: 2396~2401
    [23] Chow Y.. Electrical stimulation of the rabbit retina with subretinal electrodes and high density microphotodiode array implants. Invest. Ophtalmol. Vis. Sci.(Suppl), 1993, 34: 835
    [24] Chow A.Y., Chow V.Y.. Subretinal electrical stimulation of the rabbit retina. Neuroscience Letters, 1997, 225: 13~16
    [25] Peyman G., Chow Y.Y., Liang C. et al. Subretinal Semiconductor Microphotodiode Array. Ophthalmic Surgery and Lasers, 1998, 29: 234~241
    [26] Hiroshi Nakanishi. Artificial retina membranes. Progress in Surface Science, 1995, 49(2): 197~225
    [27]田丽娟.生物视觉信息处理功能研究与光电子系统的实现.大连理工大学学报,1997, 2: 289
    [28] Samir Shah, Martin D.Levine. A Computer Retina that Models the Primate Retina. SPIE, Visual Information Processing III, 1994, 2239: 116~28
    [29]费佩燕,刘曙光.初级视觉信息处理机理与多分辨分析.西北纺织工学院学报, 2001, 15(1): 26~31
    [30] Rizzo J.F., Wyatt J.L.. Prospects for a visual prosthesis. Neuroscientist, 1997, 3: 215~262
    [31] Wyatt J.L., Rizzo J.F.. Ocular implants for the blind. IEEE Spectrum, 1996, 33: 47~53
    [32] Rizzo J.F., Wyatt J.L.. Retinal prosthesis in Age-Related Macular Degeneration. MO: Mosby Press, 1998. 413~432
    [33] Eckmiller R.. Learning retina implants with epiretinal contact. Ophthalmic Research, 1997, 29: 281~289
    [34] Yagi T., Ito Y., Kanda H. et al. Hybrid retinal implant: fusion of engineering and neuroscience. Proceeding of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, 1999, 4: 382~385
    [35] Yagi T., Ito N., Watanabe M. et al. A study on hybrid artificial retina with cultured neural cells and semi-conductor microdevice. Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, 1998: 780~783
    [36] Suaning G.J., Lovell N.H., Schindhelm K. et al. The bionic eye(electronic visual prosthesis): A review. Aust. NZ J. Oph-thal., 1998, 126: 195~202
    [37] Suaning G.J., Lovell N.H.. A 100-channel stimulator for excitation of retinal ganglion cells. Proceedings of the 20th International Conference of the IEEE Engineering in Medicine and Biology Society, 1998. 670~673
    [38] Clements M., Vichienchom K., Liu W. et al. An implantable neuro-stimulator Device for a retinal prosthesis. International Solid-State Circuits Conference, 1999. 216~217
    [39] Wyatt J., Mann J., Edell D. et al. Development of a silicon retinal implant: demonstration of microelectronic system for optical transmission of signal and power. Investigative Ophthalmology and Visual Science, 1995, 36(4): 1130
    [40] Becker M., Braun M., Eckmiller R.. Retina implant adjustment with reinforcement learning. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, 1998, 2: 1181~1184
    [41] Eckmiller R., Becker M., Hunermann R.. Dialog concepts for learning retina encoders. Proceedings of the International Conference on Neural Networks, 1997, 4: 2315~2320
    [42] Normann R.A., Maynard E.M., Guillory K.S. et al. Cortical implants for the blind. IEEE Spectrum, 1996, 33(5): 54~59
    [43]寿天德.视觉信息处理的脑机制.上海:上海科技教育出版社, 1997. 30~103
    [44]寿天德.视觉皮层方位敏感性的皮层下起源.生理科学进展, 1990, 21(3): 203~207
    [45]朱希安.小波分析及在SST图像仿真压缩中的应用: [博士学位论文].北京:中国矿业大学(北京校区)图书馆, 2003
    [46]彭玉华.小波变换与工程应用.北京:科学出版社, 2000. 1~3
    [47]蔡汉添,张军萍.一种基于小波变换的迭代正则化图像恢复算法.中国图像图形学报, 1999, 4(3): 229~233
    [48]史东承,邹宽城,胡明.一种基于非周期卷积反演模型的计算机图像恢复算法.中国图像图形学报, 2000, 5 (A4): 318~322
    [49]程正兴,张伟.一种基于小波变换的图像压缩.工程数学学报, 1998, 15 (3): 18~27
    [50]李建平,张万苹,陈廷槐.最佳小波基的构造与算法.后勤工程学院学报, 1996, 12(4): 26~30
    [51]李建平,张万苹,陈廷槐.二元样条小波基的构造.后勤工程学院学报, 1997, 13(4): 6~30
    [52]贾沛璋.正交小波变换的向量空间算法.系统科学与数学, 1995, 15(1): 75~82
    [53]何立,王廷平.利用小波变换和约束矩阵进行图像压缩编码.电子学报, 1995, 23(4): 20~24
    [54]李立霞,王文博,王得隽.小波变换去噪的一种新算法.信号处理, 1996, 12(3): 261~266
    [55]夏洪瑞,朱勇,周开明.小波变换及其在去噪中的应用.石油地球物理勘探, 1994, 29(3): 274~285
    [56]朱希安,金声震,宁书年,王景宇.小波分析的应用现状和展望.煤田地质与勘探, 2003, 31(2): 51~55
    [57]费佩燕,刘曙光.小波分析应用的进展与展望.纺织高校基础科学学报, 2000, 14(1): 72~78
    [58]飞思科技产品研发中心编著.小波分析理论与MATLAB7实现.北京:电子工业出版社, 2005. 50~103
    [59]凌坚.基于子波变换的视觉信息提取模型: [硕士学位论文].浙江:浙江工业大学图书馆, 2002
    [60] Antonini Marc, Barlaud Michel, Daubechies Ingrid. Image Coding Using Wavelet Transform. IEEE Transactions on Image Processing, 1992, 1(2): 205~220
    [61] Devore R. A., Jawerth B., Lucier P. J.. Image compression through wavelet transform coding. IEEE Trans on Information Theory, 1992, 38(2): 719~746
    [62]胡春玲,陈义宽,马常楼.图像编码时小波基的选择.中国图象图形学报, 1998, 3(9): 742~745
    [63]郁晓红,姚敏.小波变换及图像压缩编码时小波基选择.计算机应用, 2001, 21(7): 20~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700