混合光场水下光学二维与三维探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋科技日益成为世界各国经济与科技竞争的焦点之一。海洋开发,需要获取大范围、精确的海洋环境数据,以便进行海底勘探、取样、水下施工等。要完成上述任务,需要一系列的海洋开发支撑技术,包括深海探测、深潜、海洋遥感、海洋导航等。作为水下探测的重要手段,水下成像技术的需求也越来越多,其中主要涉及水下照明及三维图像重建问题。本文提出了水下非均匀光场照明和激光扫描三维重建的方案,并进行了实验和研究。
     本文系统研究了水下光场和水下图像的基本理论,设计了一种非均匀光场水下探测设备。由于水下目标成像质量的优劣取决于水质条件、接收器种类、光源照明方式等因素。要在低透明度条件下对水下大尺寸高速度目标的成像,要满足大范围照明、低散射影响和高信噪比的条件。依据水下光能量传递理论(辐射传递方程及比尔朗伯特定律采用反演形式设计光分布),非均匀照明系统需要满足远距离高能量密度投送,近距离低能量密度照明的要求,以此使得近距离散射光能量减少,远距离目标反射光增强,从而达到提高信噪比的目的。依据该方法极大的提高了探测距离,使得探测距离可以达到1.5-1.6倍能见度以上,达到瓦级激光系统水平,又可兼具功耗低、体积小、重量轻等特点。
     同时基于结构光扫描原理,设计了一种针对水下目标或场景的激光扫描三维重建方法,此方法使用激光线光源扫描探测区域,用标定板进行标定,建立采样数据的二维像素坐标系与三维世界坐标系的映射关系,通过坐标系变换,将二维线结构光扫描数据转变为三维物体信息。
     本文在实验中使用非均匀光场对水下目标进行照明。使用水下光度计测量了接收器与被测物轴线(LOS)上光能量分布。同时拍摄了不同距离下被测物的图片。从而得出结论非均匀光场水下探测系统符合设计理论,能够有效提高探测距离。
     本文在水槽中进行了实验,系统架设于直线导轨上。采用532nm的半导体激光器作为光源,用柱面镜扩为线结构光,采用CCD相机记录了线结构光扫描的图像数据。应用图像处理方法对水下图像进行去噪和中心线提取,编程实现了水下场景毫米量级的三维重建。
Marine science and technology has become the focus of world with the economicand technological development. For the purpose of underwater exploration andconstruction, wide range and accurate underwater environmental data are needed. Inorder to obtain the data, a series of ocean technologies were under researched. And theunderwater imaging method is researched in this article.
     This paper presents a new approach for underwater target detection byinhomogeneous illumination, which intensity distribution relates to the attenuationpattern of light transmission with an inverse form. The proposed approach was testedand verified by the underwater imaging experiments, showing that it is effective todecrease the backscattering within a wide field of view (FOV) to increase thedetection distance, especially through turbid water. By the proposed method,underwater target detection with wide FOV, low backscattering noise (especiallythrough turbid water) and non-blind area can be realized.
     Laser line scan (LLS) is one of the underwater optical imaging methods, whichcan reduce the detrimental effects of backscatter and forward scatter. By projectinglaser stripe onto the target, the profile of target can be inferred from the displacementof the laser scan lines.
     Inhomogeneous light field image detection system was used in the poolexperiments. The underwater photometer was use to measure the energy distributionof the axis of the receiver to the target (LOS). While get the pictures of the targetunder different distances. It can concluded that inhomogeneous light field imagedetection system in accordance with the design theory, and can improve the detectionrange effectively.
     Experiments had been carried out in a sink, and the scanning system was set up in alinear guide. A532nm semiconductor laser was used as light source, and a cylindricallens was placed ahead of it to generate a laser line. The2D data were acquired by adigital camera. Some image processing methods were used for denoising and centerextraction. Then the coordinates of2D data were transformed into3D worldcoordinates. And the3D reconstruction result is shown at millimeter scales.
引文
[1] http://en.wikipedia.org/wiki/Bathymetry,2012年5月
    [2]王向红,多波束条带测深系统数据后置处理技术研究,哈尔滨工程大学,博士学位论文,2005
    [3]徐洪梅,水下非均匀光场的目标探测研究,中国海洋大学博士学位论文,2009
    [4]吴庆阳,线结构光三维传感中关键技术研究,四川大学博士学位论文,2006
    [5]王宗义,线结构光视觉传感器与水下三维探测,哈尔滨工程大学博士学位论文,2005
    [6] Drap,P. Photogrammetry for virtual exploration of underwater archeological sites. XXIInternational Scientific Committee for Doccumentation of Cultural Hertage Symposium,Athens, Greece.2007
    [7] Liu H.T. A Video-based Stereoscopic Imaging and Measurement System for UnderseaApplications. Proc.MTS/IEEE OCEANS’01,1,2001,PP.257-286
    [8] Charles Wheatstone. Contributions to the Physiology of Vision.-On some remarkable, andhitherto unobserved, Phenomena of Binocular Vision.‘Philosophical Transactions’ of theRoyal Society of London,1838(Vol.128):371-394.
    [9] Leone,A. Stereoscopic system for3-d seabed mosaic reconstruction. InternationalConference on Image Processing, ICIP.pp.541-544,2006
    [10]冯士筰,海洋科学导论,高等教育出版社,2005年9月
    [11] R. Y. Tsai, A Versatile Camera Calibration Technique for High-accuracy3D MachineVision Metrology Using off-the-shelf TV Cameras and Lenses, IEEE J. Robot. Autom., Vol.3,No.4, pp.323-344, Aug.1987
    [12] Chau-Chang Wang, Nonmetric Camera Calibration for Underwater Laser Scanning System.IEEE JOURNAL OF OCEANIC ENGINEERING, VOL.32, APRIL2007
    [13] Evans,P.M., New technology for subsea laser imaging and ranging system for inspection andmapping. Sensor Rev.,18(1998):97-107
    [14] Wilkerson,T.D. Kinematic Analysis of Conically Scanned Environmental Properties, USPatent, No.6535158,2003
    [15] Optech, SHOALS-1000T: The Next Generation of Airborne Laser Bathymetry.http://www.optech.ca/pdf/Brochures/shoals_shoals.pdf,2003
    [16] Donna M. Kocak, The Current Art of Underwater Imaging-With a Glimpse of the Past andVision of the Future, Marine Technology Society Journal, Fall2005Volume39, Number3.
    [17] Kent Bowker, Underwater Imaging in Real Time, Using Substantially DirectDepth-to-Display-Height LIDAR Streak Mapping, Patent, No.5467122, Nov.14,1995
    [18] Jules S. Jaffe, Underwater Optical Imaging: Status and Prospects, Oceanography, Vol.14,No.3,2001
    [19] Weidemann, Using a Laser Underwater Camera Image Enhancer for Mine WarfareApplications: What is gained. NRL, Stennis Space Center, MS, Technical Report,No.A731714, April,2002
    [20] Wang,C.C., Tang,D. Seafloor roughness measured by a laser line scanner and aconductivityprobe, IEEE Journal of Oceanic Engineering.2009,34:459–465.
    [21] Chau-Chang Wang, Design, Calibration and Applicationof a Seafloor Laser Scanner, LaserScanning,Theory and Applications, pp:495-522
    [22] Chau-Chang Wang, Application of CCD cameras as a versatile measurement tool for flumetank, Ocean Engineering,42(2012),71–82
    [23] Watson,J. Simultaneous in-line and off-axis subsea holographic recording of plankton andother marine particles. Meas Sci Tech.2001,12,L9-L15
    [24] Katz,J. Submersible holocamera for detection of particle characteristics and motions in theocean. Deep Sea Res. Part1,1999,46(8):1455-1481
    [25] F.Bruno, Experimentation of Structured Light and Stereo Vision for Under Water3DReconstruction, ISPRS Journal of Photogrammetry and Remote Sensing66(2011)508-518
    [26] Caimi, Kocak, Real-time3D underwater imaging and mapping using a laser line scantechnique. Proc.SPIE Opt.Scan.Syst.: Design Appl,3131,241-252,1997
    [27] Caimi, Smith, Three-dimensional mapping systems and methods. U.S. Patent No.5418608eof the art assessment. NCEL Tech. Memo. TM-45-91-03(1991),1-13,
    [28] Massey,J.,Underwater3D surface mapping technology-A sta
    [29] Y.Li, T.Y.Young,C.C.Huang, Noncontract measurement using line-scan cameras: Analysis ofpositioning error, IEEE Trans. Ind. Electron, vol.36, no.4, pp.545-551, Nov.1989
    [30] Heredia-Ortiz,M. On the industrial applications of moire and fringe projection techniques.Strain39(3),2003,95-100,
    [31] Salvi,J. Pattern codification strategies in structured light systems. Pattern Recognition37(4),2004,827-849
    [32] Moore,K.D. Development of a new underwater bathymetric laser imaging system: L-Bath.J.Atmos.Ocean.Technol.17(8),2000,1106-1117.
    [33] Moore,K.D. Intercalibration method for underwater three-dimensional mapping laser linescan systems. J Applied Optics,40(33)2001:5991-6004
    [34] Leathem,J. Use of Laser Sources for Search and Survey. Underwater Intervention1993
    [35] Coles,B.W. Laser line scan systems as environmental survey tools. Ocean News andTechnology, July/August.
    [36] Chris Roman, Application of Structured Light Imaging for High Resolution Mapping ofUnderwater Archaeological Sites
    [37] Drew A.Carey, Use of laser line scan for assessment of response of benthic habitats anddemersal fish to seafloor disturbance, Journal of Experimental Marine Biology andEcoloy,285-286(2003)435-452
    [38]谢则晓,下线结构光自扫描三维测量技术,中国激光, Vol.37, No.8, August,2010
    [39]张博,刘智深,水下激光线扫描探测系统的设计及试验,中国海洋大学学报,34(4):655-661, July,2004
    [40]金伟其,水下光电成像技术与装备研究进展(下),红外技术,Vol.33, No.3Mar.2011
    [41]章毓晋,图像工程(下册)图像理解,清华大学出版社,2007年2月第二版,63-64
    [42]蔡钦涛,基于图像的三维重建技术研究,浙江大学硕士学位论文,2004
    [43]马颂德,张正友,计算机视觉,科学出版社,1998
    [44]张飞,相机标定方法综述,2011通信安全学术会议论文集:36-39,2011
    [45] Seibert Q. Duntley, Light in the Sea, J. Opt. Soc. Am.53,214–233(1963).
    [46] L. E. Mertens and F. S. Replogle, Jr., Use of point spread and beam spread functions foranalysis of imaging systems in water, J. Opt. Soc. Am.67,1105-1117(1977).
    [47] Charles L. Gallegos, David L. Correll and J. W. Pierce, Modeling Spectral DiffuseAttenuation, Absorption, and Scattering Coefficients in a Turbid Estuary, Limn.Oceanogr.35(7),1486–1502(1990).
    [48] John T. O. Kirk, Volume scattering function, average cosines, and the underwater light field,Limn. Oceanogr.36(3),455–467(1991).
    [49] Curtis D. Mobley, Bernard Gentili, Howard R. Gor-don, Zhonghai Jin, George W. Kattawar,Andr′e Morel, Phillip Reinersman, Knut Stamnes, and Robert H.Stavn, Comparison ofnumerical models for computing underwater light fields, Appl. Opt.32,7484–7504(1993).
    [50] Juli Berwald, Dariusz Stramski, Curtis D. Mobley and Dale A. Kiefer, Influences ofabsorption and scattering on vertical changes in the average cosine of the underwater lightfield, Limn. Oceanogr.40(8),1347–1357(1995).
    [51] Emmanuel Boss and W. Scott Pegau, Relationship of Light Scattering at an Angle in theBackward Direction to the Backscattering Coefficient, Appl. Opt.40,5503–5507(2001).
    [52] Jules S. Jaffe, Kad D. Moore, John McLean, and Michael R Strand, Underwater OpticalImaging: Statusand Prospects, Oceanography14,64–75(2001).
    [53] J. S. Tyo, M. P. Rowe, E. N. Pugh, Jr., and N. Engheta, Target detection in optically scatteringmedia by polarization-difference imaging, Appl. Opt.35,1855–1870(1996).
    [54] Stephen P. Morgan, Man P. Khong, and Michael G. Somekh, Effects of polarization state andscatterer concentration on optical imaging through scattering media, Appl. Opt.36,1560–1565(1997).
    [55] Gareth D. Lewis, David L. Jordan, and P. John Roberts,Backscattering Target Detection in aTurbid Medium by Polarization Discrimination, Appl. Opt.38,3937–3944(1999).
    [56] Peter C. Y. Chang, Jonathan C. Flitton, Keith I. Hopcraft, Eric Jakeman, David L. Jordan, andJohn G.Walker, Improving visibility depth in passive underwater imaging by use ofpolarization, Appl. Opt.42,2794–2803(2003).
    [57] Tian-jin Feng, Xin Li, Guang-rong Ji, Bing Zheng, Hai-yan Zhang, Guo-yu Wang, andGuo-xing Zheng, A new laser-scanning sensing technique for underwater engineeringinspection, Artif. Intell. Eng.10,363–368(1996).
    [58] G. X. Zheng and B. Zheng, A new laser3-D image information display method for ROV,Intervention/ROV’92,183–188(1992).
    [59] Jaffe, J. S., Computer modeling and the design of optimal underwater imaging systems, IEEEJ. Oceanic Eng.15,101–111(1990).
    [60] Thomas J. Kulp, Darrel Garvis, Randall Kennedy, Tom Salmon, and Keith Cooper,Development and testing of a synchronous-scanning underwater imaging system capable ofrapid two-dimensional frame imaging, Appl. Opt.32,3520–3530(1993).
    [61] T. J. Kulp, D. Garvis, R. Kennedy, T. Salmon, and K. Cooper, Results of the final tank test ofthe LLNL/NAVSEA Synchronous-Scanning Underwater Laser Imaging System, OceanOptics XI1750,453–464(1992).
    [62] Georges R. Fournier, Deni Bonnier, J. Luc Forand, and Paul W. Pace, Range-gatedunderwater laser imaging system, Opt. Eng.32,2185–2190(1993).
    [63] ChingSeong Tan, Gerald Seet, Andrzej Sluzek, and DuoMin He, A novel application ofrange-gated underwater laser imaging system (ULIS) in near-target turbid medium, Opt.Laser. Eng.43995–1009(2005).
    [64] Barry A. Swartz and James D. Cummings, Laser range-gated underwater imaging includingpolarization discrimination, Proc. SPIE.1537,42(1991).
    [65] Srinivasa G. Narasimhan, Shree K. Nayar, Bo Sun, and Sanjeev J. Koppal, Structured light inscattering media, ACM Siggraph Asia (2008).
    [66] Clarence J. Funk, Multiple Scattering Calculations of Light Propagation in Ocean Water,Appl. Opt.12,301-313(1973).
    [67] A Zarebidaki, A Nikakhtar, KY Wong, Document Management in Construction for ShorterProject Lead Time Using Web-Based Software.2013.
    [68] Z Miao, TE Grift, AC Hansen, KC Ting, Elsevier Energy requirement for comminution ofbiomass in relation to particle physical properties.2011.
    [69] Z Miao, TE Grift, AC Hansen, KC Ting-Energy&Fuels, Energy requirement forlignocellulosic feedstock densifications in relation to particle physical properties, preheatingand binding agents.2012.
    [70] CS Turcotte, Optics at Defence R&D Canada-Valcartier.2009.
    [71] W Hou, DJ Gray, AD Weidemann, Automated underwater image restoration and retrieval ofrelated optical properties.2007.
    [72] A Weidemann, GR Fournier, In harbor underwater threat detection/identification usingactive imaging.2005.
    [73] N Shashar, S Johnsen, A Lerner, Underwater linear polarization: physical limitations tobiological functions.2011.
    [74] Y Schechner, N Karpel, Enhanced underwater imaging.2010.
    [75] YY Schechner, DJ Diner, Spaceborne underwater imaging.2011
    [76] Gupta, Mohit, Structured light3D scanning in the presence of global illumination.2011.
    [77] Gupta, Mohit, A Practical Approach to3D Scanning in the Presence of Interreflections,Subsurface Scattering and Defocus.2012.
    [78] DE Jacobs, J Baek, M Levoy, Focal Stack Compositing for Depth of Field Control.2010.
    [79] M Levoy Light Field Photography, Microscopy and Illumination.2010.
    [80] AJ Holmin, NO Handegard, RJ Korneliussen, Simulations of multi-beam sonar echos fromschooling individual fish in a quiet environment.2012.
    [81] P Wadhams, N Toberg, Pressure Ridge Shapes and Slope Angles from Multi-beam SonarData.2010.
    [82] RL Thompson, JL Seawall, ST Bachelor, Sonar systems.2010.
    [83] WR Woodward, PE Webb, RK Hansen, Approaches for using Three Dimensional sonar as asupplemental sensor to GNSS.2010.
    [84] Y Petillot, Y Pailhas, J Sawas, Target recognition in synthetic aperture and high resolutionside-scan sonar.2010.
    [85] MF Fallon, M Kaess, H Johannsson, Efficient AUV navigation fusing acoustic ranging andside-scan sonar.2011.
    [86] MF Fallon, J Folkesson, H McClelland, Relocating underwater features autonomously usingsonar-based SLAM.2012.
    [87]李源慧,激光水下目标探测的Monte Carlo模拟西南交通大学硕士学位论文2009.
    [88] JM Hammersley, DC Handscomb, G Weiss, Monte carlo methods.1965.
    [89] L Wang, MCML—Monte Carlo modeling of light transport in multi-layered tissues.1995
    [90] CD Mobley, Light and water: Radiative transfer in natural waters.1994.
    [91] TJ Petzold,Volume scattering functions for selected ocean waters.1972.
    [92] CD Mobley, Phase function effects on oceanic light fields.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700