有限领导者速度信息下的多机器人编队控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,多机器人技术得到了广泛的关注,人们在此领域进行了大量的研究。和单机器人系统相比,多机器人系统具有更好的智能性、鲁棒性和自适应性。本文讨论多自主移动机器人在局部信息下的编队问题,主要围绕如何提高系统抗干扰能力和在领导者机器人速度信息有限甚至未知条件下的编队控制器设计问题来展开。文中采用领导者—跟随者(Leader-Follower)编队方法作为协调机制,为跟随者机器人设计适当的控制规律,使其和领导者机器人形成指定的队形。
     现有机器人编队控制策略主要考虑理想环境下编队控制器的设计问题,控制器所需要的参数都是准确可测或者直接得到的。为了提高算法的可用性与机器人的适应性,还需要考虑更一般情况下的算法设计问题,如控制器所需参数无法通过传感器直接测量得到的情况。另外,为了降低机器人之间的耦合程度,也需要考虑控制器如何减少机器人间的相互依赖性。这些都是机器人编队控制器设计的重点与难点之所在。为了处理这些情况,本文从提高编队系统的鲁棒性着手,为多机器人系统设计编队控制器。接着讨论跟随者机器人不能得到领导者机器人部分速度信息时的控制器设计问题,再到跟随者机器人完全不能得到领导者机器人任何速度信息时控制器设计问题。论文利用所设计的控制规律,结合自适应切换控制策略来处理编队群体避障和队形切换问题,取得了很好的效果。最后用具体的实验来证明文中所提算法的有效性。整个论述层层递进,体现了理论与实际的有效结合。
     论文首先回顾多机器人技术的发展历程及目前的研究现状。然后介绍单个机器人的运动学模型和控制方法,根据单个机器人的运动学规律推导两个机器人以距离—角度模型形成编队及三个机器人以距离—距离模型形成编队的动态方程。
     论文的主要研究内容分为两个部分。第一个部分为控制算法的理论推导与MATLAB仿真,主要包括以下几个方面:
     (1)在跟随者机器人完全可以得到领导者机器人速度信息的条件下,针对机器人编队系统(距离—角度模型和距离—距离模型)中存在不确定性因素(如传感器实际采样位置和理论期望位置不重合等原因而引起的不确定量)的情况,提出一种新颖的二阶滑模控制方法对传统滑模控制方法进行改进,以提高系统控制精度与抑制颤振现象。在不确定量变化率满足一定约束的条件下,将系统控制到指定的流形上,使得编队跟踪变量沿指定流形收敛到期望值,从而达到编队的目的。利用距离—距离编队模型来讨论跟随者机器人同时跟踪领导者机器人和躲避环境中障碍物的问题。
     (2)在系统所有信息都已知或可检测的条件下,讨论机器人轮子有打滑现象时的运动规律,并据此推导出相应的编队方程,对现有编队模型进行补充与发展。通过补偿和归并的策略,将有打滑现象时的编队方程化成和没有打滑状况时的编队方程相似的形式,然后采用与后者相类似的方法进行控制器的设计
     (3)受传感器或通信机制的制约,跟随者机器人可以完全得到领导者机器人速度信息的假设有时未必成立。针对此种情况,论文考虑领导者机器人线速度恒定,但跟随者机器人无法得到领导者线速度的情况。利用机器人的相对位置信息,采用自适应输出反馈的方法对领导者机器人的线速度进行在线实时估计,并将估计值引入到跟随者机器人控制器的设计当中。此算法结合输入输出反馈算法和自适应算法两者的优点,并对它们进行利用与发展,降低对系统参数采集的要求。在此算法中,控制器的设计过程由估计器的设计方法决定。为了增大控制器设计的灵活性,论文引入浸入和不变(Immersion and Invariance)法来估计领导者机器人的线速度,同时还对编队变量进行观测,最后采用二阶滑模控制算法对观测后的系统进行控制器设计,实现增强系统鲁棒性的同时降低系统各子部分之间的耦合程度。该设计方法弥补了二阶滑模控制算法需要系统中所有参数都能直接或间接得到的不足,是对二阶滑模控制算法的有效补充及对浸入和不变算法的后续升级。
     (4)为了降低控制算法对传感器性能的依赖,进一步考虑领导者机器人的线速度和角速度时变,但跟随者机器人无法得到领导者机器人任何速度信息的情况。论文改造与提升传统的基于控制误差直接设计控制器方法,结合输入输出线性化方法的优点,构造自适应编队算法为系统设计控制器。首先根据期望的性能指标构造一个理想的控制器,随后采用自适应编队控制算法来拟合此理想控制器的输出,从而实现在领导者机器人速度信息未知情况下对编队系统控制的目的。自适应控制器的增益系数根据系统运行性能实时在线自动调整。适当选择控制器参数(除自适应增益系数外的其它参数),可以使编队误差足够小。控制器无需估计领导者机器人的速度信息,实现起来简单方便。
     论文的第二部分为多机器人编队控制实验。为了检验理论算法在实际物理系统中的运行效果,论文以AmigoBot机器人为基础,搭建多机器人运动平台,对各编队算法进行实验验证和分析。实验结果说明文中所提算法是有效可行的。
     最后,总结全文,并对后续工作进行展望。
Even since the last two decades, the multi-robot technology has been attractingwidespread attention, and people have done a lot of research in this area. Compared with asingle-robot system, a multi-robot system could achieve better performances in intelligence,robustness and adaptability. This paper discusses the problem of multiple autonomousmobile robots formation using local information, and mainly draws attention on how toimprove the capacity of attenuating disturbances of the system, and how to design propercontrollers using a limited or even totally no information of the leader robot’s velocity. Itdesigns some controllers to steer the follower robot to get into and maintain somepredesigned formation with the leader robot based on the leader-follower formationmethodology.
     Most of the existed researches of mobile robot formation control are mainly dealingwith how to design a formation controller under an idea environment, that all of theparameters needed for the controller can be detected or obtained directly. In order toenhance the usability for the algorithm and applicability for the robots, a more commonsituation should be considered for the algorithm design, such as the parameters neededcannot be detected directly according to the sensors. Furthermore, in order to reduce thedegree of coupling among robots, there should also consider how to reduce the dependencewith each other. All of these are not only the focal point but also the difficulty for the robotformation controller design. To deal with these cases, this dissertation starts with discussinghow to improve the system’s robustness and designing some controllers for the multi-robotsystem. Following, the controller design method via a situation that the follower robotcannot obtain part information of the leader robot’s velocity, and then to discuss thecontroller design method via a situation that the follower robot cannot obtain anyinformation of the leader robot’s velocity. Combining the controllers designed with theadaptive switching strategies, the obstacle avoidance and formation switching problems arediscussed for the formation system, and a good result is obtained. Finally, some experiments are provided to verify the effectiveness of the algorithms proposed. The wholediscussion is layer progressive and demonstrates an effective combination of theory andapplication.
     Firstly, this paper reviews the development and current research status of themulti-robot technology. Secondly, it introduces the dynamic model and control method of asingle robot system, and deduces the dynamic formation equations of a two-robot systembased on the distance-bearing model and a three-robot system based on thedistance-distance model according to the single robot’s dynamic equation.
     The dissertation is divided into two parts. The former part is the control algorithmdeduction and MATLAB simulation in theory, which mainly includes
     (1) Due to the fact that some uncertainties may occur in the formation system (such asdue to the sensor’s real position does not coincide with it’s expected position, which maycause some uncertainties), under the condition that the follower robot can obtain completeinformation of the leader robot (for both distance-bearing model and distance-distancemodel), a novel second order sliding mode control algorithm is proposed to improve theperformance of the standard sliding mode control method and to increase the controlaccuracy and restrain chatting phenomenon for the system. Under the condition that theuncertainties are satisfied some constraints, the system is driven to some assigned surfaceof the manifold and the formation tracking variables are forced to converge to their desiredvalues to obtain a desired formation along the manifold. The problem of obstacle avoidanceduring the follower robot tracking to the leader robot is discussed based on thedistance-distance formation model.
     (2) Under the condition that all information of the system is known or can be detected,it discusses the dynamic motion of the robot in a slipping situation, and deduces the relativeformation equations, that complements and delvelops the existed formation models.According to the compensation and merging methods, the dynamic formation equationsunder slipping condition are transformed into the style similar to the formation equationswithout slipping, and then the controller is designed similarly to the case without slipping.
     (3) Due to the sensor or transmission mechanism limitations, the assumption that thefollower robot can obtain complete information of the leader robot may not hold in somesituations. For this problem, it considers that the leader robot has a constant velocity, butthe follower robot cannot obtain this velocity in any away. The leader robot’s linear velocityis estimated dynamically by the adaptive output feedback method using relative positioninformation, and the estimated value is added into the controller designed. This algorithmreduces the requiment of paramets detecting via using and delveloping the advantagies ofboth of the input and out feedback algorithm and adptive algorithm. For this algorithm, thecontroller designed followers the procedures of the estimation design method. In order toenhance the flexibility for the controller design, the immersion and invariance algorithm isemployed to estimate the linear velocity of the leader robot, and the formation variables areobserved at the same time, at last the second order sliding mode control algorithm is chosento design a control law for the observed system, it achieves the objective of increasing thesystem robustness and decreasing the couping among the subparts simultaneously. Thedeficiency of needing a complete known paramets for the second order sliding mode controlmethodology is made up by the immersion and invariance based second order sliding modecontrol algorithm, and this algorithm is also an effective complement and updating for theimmersion and invariance algorithm.
     (4) Furthermore, in order to reduce the restrictions depending on the sensor’sperformance for the control algorithm, it considers that the follower robot has totally noinformation of the leader robot’s dynamic velocities, including linear velocity and angularvelocity. The traditional control error directly based algorithm is changed and upgraded inthis dissertation, and an adaptive formation algorithm is constructed for the formationsystem by conbinding the advantagies of the input and output linearization method. Firstly,an ideal controller is designed to satisfy the performance required. Secondly, the adaptiveformation control algorithm is used to approach the output of the ideal controller to obtainthe goal of forming a formation without knowing any information of the leader robot’svelocity. The adaptive gain parameters are adjusted according to the system’s performance dynamically. And the formation error can be reduced to small enough by selecting thecontrol parameters (the parameters excluding the adaptive gains) properly. The proposedcontroller does not need to estimate the leader robot’s velocity, and is rather simple andconvenient in realization.
     The latter part of this dissertation is the multi-robot formation experiments. Amulti-robot moving platform is set up based on the AmigoBot robots to check theeffectiveness of the theoretical algorithms running on the physical system, and each of theformation algorithms is verified and analyzed through the relative experiment. Theexperiment results validae the effectiveness of the algorithms proposed.
     Finally, some conclusions and prospects are given.
引文
[1]董炀斌.多机器人系统的协作研究[D].杭州:浙江大学,2006
    [2]焦平平.基于通信的多机器人编队系统[D].北京:北京交通大学,2008:30-32
    [3]Desai J.P., Ostrowski J., and Kumar V.. Controlling formations of multiple mobile robots[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1998:2864-2869
    [4]Yang J.M. and Kim J.H.. Sliding mode control for trajectory of nonholonomic wheeled mobile robots[J]. IEEE Transactions of Robots and Automation,1999,15(3):578-587
    [5]Giulietti F., Pollini L., and Innocenti M.. Autonomous formation flight[J]. IEEE Control System Magazine.2000,20(6):34-44
    [6]Stipanouvic D.M., Inalhan G., Teo R., et al.. Decentralized overlapping control of a formation of unmanned aerial vehicles[J]. Automatica,2004,40(8):1285-1296
    [7]Lavaei J., Momeni A., and Aghdam A.G.. A model predictive decentralized control scheme with reduced communication requirement for spacecraft formation[J]. IEEE Transactions on Control Systems Technology,2008,16(2):268-278
    [8]Rodrigues J., Figueria D., Neves C., et al.. Leader-following graph-based distributed formation control[C]. Proceedings of Robotica2008-8th Conference on Autonomous Robot Systems and Competitions,2008:71-77
    [9]Gazi V.. Formation control of a multi-agent system using non-linear servomechanism[J]. International Journal of Control,2005,78(8):554-565
    [10]Chwa D.. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates[J]. IEEE Transactions on Control Systems Technology,2004,12(4):637-644
    [11]Do K.D. and Pan J.. Nonlinear formation control of unicycle-type mobile robots[J]. Robotics and Autonomous Systems,2007,55(3):191-204
    [12]Kanayama Y., Kimura Y., Miyazaki F., et al.. A stable tracking control method for an autonomous mobile robot[C]. Proceedings of IEEE International Conference on Robotics and Automation,1990:384-389
    [13]Consolini L., Morbidi F., Prattichizzo D., et al.. Leader-follower formation control of nonholonomic mobile robots with input constraints[J]. Automatica,2008,44(5):1343-1349
    [14]Consolini L., Morbidi F., Prattichizzo D., et al.. Stabilization of a hierarchical formation of unicycle robots with velocity and curvature constraints[J]. IEEE Transactions on Robotics,2009,25(5):1176-1184
    [15]Chen Y.S, Ding X.C, Stefanescu A., et al.. Formal approach to the deployment of distributed robotic teams[J]. IEEE Transactions on Robotics,2012,28(1):158-171
    [16]蔡自兴.多移动机器人协同原理与技术[M].北京:国防工业出版社,2011
    [17]马斌奇.多机器人系统的研究现状及发展[J].科技信息,2009,1(4):504-504
    [18]陈剑.多机器人编队与阵型控制的设计一种融合RH进LF的方法[D].合肥:中国科学技术大学,2009
    [19]陈浩耀.面向多机器人编队的机遇视觉定位系统研究[D].合肥:中国科学技术大学,2009
    [20]徐德,邹伟.室内移动式服务机器人的感知、定位与控制[M].北京:科学出版社,2008
    [21]Han S., Choi B.S., and Lee J.M.. A precise curved motion planning for a differential driving mobile robot[J]. Mechatronics,2008,18(9):486-494
    [22]Uchida M., Yokoyama S., and Ide H.. Development of autonomous mobile robot for obstacles avoidance[C]. Instrumentation and Measurement Technology Conference,1994:179-180
    [23]Guo T.Y., Zheng C.H., Du Z., et al.. Research on obstacles avoidance technique of mine exploration and rescue robot based on fuzzy reasoning[C]. International Conference on Fuzzy Systems and Knowledge Discovery,2009:396-399
    [24]Lefebvre O., Lamiraux F., and Pradalier C.. Obstacles avoidance for car-like robots integration and experimentation on two robots[C]. IEEE International Conference on Robotics and Automation,2004:4277-4282
    [25]Brock O. and Khatib O.. Real-time replanning in high dimensional configuration spaces using sets of liomotopic paths[C]. International Conference on Robotics and Automation,2000:550-555
    [26]原魁,李园,房立新.多移动机器人系统研究发展近况[J].自动化学报,2007,33(8):785-794
    [27]杨甜甜,刘志远,陈虹,裴润.移动机器人编队控制的现状与问题[J].智能系统学报,2007,2(4):21-27
    [28]Bhattacharya P. and Gavrilova M.L.. Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path[J]. IEEE Transaction on Robotics and Automation Magazine,2008,15(2):58-66
    [29]Gong D.W., Zhang J.H., and Zhang Y.. Multi-objective particle swarm optimization for robot path planning in environment with danger sources[J]. Journal of Computers,2011,6(8):1554-1561
    [30]谢政,李建平.网络算法与复杂性理论[M].长沙:国防科技大学出版社,1995
    [31]张飞,陈卫东.移动机器人编队自修复的切换拓扑控制[J].控制理论与应用,2010,27(3):289-295
    [32]Yamaguchi H.. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations[J]. Robotics and Autonomous Systems,2003,43(4):257-282
    [33]Hsieh M.A. and Kumar V.. Pattern generation with multiple robots[C]. Proceedings of the2006IEEE International Conference on Robotics and Automation.2006:2442-2447
    [34]Dong W.J.. Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory[J]. IEEE Transactions on Robotics,2012,28(1):262-268
    [35]Cao Y.C., Ren W., and Meng Z.Y. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking[J]. Systems and Control Letters,2010,59(9):522-529
    [36]Yang E.F., Gu D.B., and Hu H.S.. Nonsingular formation control of cooperative mobile robots via feedback linearization[C].2005IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:3652-3657
    [37]Liu S.C., Tan D.L., and Liu G.J.. Vision-based formation control of mobile robots with relative motion states[C].2005IEEE International Conference on Robotics and Biomimetics,2005:72-76
    [38]郭戈,胡征,峰董江辉.移动机器人导航与定位技术[J].微计算机信息,2003,19(8):10-11
    [39]Toit N.E.D. and Burdick J.W.. Robot motion planning in dynamic, uncertain environments[J]. IEEE Transactions on Robotics,2012,28(1):101-115
    [40]邬再新,李艳宏,刘涛.多移动机器人路径规划技术的研究现状与展望[J].机械,2008,35(1):1-3
    [41]Yang S.X. and Luo C.. A neural network approach to complete coverage path planning[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2004,34(1):718-725
    [42]Bakker B., Zivkovic Z., and Krose B.. Hierarchical dynamic programming for robot path planning[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:2756-2761
    [43]Yu H.L., Beard R.W., and Argyle M.. Probabilistic path planning for cooperative target tracking using aerial and ground vehicles[C].2011American Control Conference,2011:4673-4678
    [44]Cai Z.X.. Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems[J]. Journal of Intelligent and Robotic Systems,2002,33(1):61-71
    [45]Svestka P. and Overmars M.H.. Coordinated path planning for multiple robots[J]. Robotics and Autonomous Systems,1998,23(3):125-152
    [46]Ryan M.R.K.. Exploiting subgraph structure in multi-robot path planning[J]. Journal of Artificial Intelligence Research,2008,31(1):497-542
    [47]陈波,杨宜民.关于足球机器人避障控制的研究[J].机器人,2004,26(2):111-113
    [48]Al-taharwa I., Sheta A., and Al-weshah M.. A mobile robot path planning using genetic algorithm in static environment[J]. Journal of Computer Science,2008,4(4):341-344
    [49]Chang D.E., Shadden S.C., Marsden J.E., et al.. Collision avoidance for multiple agent systems[C]. Proceedings42nd IEEE Conference on Decision and Control,2003:529-543
    [50]Tzafestas S.G., Tzamtzi M.P., and Rigatos G.G.. Robust motion planning and control of mobile robots for collision avoidance in terrains with moving objects[J]. Mathematics and Computers in Simulation,2002,59(1):279-292
    [51]Arai Y., Fujii T., Asama H., et al.. Collision avoidance in multi-robot systems based on multi-layered reinforcement learning[J]. Robotics and Autonomous Systems,1999,29(1):21-32
    [52]余洪山.移动机器人地图创建和自主探索方法研究[D].长沙:湖南大学,2007
    [53]Rodriguez-Losada D., Matia F., and Galan R.. Building geometric feature based maps for indoor service robots[J]. Robotics and Autonomous Systems,2006,54(7):546-558
    [54]Galindo C., Fernandez-Madrigal J.A., Gonzalez J., et al.. Robot task planning using semantic maps[J]. Robotics and Autonomous Systems,2008,56(11):955-966
    [55]Miura J., Negishi Y., and Shirai Y. Adaptive robot speed control by considering map and motion uncertainty [J]. Robotics and Autonomous Systems,2006,54(2):110-117
    [56]Einhorn E., Schroter C.H., and Gross H.M.. Attention-driven monocular scene reconstruction for obstacle detection, robot navigation and map building[J]. Robotics and Autonomous Systems,2011,59(5):296-309
    [57]刘磊.多移动机器人编队及协调控制研究[J].武汉:华中科学技术大学,2009
    [58]Do K.D.. Practical formation control of multiple underactuated ships with limited sensing ranges[J]. Robotics and Autonomous Systems,2011,59(6):457-471
    [59]Olfati-Saber R., Fax J.A.,. Murray R.M. Consensus and Cooperation in Networked Multi-Agent Systems[J]. Proceedings of the IEEE,2007,95(1):215-233
    [60]Wang B.C and Zhang J.F.. Distributed control of multi-agent systems with random parameters and a major agent[J]. Automatica,2012,48(9):2093-2106
    [61]Cao Y.C., Ren W., and Egerstedt M.. Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks [J]. Automatica,2012,48(8):1586-1597
    [62]Zhao Y., Duan Z.S., Wen G.H, etc. Distributed finite-time tracking control for multi-agent systems:An observer-based approach[J]. Systems&Control Letters,2013,62(1):22-28
    [63]Zheng Y.S. and Wang L.. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements [J]. Systems&Control Letters,2012,61(3):871-878
    [64]Shen D.B. and Sun Z.D.. Finite-time convergence of KH model under asymmetric confidence levels[C]. The7th IEEE International Conference on Control and Automation,2009:224-227
    [65]彭科.带领导者的多智能体系统中的一致性问题研究[D].上海:上海交通大学,2009
    [66]Wang J, and Obeng M.S.. Distributed formation control for nonholonomic mobile robots[C]. IEEE7th Sensor Array and Multichannel Signal Processing Workshop,2012:389-392
    [67]Hao L.L., Gu H., Kang F.J, etc. Improved Virtual Leader Based Formation Control for Nonholonomic Multi-UUV[C].2012:172-180
    [68]Kang X.D and Li W.. Moth-inspired plume tracing via multiple autonomous vehicles under formation control[J]. Adaptive Behavior,2012,20(2):131-142
    [69]Dai Y.Y. and Lee S.G.. The leader-follower formation control of nonholonomic mobilerobots[J]. International Journal of Control, Automation, and Systems,2012,10(2):350-361
    [70] Liu S.C., Tan D.L, and Liu G.J.. Robust leader-follower formation control of mobilerobots based on a second order kinematics model[J]. Acta Automatica Sinica,2007,33(9):947-955
    [71] Hegedus M., Mehrandezh M., and Paranjape R.. Leader-follower formation control fora team of mobile robots using an acoustic array[C]. Canadian Conference on Electricaland Computer,2008:119-122
    [72] Fukuda T., and Shibata T.. Theory and applications of neural networks for industrialcontrol systems[J]. IEEE Transactions on Industrial Electronics,2002,39(6):472-489
    [73] Fukuda T., and Nakagawa S.. Dynamically reconfigurable robotic system[C]. IEEEInternational Conference on Robotics and Automation,1988:1581-1586
    [74] Parker L.E.. Current state of the art in distributed autonomous mobile robotics[J].Distributed Autonomous Robotic Systems, Parker L.E., Bekey G., and Barhen J., Eds.Tokyo: Springer-Verlag,2000,4:3-12
    [75] Parker L.E.. Designing control laws for cooperative agent teams[C]. IEEEInternational Conference on Robotics and Automation,1993:582-587
    [76] Parker L.E.. Alliance: An architecture for fault tolerant, cooperative control ofheterogeneous mobile robots[J]. Intelligent Robots and Systems,1994,2(1):776-783
    [77] Gerkey B.P., Vaughan R.T., and Howard A.. The player/stage project: Tools formulti-robot and distributed sensor systems[C]. Proceedings of the InternationalConference on Advanced Robotics,2003:317-323
    [78] Gerkey B.P., Vaughan R.T., and Howard A.. On device abstractions for portable,reusable robot code[C]. International Conference on Intelligent Robots and Systems,2003:2421-2427
    [79] Gerkey B.P., and Mataric M.J.. Sold!: Auction methods for multirobot coordination[J].IEEE Transactions on Robotics and Automation,2002,18(5):758-768
    [80]Jin K., Liang P., and Beni G. Stability of synchronized distributed control of discrete swarm structures[C]. International Conference on Robotics and Automation,1994:1033-1038
    [81]Yamaguchi H., Arai T., and Beni G. A distributed control scheme for multiple robotic vehicles to make group formations[J]. Robotics and Autonomous Systems,2001,36(4):125-147
    [82]Alami R., Fleury S., Herrb M., et al.. Multi-robot cooperation in the MARTHA project[J]. IEEE Robotics and Automation Magazine,1998,5(1):36-47
    [83]王越超,谈大龙,黄闪等.一个多智能体机器人协作装配系统[J].高技术通讯,1998,8(7):6-10
    [84]黄闪,蔡鹤皋,谈大龙.面向装配作业的多机器人合作协调系统[J].机器人,1999,21(1):50-56
    [85]Lim H., Kang Y., Kim J., et al.. Formation control of leader following unmanned ground vehicles using nonlinear model predictive control[C]. International Conference on Advanced Intelligent Mechatronics,2009:945-950
    [86]Xie F. and Fierro R.. On motion coordination of multiple vehicles with nonholonomic constraints[C]. Proceedings of the American Control Conference,2007:1888-1893
    [87]Li X.H., Xiao J.Z., and Tan J.D.. Modeling and controller design for multiple mobile robots formation control[C]. Proceedings of the IEEE International Conference on Robotics and Biomimetics,2004:838-843
    [88]Dierks T. and Jagannathan S.. Control of nonholonomic mobile robot formations: Backstepping kinematics into dynamics[C]. IEEE International Conference on Control Applications,2007:94-99
    [89]Li X.H. and Xiao J.Z.. Robot formation control in leader-follower motion using direct Lyapunov method[J]. International Journal of Intelligent Control and Systems,2005,10(3):244-250
    [90]Lawton J.R.T., Beard R.W., and Young B.J.. A decentralized approach to formation maneuvers[J]. IEEE Transactions on Robotics and Automation,2003,19(6):933-942
    [91]Jing X.J.. Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments [J]. Robotics and Autonomous Systems,2005,53(2):99-123
    [92]Balch T. and Arkin R.C.. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation,1998,14(6):926-939
    [93]Shi H., Wang L., and Chu T.. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions [J]. Physica D:Nonlinear Phenomena,2006,213(1):51-65
    [94]Sun Z., Li B., Cai W.C., et al.. Virtual leader based robust adaptive formation control of multi-unmanned ground vehicles (UGVs)[C]. American Control Conference,2007:1876-1881
    [95]Leonard N.E. and Fiorelli E.. Virtual leaders, artificial potentials and coordinated control of groups[C]. Proceedings of the IEEE Conference on Decision and Control,2001:2968-2973
    [96]Ren W. and Beard W.. Virtual structure based spacecraft formation control with formation feedback[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,2002:2002-4963
    [97]Lawton J., Young B., and Beard R.. A decentralized approach to elementary formation maneuvers[C]. IEEE International Conference on Robotics and Automation,2000,3(1):2728-2733
    [98]Ghommam J., Mehrjerdi H., Saad M., et al.. Formation path following control of unicycle-type mobile robots[J]. Robotics and Autonomous Systems,2010,58(5):727-736
    [99]柳林.多机器人系统任务分配及编队控制研究[D].长沙:国防科技大学,2006
    [100]H. Khalil. Nonlinear systems[M]. Third Edition.北京:电子工业出版社,2007
    [101]Desai J.P., Ostrowski J.P., and Kumar V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Transactions on Robotics and Automation,2001, 17(6):905-908
    [102]Desai J.P., Kumar V., and Ostrowski J.P.. Control of changes in formation for a team of mobile robots[C]. Proceedings of1999IEEE International Conference on IEEE International on Robotics and Automation,1999:1556-1560
    [103]Fierro R., Song P., Das A., et al.. Cooperative control of robotics formations[J]. In Cooperative Control and Optimization[M], Murphey R. and Pardalos P., Eds. Dordrecht, The Netherlands:Kluwer Chapter5, Springer,2002:73-93
    [104]Das A.K., Fierro R., Kumar V., et al.. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation,2002,18(5):813-825
    [105]Wu J. and Jiang Z.. On the switching control of multiple mobile robots formation[C]. IEEE International Conference on Robotics and Automation,2009:2711-2716
    [106]Shao J., Xie G., and Wang L.. Leader-following formation control of multiple mobile vehicles[J]. IET Control Theory&Applications,2007,1(2):545-552
    [107]Jiang Z. and Nijmeijer H.. Tracking control of mobile robots:A case study in backstepping[J]. Automatica,1997,33(7):1393-1399
    [108]Li X.H., Xiao J.Z., and Cai Z.J.. Backstepping based multiple mobile robots formation control[C]. International Conference on Intelligent Robots and Systems,2005:887-892
    [109]Tanner H.G. and Kyriakopoulos K.J.. Discontinuous backstepping for stabilization of nonholonomic mobile robots[C]. IEEE International Conference on Robotics and Automation,2002:3948-3953
    [110]Fukao T., Nakagawa H., and Adachi N.. Adaptive tracking control of a nonholonomic mobile robot[J]. IEEE Transactions on Robotics and Automation,2000,16(5):609-615
    [111]胡跃明.非线性控制系统理论与应用[M].第二版.北京:国防工业出版社,2005
    [112]Slotine J.J.E. and Li W.P..程代展等译.应用非线性控制[M].北京:机械工业出版社,2009
    [113]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005
    [114]Levant A.. Robust exact differentiation via sliding mode technique[J]. Automatica,1998,34(3):379-384
    [115]Levant A.. Universal single-input-single output (SISO) sliding-mode controllers with finite-time[J]. IEEE Transactions on Automatic Control,2001,46(9):1447-1451
    [116]Shen D.B., Sun Z.D., and Qiao Y.P.. Second-order sliding mode control for nonholonomic mobile robots formation[C]. Proceedings of the30th Chinese Control Conference,2011:4860-4864
    [117]Wang D.W. and Low C.B.. Modeling and analysis of skidding and slipping in wheeled mobile robots:control design perspective[J]. IEEE Transaction on Robotics,2008,24(3):676-687
    [118]申动斌,孙伟杰.打滑状态下的多机器人编队控制[J].机械工程学报,2012,48(23):30-35
    [119]Liu S.C., Tan D.L., and Liu G.J.. Formation control of mobile robots with active obstacle avoidance[J]. Acta Automatica Sinica,2007,33(5):529-535
    [120]Shen D.B. and Sun Z.D.. Leader-follower formation control without leader's velocity information[J]. Science China:Information Sciences. Accepted
    [121]Karagiannis D. and Astolfi A.. Observer design for a class of nonlinear systems using dynamic scaling with application to adaptive control[C]. Proceedings of the IEEE Conference on Decision and Control,2008:2314-2319
    [122]Boubakir A., Labiod S., and Boudjema F.. A stable self-tuning proportional integral derivative controller for a class of multi-input-multi-output nonlinear systems[J]. Journal of Vibration and Control,2012,18(2):228-239
    [123]Shen D.B., Sun W.J., and Sun Z.D.. Adaptive PID formation control of nonholonomic robots without leader's velocity information[J]. ISA Transactions. Under review
    [124]MobileRobots Inc.. Team AmigoBot operations manual. Version4,2007
    [125]利曼科技有限公司.Pioneer3TM运动机器人操作手册.2007
    [126]利曼科技有限公司.Pioneer3TM用户培训手册.2007
    [127]周广宏.机器人网络遥操作及基于事件的控制方法研究[D].南京:南京航空航天大学.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700