基于流形感知的图像距离度量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类的活动在很大程度上依赖对视场中对象的快速准确识别。尽管对人脑来说很容易,但用计算机实现图像识别却非常困难。图像识别被公认为计算机视觉领域中的一个难题。图像间的相似性度量是图像识别中的基本问题。理想的图像距离度量不仅能准确地区分不同对象,而且能适应对象的平移、旋转、缩放、和非刚性形变等变化。最近研究表明人类的视觉感知是基于流形的。在旋转角度、缩放尺度等因素连续变化时,对象在视网膜上所成的像构成了高维观测空间中的低维图像流形。如何将生物学研究成果用于图像距离度量中具有重要意义。
     本论文通过模拟人类流形感知过程,提出了基于流形感知的图像距离度量方法,并探讨了其在图像识别中的应用。主要对以下几个方面进行了深入研究。
     首先提出了基于流形学习和流形高阶近似的图像距离–流形高阶近似距离(HMD)。首先用流形学习算法–最大方差展开方法(MVU)学习出非线性图像流形的内蕴变量,沿内蕴变量方向栅格化非线性图像流形,通过有限差分去近似流形关于内蕴变量的高阶导数,然后用基于流形高阶泰勒展开式的曲面去近似非线性流形。HMD距离定义为图像空间中测试图像与图像流形的高阶近似曲面间的最小距离。HMD能够直接用于基于距离的分类器中,实现图像识别。人脸识别和手写数字识别实验结果表明,与欧式距离、流形切距离和图像欧式距离(IMED)等典型图像距离相比,HMD能适应更大范围的图像变换,并且具有更高的识别精度和稳定性。
     其次提出了基于Gabor特征的流形近似距离(GFMD),在Gabor特征空间中度量图像间的相似性。图像中的冗余信息会影响图像距离度量的精度,因此用多尺度、多方向的二维Gabor小波提取图像的局部显著特征,组合成图像的Gabor特征向量。用MVU方法学习Gabor特征流形的内蕴变量,然后用基于特征流形高阶泰勒展开式的曲面去近似Gabor特征流形。GFMD距离定义为Gabor特征空间中测试图像的Gabor特征与Gabor特征流形的高阶近似曲面间的最小距离。GFMD能够直接用于基于距离的分类器中,实现图像识别。人脸识别和手写数字识别实验结果表明GFMD与在识别精度和稳定性上要优于HMD和其它基于Gabor特征的典型图像距离,但GFMD的计算量要大于对比的距离的计算量。
     最后提出了基于视觉注意模型和子流形距离的复杂目标识别模型。选择基于对象积累的视觉注意模型对复杂场景中的复杂目标进行检测。该视觉注意模型通过不断扩展当前视觉关注区域来获取完整的目标。当前关注区域对应的图像块集合构成了目标的多个子流形。在学习阶段,对图像块集合进行聚类,子集分别构成了目标的子流形。用MVU方法获取子流形的内蕴变量,然后用基于子流形高阶泰勒展开式的曲面去近似子流形。子流形距离(SMD)定义为待识别的图像块与子流形的高阶近似曲面间的最小距离。在识别阶段,计算当前关注区域的图像块与目标子流形间的SMD距离,用SMD来控制当前关注区域的扩展策略。遥感图像中复杂目标识别实验结果表明,该识别模型能快速准确地识别复杂场景中的复杂目标。
Human being’s activities are heavily depended on rapid and accurate identification ofobjects in field of vision. Despite it is easy for human being’s brain, image recognition isdifficult for computer and is widely acknowledged as a challenge in computer vision.Measuring the distance or similarity between images is a fundamental problem in imagerecognition. A reasonable image distance metric must be able to finely discriminatebetween different objects while tolerant to object variations such as rotation, scaling,non-rigid deformations and so on. Recently manifolds are thought to be fundamental forhuman being’s vision perception. Retinal images of one object according to continuousvariability of rotation, scaling and so on lie on a low-dimensional image manifoldembedded in high-dimensional obsering space. How to use biological clues in imagedistance metric is of great significance.
     In this dissertation, the process of human being’s manifold perception is simulated, severalimage distance metrics based on manifold perception are proposed and their applications inimage recognition are addressed. The main research works are described below.
     Firstly, a high-order approximated manifold distance (HMD) based on manifoldlearning and high-order manifold approximation was proposed for image distancemeasurement. The intrinsic variables of nonlinear image manifold are learned by a specialmanifold learning algorithm–Maximum Variance Unfolding (MVU), and the nonlinearimage manifold is meshed into grid along the directions of intrinsic variables. Thehigh-orde partial derivatives of image manifold with respect to intrinsic variables areapproximated by finite difference. The nonlinear image manifold is approximated by thecurve surface based on high-order Taylor expansion of image manifold with respect tointrinsic variables. HMD is defined as the minimum distance between the query image andthe approximated curved surface of image manifold in image space. HMD can be directlyutilized in distance-based classifiers for image recognition. The experimental results offace and handwritten digit recognition demonstrate that HMD not only attain larger rangeof invariance to image transforms but also achieves higher recognition accuracy andstability than several state-of-the-art image distance metrics, such as Euclidean Distance,Tangent Distance, Image Euclidean Distance (IMED) and so on.
     Secondly, a Gabor feature-based approximated manifold distance (GFMD) was proposed which measures image similarity in Gabor feature space. Because theredundancy of original image influences the accuracy of image distance measurement, thetwo-dimensional Gabor wavelets with different scales and orientations are applied toproduce salient local and discriminating features of original images and augumentd Gaborfeature vectors are derived. The intrinsic variables of Gabor feature manifold are revealedby MVU, and Gabor feature manifold is approximated by the curve surface based onhigh-order Taylor expansion of feature manifold with respect to intrinsic variables. GFMDis defined as the minimum distance between the Gabor feature of query image andapproximated curved surface of Gabor feature manifold in feature space. GFMD can bedirectly utilized in distance-based classifiers for image recognition. The experimentalresults of face and handwritten digit recognition demonstrate that GFMD achieves higherrecognition accuracy and stability than HMD and other state-of-the-art distance metricscombined with Gabor features. However, GFMD has higher computational complexitythan these compared distance metrics.
     Thirdly, a complex object recognition model based on visual attention model andsubmanifold distance (SMD) is developed. Objecet-accumulated visual attention model isselected for object detection in clutter, which iteratively extends current attentional regionin order to extract the whole region of target. The image patches corresponding to currentattentional regions constitute multiple submanifolds of target. In learning stage thesubmanifolds are acquired by clustering the image patches. The intrinsic variables of eachsubmanifold are learned by MVU, and each submanifold is approximated by curve surfacebased on high-order Taylor expansion of submanifold with respect to intrinsic variables.SMD is defined by the minimum distance between queried image patch and theapproximated curved surface of submanifold. In recognition stage SMD between imagepatch of current attentional region and target’s submanifolds is computed. The extendingstrategy of current attentional region is controlled by SMD. The experimental results ofcomplex object recognition in remote sensing images illustrated that our proposed modelcan recognize complex objects in clutter accurately, robustly and quickly.
引文
[1] Gonzalez R. C., Woods R. E.数字图像处理.(第二版).阮秋琦,阮宇智等译.北京:电子工业出版社,2003
    [2]朱孝开.基于核方法的图像目标识别技术研究:[博士学位论文].国防科技大学图书馆,2009
    [3] Castleman K. R.数字图像处理.朱志刚,林学訚,石定机等译.北京:电子工业出版社,2002
    [4] Serre T., Wolf L., Bileschi S., et al. Robust object recognition with cortex-likemechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426
    [5] Cai D., He X., Han J., et al. Orthogonal laplacianfaces for face recognition. IEEETransactions on Image Processing,2006,15(11):3608-3614
    [6] Li B., Zheng C. H., Huang D. S. Locally linear discriminant embedding: Anefficient method for face recognition. Pattern Recognition,2008,41(12):3813-3821
    [7] Liu C., Wechsler H. Independent component analysis of Gabor features for facerecognition. IEEE Transactions on Neural Networks,2003,14(4):919-928
    [8] Zhang T., Yang J., Zhao D., et al. Linear local tangent space alignment andapplication to face recognition. Neurocomputing,2007,70:1547-1553
    [9] Gu J., Zhou J., Yang C. Fingerprint recognition by combining global structure andlocal cues. IEEE Transactions on Image Processing,2006,15(7):1952-1964
    [10] Wan D., Zhou J. Fingerprint recognition using model-based density map. IEEETransactions on Image Processing,2006,15(6):1690-1696
    [11] Tico M., Kuosmanen P., Saarinen J. Wavelet domain features for fingerprintrecognition. Electronics Letters,2001,37(1):21-22
    [12] Huttenlocher D. P., Klanderman G. A., Rucklidge W. Comparing images using theHausdorff distance. IEEE Transactions on Pattern Analysis and MachineIntelligence,1993,15(9):850-863
    [13] Pujol A., Villanueva J. J., Alba J. L. A supervised modification of the Hausdorffdistance for visual shape classification. International Journal of Pattern Recognitionand Artificial Intelligence,2002,16(3):349-360
    [14] Vivek E., Sudha N. Robust Hausdorff distance measure for face recognition.Pattern Recognition,2007,40(2):431-442
    [15] Aggarwal C. C., Hinneburg A., Keim D. A. On the surprising behavior of distancemetrics in high dimensional spaces. Lecture Notes in Computer Science,2001,1973:420-434
    [16] DiCarlo J. J., Cox D. D. Untangling invariant object recognition. Trends inCognitive Sciences,2007,11(8):333-341
    [17] Seung H. S., Lee D. D. The manifold ways of perception. Science,2000,290(5500):2268-2269
    [18] Li J., Lu B. L. An adaptive image euclidean distance. Pattern Recognition,2009,42(3):349-357
    [19] Huttenlocher D. P., Lilien R. H., Olson C. F. View-based recognition using aneigenspace approximation to the Hausdorff measure. IEEE Transactions on PatternAnalysis and Machine Intelligence,1999,21(9):951-955
    [20]周志华,王珏.机器学习及其应用.北京:清华大学出版社,2007
    [21] Wang L., Zhang Y., Feng J. On the euclidean distance of images. IEEETransactions on Pattern Analysis and Machine Intelligence,2005,27(8):1334-1339
    [22] Jean J. S. N. A new distance measure for binary images. in: InternationalConference on Acoustics, Speech, and Signal Processing. Albuquerque, NM, USA:1990.2061-2064
    [23] DeMenthon D., Doermann D., Stuckelberg M. V. Image distance using hiddenmarkov models. in: Fifteenth International Conference on Pattern Recognition.Barcelona, Spain,2000.143-146
    [24]蔡正,王福龙,徐爱辉.一种新的图像距离在人脸识别中的应用.广东工业大学学报,2010,27(3):64-67
    [25]孙瑾,顾宏斌,秦小麟等.一种鲁棒型Hausdorff距离图像匹配方法.中国图象图形学报,2008,13(4):761-767
    [26] Simard P. Y., Le Cun Y. A., Denker J. S., et al. Transformation invariance in patternrecognition: Tangent distance and propagation. International Journal of ImagingSystems and Technology,2000,11(3):181-197
    [27] Vasconcelos N., Lippman A. A multiresolution manifold distance for invariantimage similarity. IEEE Transactions on Multimedia,2005,7(1):127-142
    [28] Fitzgibbon A. W., Zisserman A. Joint manifold distance: A new approach toappearance based clustering. in: IEEE Conference on Computer Vision and PatternRecognition,2003.26-33
    [29] Kokiopoulou E., Frossard P. Minimum distance between pattern transformationmanifolds: Algorithm and applications. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(7):1225-1238
    [30] Wang R., Shan S., Chen X., et al. Manifold-manifold distance with application toface recognition based on image set. in: IEEE Conference on Computer Vision andPattern Recognition. Anchorage, AK,2008.1-8
    [31]陈维恒.微分流形初步.(第二版).北京:高等教育出版社,2001
    [32]王建忠.基于流形学习的数据降维方法及其在人脸识别中的应用:[博士学位论文].东北师范大学图书馆,2010
    [33]王庆刚.流形学习算法及若干应用研究:[博士学位论文].重庆大学图书馆,2009
    [34]李春光.流形学习及其在模式识别中的应用:[博士学位论文].北京邮电大学图书馆,2007
    [35]尹俊松.流形学习理论与方法研究及在人脸识别中的应用:[博士学位论文].国防科学技术大学图书馆,2007
    [36]谷瑞军.基于流形学习的高维空间分类器研究:[博士学位论文].江南大学图书馆,2008
    [37] Lowe D. G. Distinctive image features from scale-invariant keypoints. InternationalJournal of Computer Vision,2004,60(2):91-110
    [38] Lee K. C., Ho J., Yang M. H., et al. Video-based face recognition usingprobabilistic appearance manifolds. in: IEEE Conference on Computer Vision andPattern Recognition,2003.313-320
    [39] Lee K. C., Kriegman D. Online learning of probabilistic appearance manifolds forvideo-based recognition and tracking. in: IEEE Conference on Computer Visionand Pattern Recognition,2005.852-859
    [40] Jolliffe I. T. Principal component analysis.(Second Edition). New York: Springer,2002
    [41] Fan W., Yeung D. Y. Locally linear models on face appearance manifolds withapplication to dual-subspace based classification. in: IEEE Conference onComputer Vision and Pattern Recognition,2006.1384-1390
    [42] Karygianni S., Frossard P. Linear manifold approximation based on differences oftangents. in: IEEE International Conference on Acoustics, Speech and SignalProcessing. Prague,2011.973-976
    [43]罗四维,赵连伟.基于谱图理论的流形学习算法.计算机研究与发展,2006,43(7):1173-1179
    [44] De Silva V., Tenenbaum J. B. Global versus local methods in nonlineardimensionality reduction. Advances in Neural Information Processing Systems,2003,15:705-712
    [45] Tenenbaum J. B., de Silva V., Langford J. C. A global geometric framework fornonlinear dimensionality reduction. Science,2000,290(5500):2319-2323
    [46] Schiffman S. S., Reynolds M. L., Young F. W., et al. Introduction tomultidimensional scaling: Theory, methods, and applications. New York: AcademicPress,1981
    [47] Roweis S. T., Saul L. K. Nonlinear dimensionality reduction by locally linearembedding. Science,2000,290(5500):2323-2326
    [48] Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and datarepresentation. Neural Computation,2003,15(6):1373-1396
    [49] Zhang Z., Zha H. Principal manifolds and nonlinear dimension reduction via localtangent space alignment. SIAM Journal on Scientific Computing,2005,26(1):313-338
    [50] Weinberger K. Q., Saul L. K. Unsupervised learning of image manifolds bysemidefinite programming. International Journal of Computer Vision,2006,70(1):77-90
    [51] Donoho D. L., Grimes C. Hessian eigenmaps: Locally linear embedding techniquesfor high-dimensional data. Proceedings of the National Academy of Sciences of theUnited States of America,2003,100(10):5591-5596
    [52] Lin T., Zha H. Riemannian manifold learning. IEEE Transactions on PatternAnalysis and Machine Intelligence,2008,30(5):796-809
    [53] Coifman R R, Lafon S. Diffusion maps. Applied and Computational HarmonicAnalysis,2006,21(1):5-30
    [54]张银凤,王晅,马建峰.基于最优邻域图的等距映射流形学习算法.计算机工程与应用,2011,47(14):124-127
    [55]侯臣平,吴翊,易东云.新的流形学习方法统一框架及改进的拉普拉斯特征映射方法.计算机研究与发展,2009,46(4):676-682
    [56]黄鸿,李见为,冯海亮.融合局部和全局结构的流形学习.光学精密工程,2009,17(3):626-632
    [57]宋欣,叶世伟.基于局部线性逼近的流形学习算法.计算机仿真,2008,25(7):86-89
    [58]孙即祥.现代模式识别.长沙:国防科技大学出版社,2002
    [59]罗磊.基于流形学习的毫米波探测器目标识别方法研究:[博士学位论文].南京理工大学图书馆,2010
    [60] Sch lkopf B., Smola A., Müller K. R. Nonlinear component analysis as a kerneleigenvalue problem. Neural Computation,1998,10(5):1299-1319
    [61] Sch lkopf B., Smola A. Learning with kernels: Support vector machines,regularization, optimization, and beyond. Cambridge, MA: MIT Press,2002
    [62]罗四维.视觉信息认知计算理论.北京:科学出版社,2010
    [63]曾宪华.流形学习的谱方法相关问题研究:[博士学位论文].北京交通大学图书馆,2009
    [64]谢永华.人脸特征抽取与分类器设计若干问题的研究:[博士学位论文].南京理工大学图书馆,2006
    [65] Sch lkopf B., Burges C. J. C., Smola A. J. Advances in kernel methods: Supportvector learning. Cambridge, MA: MIT Press,1999
    [66] Borg I., Groenen P. J. F. Modern multidimensional scaling: Theory and applications.(Second Edition). New York: Springer,2005
    [67] Balasubramanian M., Schwartz E. L. The Isomap algorithm and topologicalstability. Science,2002,295(5552):7
    [68]李勇周.人脸识别中基于流形学习的子空间特征提取方法研究:[博士学位论文].中南大学图书馆,2009
    [69] Vandenberghe L., Boyd S. Semidefinite programming. SIAM Review,1996,38(1):49-95
    [70] Borchers B. CSDP, a C library for semidefinite programming. OptimizationMethods and Software,1999,11(1):613-623
    [71]邵纪东.非线性过程监测中的数据降维及相关问题研究:[博士学位论文].浙江大学图书馆,2010
    [72] Pless R., Souvenir R. A survey of manifold learning for images. IPSJ Transactionson Computer Vision and Applications,2009,1(1):83-94
    [73] He X., Cai D., Yan S., et al. Neighborhood preserving embedding. in: Tenth IEEEInternational Conference on Computer Vision. Beijing, China,2005.1208-1213
    [74] Souvenir R., Babbs J. Learning the viewpoint manifold for action recognition. in:IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK,2008.1-7
    [75] Elgammal A., Chan-Su L. Inferring3d body pose from silhouettes using activitymanifold learning. in: IEEE Conference on Computer Vision and PatternRecognition,2004.681-688
    [76] Geng X., Zhan D. C., Zhou Z. H. Supervised nonlinear dimensionality reductionfor visualization and classification. IEEE Transactions on Systems, Man, andCybernetics, Part B,2005,35(6):1098-1107
    [77] Zhang Z., Zha H. Nonlinear dimension reduction via local tangent space alignment.SIAM J. Scientific Computing,2004,26(1):313-338
    [78] Coleman T., Li Y. An interior trust region approach for nonlinear minimizationsubject to bounds. SIAM Journal on Optimization,1996,6(2):418-445
    [79] Coleman T. F., Li Y. On the convergence of interior-reflective newton methods fornonlinear minimization subject to bounds. Mathematical Programming,1994,67(1):189-224
    [80]袁亚湘,孙文瑜.最优化理论与方法.科学出版社,1997
    [81] Steinwart I., Christmann A. Support vector machines. New York: Springer,2008
    [82] Samaria F., Harter A. Parameterisation of a stochastic model for human faceidentification. in: Second IEEE Workshop on Applications of Computer Vision.Sarasota, FL, USA:1994.138-142
    [83] Kussul E., Baidyk T. Improved method of handwritten digit recognition tested onmnist database. Image and Vision Computing,2004,22(12):971-981
    [84]罗四维.视觉感知系统信息处理理论.北京:电子工业出版社,2006
    [85]陈韶斌.基于知识推理和视觉机理的遥感图像目标识别方法研究:[博士学位论文].华中科技大学图书馆,2010
    [86]钱乐乐.基于视觉层次感知机制的图像理解方法研究:[博士学位论文].合肥工业大学图书馆,2009
    [87]李作进.基于视觉认知的自然图像目标识别研究:[博士学位论文].重庆大学图书馆,2010
    [88] Daugman J. G. Two-dimensional spectral analysis of cortical receptive fieldprofiles. Vision Research,1980,20(10):847-856
    [89] Daugman J. G. Uncertainty relation for resolution in space, spatial frequency, andorientation optimized by two-dimensional visual cortical filters. Journal of Opticsand Image Science A,1985,2(7):1160-1169
    [90] Daugman J. G. Complete discrete2D Gabor transforms by neural networks forimage analysis and compression. IEEE Transactions on Acoustics, Speech andSignal Processing,1988,36(7):1169-1179
    [91]章海军.视觉及其应用技术.杭州:浙江大学出版社,2004
    [92]田媚.模拟自顶向下视觉注意机制的感知模型研究:[博士学位论文].北京交通大学图书馆,2007
    [93]王慧.空间和目标注意协同工作的视觉注意计算机模型研究:[博士学位论文].吉林大学图书馆,2010
    [94]唐奇伶.基于初级视皮层感知机制的轮廓与边界检测:[博士学位论文].华中科技大学图书馆,2007
    [95]窦燕.基于空间和物体的视觉注意计算方法及实验研究:[博士学位论文].燕山大学图书馆,2010
    [96] Pashler H. E. The psychology of attention. Cambridge, MA: MIT Press,1999
    [97] Desimone R., Duncan J. Neural mechanisms of selective visual attention. AnnualReview of Neuroscience,1995,18(1):193-222
    [98] Hubel D. H., Wiesel T. N. Receptive fields, binocular interaction and functionalarchitecture in the cat's visual cortex. The Journal of Physiology,1962,160(1):106-154
    [99]李云峰.基于Gabor小波变换的人脸识别:[博士学位论文].大连理工大学图书馆,2005
    [100] Marcelja S. Mathematical description of the responses of simple cortical cells.Journal of Optical Society of America,1980,70(11):1297-1300
    [101] Jones J. P., Palmer L. A. An evaluation of the two-dimensional Gabor filter modelof simple receptive fields in cat striate cortex. Journal of Neurophysiology,1987,58(6):1233-1258
    [102] Liu C. Gabor-based kernel PCA with fractional power polynomial models for facerecognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):572-581
    [103] Lee C. J., Wang S. D. Fingerprint feature extraction using Gabor filters. ElectronicsLetters,1999,35(4):288-290
    [104] Sun Z., Bebis G., Miller R. On-road vehicle detection using evolutionary Gaborfilter optimization. IEEE Transactions on Intelligent Transportation Systems,2005,6(2):125-137
    [105] Lades M., Vorbruggen J. C., Buhmann J., et al. Distortion invariant objectrecognition in the dynamic link architecture. IEEE Transactions on Computers,1993,42(3):300-311
    [106]余磊. Gabor小波变换在人脸识别中的应用研究:[博士学位论文].重庆大学图书馆,2009
    [107] Lee T. S. Image representation using2D Gabor wavelets. IEEE Transactions onPattern Analysis and Machine Intelligence,1996,18(10):959-971
    [108] Fasel I. R., Bartlett M. S., Movellan J. R. A comparison of Gabor filter methods forautomatic detection of facial landmarks. in: Fifth IEEE International Conference onAutomatic Face and Gesture Recognition. Washington, DC, USA,2002.242-246
    [109] Shen L., Bai L. A review on Gabor wavelets for face recognition. Pattern Analysisand Applications,2006,9:273-292
    [110] Wiskott L., Fellous J. M., Kuiger N., et al. Face recognition by elastic bunch graphmatching. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):775-779
    [111] Bracewell R. The fourier transform and its applications.(Third Edition). New York:McGraw-Hill,1999
    [112] Zhang J., Shen C., Feng J. Classification with the hybrid of manifold learning andGabor wavelet. in: Third International Symposium on Neural Networks. Chengdu,China,2006.1346-1351
    [113]肖洁.视觉注意模型及其在目标感知中的应用研究:[博士学位论文].华中科技大学图书馆,2010
    [114] Itti L., Koch C. Computational modeling of visual attention. Nature ReviewsNeuroscience,2001,2(3):194-203
    [115] Treisman A. M., Gelade G. A feature-integration theory of attention. CognitivePsychology,1980,12(1):97-136
    [116] Duncan J. Selective attention and the organization of visual information. Journal ofExperimental Psychology: General,1984,113(4):501-517
    [117] Driver J., Davis G., Russell C., et al. Segmentation, attention and phenomenalvisual objects. Cognition,2001,80(1-2):61-95
    [118]潘毅,许百华.基于空间与基于物体的视觉选择的交互作用.心理科学,2006,29(2):1400-1402
    [119] Koch C., Ullman S. Shifts in selective visual attention: Towards the underlyingneural circuitry. Human Neurobiology,1985,4(4):219-227
    [120] Itti L., Koch C., Niebur E. A model of saliency-based visual attention for rapidscene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259
    [121] Itti L., Koch C. Feature combination strategies for saliency-based visual attentionsystems. Journal of Electronic Imaging,2001,10(1):161-169
    [122] Hou X., Zhang L. Saliency detection: A spectral residual approach. in: IEEEConference on Computer Vision and Pattern Recognition. Minneapolis, USA,2007.1-8
    [123] Walther D., Koch C. Modeling attention to salient proto-objects. Neural Networks,2006,19(9):1395-1407
    [124] Walther D., Rutishauser U., Koch C., et al. Selective visual attention enableslearning and recognition of multiple objects in cluttered scenes. Computer Visionand Image Understanding,2005,100(1-2):41-63
    [125] Cave K. R., Wolfe J. M. Modeling the role of parallel processing in visual search.Cognitive Psychology,1990,22(2):225-271
    [126] Rybak I., Gusakova V., Golovan A., et al. A model of attention-guided visualperception and recognition. Vision Research,1998,38(15):2387-2400
    [127] Salah A. A., Alpaydin E., Akarun L. A selective attention-based method for visualpattern recognition with application to handwritten digit recognition and facerecognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):420-425
    [128] Itti L. Models of bottom-up and top-down visual attention:[PhD thesis]. CaliforniaInstitute of Technology,2000
    [129] Navalpakkam V., Itti L. An integrated model of top-down and bottom-up attentionfor optimizing detection speed. in: IEEE Conference on Computer Vision andPattern Recognition,2006.2049-2056
    [130] Xiao J., Ding M., Cai C., et al. New model of region extraction based on salientregion detection and scale-space primal sketch. in: The Fifth InternationalSymposium on Multispectral Image Processing and Pattern Recognition. Wuhan,2007.67870M
    [131] Xiao J., Cai C., Ding M., et al. The application of a novel target region extractionmodel based on object-accumulated visual attention mechanism. in: FourthInternational Conference on Natural Computation. Jinan,2008.116-120
    [132] Lindeberg T. Detecting salient blob-like image structures and their scales with ascale-space primal sketch: A method for focus-of-attention. International Journal ofComputer Vision,1993,11(3):283-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700