仿人眼的结构原理和关键视觉技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工程技术领域中,视觉信息采集与处理具有重要的科学意义。研究人员参考人眼视觉原理,发明感知视觉图像信息的传感器,建立基于计算机技术的图像处理理论体系,开创机器视觉这一崭新研究领域。机器视觉技术已经在先进制造系统、机器人系统、智能监控、航天军工等领域广泛应用。但是多数视觉平台仅实现基本视觉功能,与真实人眼功能差异大。由于人眼具有强大的视觉信息处理能力,因此对人眼生理特性深入分析将使机器视觉研究具有更加充实的理论基础,推动机器视觉技术的发展。本文针对人眼特性研究,提出并联驱动仿生人眼机构模型;对前庭系统图像稳定机制、视觉信息注意机制以及单眼立体成像功能等方面进行深入分析和应用研究,提出仿入视觉特性的机器视觉处理理论和方法,进行建模仿真和实验分析,主要内容如下:
     第一章,阐述本课题的相关研究背景、目的和意义,介绍了人眼视觉系统的基本组成及特性,对国内外仿生人眼系统及仿人眼视觉理论研究的内容和现状进行了阐述,最后分析了仿生视觉系统及拟人视觉应用研究所面临的主要问题,给出了本课题的主要研究内容。
     第二章,针对广义人眼系统功能特性进行分析,建立了仿生人眼机电系统模型;提出了仿生人眼结构的假设条件和模拟人眼的多孔道球支撑结构;依据仿生学设计原理,提出了一种基于柔性执行器并联驱动的仿生人眼结构模型,包含六条模仿眼外肌的执行元件、视觉传感器及姿态检测传感器,并且根据机械加工需求选取了尺寸系统参数;针对人眼最重要的扫视运动特性进行分析,利用并联仿生人眼运动学模型和扫视运动特性,以及所设计的仿生人眼机构对典型的扫视运动进行了模拟仿真,得到了双眼运动路径及执行器运动参数;
     第三章,针对摄像机异常运动对视觉连续采集的影响进行研究,分析了保证视觉连续采集稳定处理原理和方法,研究视频连续采集稳定原理。在人眼前庭动反射的启发下,分析人眼视频稳定的机理,研究了摄像机异常运动在成像平面上所反映出的规律,提出了异常运动短时预测方法。在平均分布的子空间提取特征,利用预测结果确定搜索起始点进行匹配运算,有效减小图像内容中运动目标对稳像结果的影响。分析视频稳定后导致图像部分边缘信息丢失的现象,研究人眼的视觉暂留机理,提出以时间间隔为依据对当前帧空域所丢失内容进行线性化叠加恢复,保证视频主观判断的完整性。
     第四章,对人眼视觉注意机制和视网膜成像的中心-四周机制进行分析,建立基于初级视觉特征融合的视觉注意机制计算模型,提出了一种基于非线性中心-四周多尺度特征提取的计算方法,得到分辨率非线性变化的各尺度图像提取特征图。根据各初级视觉特征的自身特点及对视觉注意机制的不同作用,提出了一种基于权重系数的显著图叠加方法。对注意感知机制在视觉信息压缩处理中的应用进行研究,提出一种基于图像注视区域的压缩系数可变图片压缩算法,利用人眼视觉成像的多分辨率特性,采用Log-Polar函数设定压缩系数过渡策略,有效的降低了图片的存储空间。
     第五章,分析人眼视觉注意机制对运动目标的初级特征提取特性,提出了利用高斯模型进行背景建模提取运动目标作为感兴趣区域的算法,将背景与目标分割。经典DPCM编码压缩模型中整幅图像量化矩阵固定,本文提出了一种依据关注目标设置压缩量化矩阵的算法,设计量化矩阵过渡策略,降低视觉噪声,通过编解码端传递运动区域坐标和几何信息等少量数据的策略,保证编解码端数据一致性。
     第六章,分析人眼立体视觉成像机理,研究分析单眼立体视觉功能,进行合理假设,提出了一种基于单目视觉的立体建模和测量模型。通过光学原理和几何学基础,分析单一像平面对空间目标进行立体成像的可行性。对立体测量中的特征提取等数字图像处理方法进行研究,提出了一种新的利用颜色空间特性的圆形特征标记提取与亚像素中心定位算法。依据空间目标特征点在多幅变倍图像中投影的几何关系和特性,提出了一种1-D空间特征匹配搜索算法,将二维图像内容的匹配降低到一维空间。建立虚拟摄像机及实验环境模型,通过建模参数与单目立体视觉图像处理算法结果进行比较,验证了算法的正确性和可行性;与传统立体视觉方法进行比较分析,提出课题算法的特点和适合应用场合。
     第七章对全文作了总结,阐述了本课题的研究结论和创新点,对后续研究工作做出了展望。
Visual system of human-being provides more than 80% of the information we used during daily life, thus it means the eyes, which are the key component of the visual system, are extremely important. In the modern industry, the visual information, which is acquired by different types of sensor, plays an important role as well. With rapid development of the science and technology, researchers had invented and manufactured the vision sensor based on the inspiration of the human visual system. Such sensors could percept the light signal and information of the objects. With these sensors and digital process technology, machine vision, a fresh research area, boomed rapidly. Nowadays, it's already widely utilized. In fact, human visual system includes a comprehensive information acquisition and processing mechanism. However, most of the visual systems inspired by human eyes are simple version. Analyzing the perception mechanism and properties of the human eyes could provide the theory fundamental and enhance its application in machine vision area. In the thesis, we would analyze the components of general human visual system, provided a bionic mechanical eye's model. Then, with the inspiration of the human vestibular mechanism, a video stabilization algorithm is introduced. Meanwhile, the visual attention mechanism and stereo vision by monocular system are our research topics as well. The simulation and experiments are designed to prove the algorithms above. The main contents are as follow:
     In chapter 1, the related study background and significance are introduced. On the basis of analyzing the components and mechanism of human visual system, both the domestic and international research achievements are investigated broadly. Finally, we listed the important research problem and introduced our research topics.
     In chapter 2, the properties of the generalized visual system are analyzed. Under the hypothesis, a novel type of bionic visual system is designed. The new structure of the bionic eye is inspired by human eyes, which includes six linear motion actuators to simulate the muscles around the eye of human and sensors for vision and orientations of eyeball. The dimension of the structure is designed and optimized. Finally, we utilized the designed eye model to simulate the saccadic movement of human, the motion of each actuator are solved by kinematics.
     In chapter 3, the influence of video record during abnormal moving of the camera is introduced. Firstly, we analyzed the basic video stabilization theory and methods. Inspired by the using of vestibular system to stabilize and compensate the head motion of human, a novel video stabilizing method is proposed. The features are extracted from sub-area of the entire image, and with the prediction of the further moving vector, the influence of the moving features are decreased. After video stabilization, the bounder area of the each frame is missed more or less, by simulating the mechanism of human eyes, a novel data recovery method based on visual delay is proposed to display the whole image area.
     In Chapter 4, we analyzed the visual attention mechanism and center-surround visual sampling on retina. A model based on low-level visual features for visual attention is proposed. In this model, the feature extracting algorithm is non-linear methods and multi-scale image of each feature are acquired. The conspicuity maps are generated with adjustable scale number, which is based on size of the area. The application of visual attention mechanism is analyzed and an image compression algorithm based on visual attention area and conspicuity maps is proposed. In that algorithm, the compression rate is adjustable, which could decrease the memory consumption.
     In chapter 5, the perception mechanism of human visual system for moving objects is analyzed. Based on the properties of the video content, the moving objects segmentation algorithm by Gauss model is proposed. In the typical DPCM video compression model, the quant matrix for compression the block is static. In this thesis, a quant matrix scaled algorithm based on content is proposed. The quant matrix slides from region of interested to background consecutively. The method proposed could reduce the memory request of compressed video.
     In chapter 6, models of stereo vision system of human is introduced. Compared with widely used binocular type for stereo vision, in the thesis the stereo cues for monocular vision is investigated. By the hypothesis, a novel model for 3D measurement by single camera is proposed. The digital image processing algorithms are important in stereo vision. A novel feature extraction algorithm based on color space and circle shape is proposed. After analyzing the properties of the zoomed images, the 1-D matching algorithm could reduce the 2-D full searching to 1-D on a selected line segment. The virtual environment is constructed for simulation and experiment.
     In chapter 7, the major work of the thesis is summarized. The conclusion and innovations of this thesis are introduced. Finally, the future development topics are presented in order to provide guidance for researchers, who are interested in such kind of projects
引文
[1]巴拉德D,布朗C.计算机视觉北京:科学出版社,1987.
    [2]Marr D, Poggio T. Cooperative computation of stereo disparity. Science,1976, 194:283-287
    [3]高文,陈熙霖.计算机视觉-算法与系统原理北京:清华大学出版社,1999.
    [4]贾云得.机器视觉北京:科学出版社,2000.
    [5]Brooks R. Model-based three-dimentional interpretations of two-dimensional images. IEEE Trans. on Pattern Analysis and Machine Intelligence,1983,5(2): 140-150
    [6]王宏,杨明.基于机器感知的智能车导航:中国人工智能学会第9届全国学术年会-中国人工智能进展2001.北京:2001673-677
    [7]徐友春,李克强,连小珉.智能车辆机器视觉发展概况.汽车工程,2003,25(5):438-443
    [8]邹海荣,龚振邦,罗均.仿生眼的研究现状与发展趋势.机器人,2005,27(5):469-474
    [9]A. Kelly, A. Stentz. Minimum throughput Adaptive Perception for High Speed Mobility. IEEE Intl Conf. Intelligent Robotics and Systems,1997, (9):215-223
    [10]G. Oriolo, G. Ulivi, M. Vendittelli. On-Line Map Building and Navigation for Autonomous Mobile Robots:Proc. IEEE Intl. Conf. Robotics and Automation. 19952900-2906
    [11]S. Thrun.'Probalistic Algorithms in Robotics' Technical ReportCMU-CS-00-126Carnegie Mellon Univ.,2000.
    [12]D. Kim, R. Nevatia. Recognition and Localization of Generic Objects for Indoor Navigation Using Functionality. Image andVision Computing,1998, 16(11):729-743
    [13]amuseum.cdstm.cn/
    [14]Ashoka D. Polpitiya, Wijesuriya P. Dayawansa, Clyde F. Martin, et al. Geometry and Control of Human Eye Movements. IEEE Trans. on Automatic Control,2007, 52(2):170-180
    [15]顾晓松.人体解剖学北京:科学出版社,2004.
    [16]惠延年.眼科学(第六版)北京:人民卫生出版社,2006.
    [17]Matthew James Thurtell. Effect of Eye Position on the Three-Dimesional Kinematics of Saccadic and Vestibular-Evoked Eye Movements:[M.S.学位论文]. Sydney:University of Sydney,2005
    [18]Kuniharu Arai, Edward L. Keller. A model of the saccade-generating system that accounts for trajetory variations produced by competing visual stimuli. Biological Cybernetics,2005,92:21-37
    [19]W. Becker. Eye Movements. London, U.K.:Macmillan,1991.
    [20]Douglas Tweed, Tutis Vilis. Rotation Axes of Saccades. Annals of the New York Academy of Science,1988,545:128-139
    [21]Kuniharu Arai, Edward L. Keller. A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli. Biological Cybernetics,2004,21(37):21-37
    [22]Kuniharu Arai, Das S, Edward L. Keller, et al. A distributedmodel of the saccade system:simulations of temporally perturbed saccades using position and velocity feedback. Neural Net,1999,12:1359-1375
    [23]Kuniharu Arai, Edward L. Keller, Edelman JA. Two-dimesional neural network model of the primate saccadic system. Neural Netw,1994,7:1115-1135
    [24]A. P. Aitsebaomo, H. E. Bedell. Psychophysical and saccadic information about direction for briefly presented visual targets. Vision Research,1992,22:1729-1737
    [25]J. E. Albano, W. M. King. Rapid adaptation of saccadic amplitude in humans and monkeys. Investigative Ophthalmology and Visual Science,1989,30:1883-1893
    [26]A. T. Bahill, M. R. Clark, L. Stark. The main sequence a tool for studying eye movements. Mathematical Bioscience,1975,24(191-204)
    [27]邹海荣,龚振邦.仿生眼的研究现状与发展趋势.机器人,2005,27(5):469-474
    [28]R. E. Kronauer, Y. Y. Zeevi. Reorganization and diversification of signals in vision. IEEE Trans on Sys Man and Cyber,1985,15(1):91-101
    [29]R. Manzotti, A. Gasteratos, G. Metta, et al. Disparity Estimation on Log-Polar Images and Vergence Control. Computer Vision and Image Understanding ,2001,83(2):97-117
    [30]Robinson DA, Gordon J. L, Gordon S. E. A model of the smooth pursuit eye movement system. Biological Cybernetics,1986,55(1):43-57
    [31]Wakamatsu H, Kuwano M, Suda H. Realization of physiological eye movements by automatic selection of control laws using artificial neural network:Third International Conference on Artificial Neural Networks.1993113-117
    [32]Gorni H, Kawato M. Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics,1992,68(2)
    [33]Shibata T, Schaal S. Fast learning of biomimetic oculomotor control with nonparametric regression networks:Proceedings of the IEEE International Conference on Robotics and Automation.2000
    [34]Sharkey P. M, Murray D. W, MaLauchlan P. F. Hardware development of the Yorick series of active vision systems. Microprocessors and Microsystems,1998, 21
    [35]Batista J, Peixoto P, Araujo H. Visual behaviors for real-time control of a binocular active vision system. Control Engineering Practice,1997,5(10)
    [36]Rodney A. B, Cynthis B, Matthew M. The Cog Project:Building a Humanoid Robot.Computation for Metaphors:1999
    [37]Zhang X, Wakamatsu H. Mathematical model for binocular movement mechanism and construction of eye axes control system. Journal of the Robotics Society of Japan,2002,20(1)
    [38]Zhang X. A binocular motor system model for robot eye control:International Conference on Applied Modelling and Simulation.2002
    [39]赵杰,杨永敏,林华堂.新型立体视觉平台跟踪系统的研制.制造业自动化,2006,28(9):1-4,9
    [40]Giorgio Cannata, Marco Maggiali. Implementation of Listing's Law for a Tendon Driven Robot Eye:International Conference on Intelligent Robots and Systems. Beijing:20063940-3945
    [41]Dario Biamino, Girogio Cannata, Marco Maggiali, et al. MAC-EYE:a Tendon Driven Fully Embedded Robot Eye:5th International Conference on Humanoid Robots.62-67:2005
    [42]Giorgio Cannata, Marco Maggiali. Models for the Design of a Tendon Driven Robot Eye:International Conference on Robotics and Automation. Roma, Italy: 20072916-2921
    [43]陈维毅,杨桂通,吴文周.人体眼球的运动模型及相应的动力学方程组.中国生物医学工程学报,2000,19(3):266-271
    [44]Mitsuo Kawato, Hiroaki Gomi. The cerebellum and VOR/OKR learning models. Trend inNeuroscience,1992,15(11):445-453
    [45]Curthoys IS, Halmagyi GM. Vestibular compensation:a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. Journal of vestibular research,1995,5(2):67-107
    [46]赵红颖,金宏,熊经武.电子稳像技术概述.光学精密工程,2001,9(4):353-362
    [47]贾平,张宝.航空光电平台关键技术及其发展.光学精密工程,2003,1(2)
    [48]R. George Lewis. Three-axis image stablization with a two-axis mirror. IEEE Trans, on Society of Photo-Optical Instrumentation Engineers,1990,2:309-331
    [49]D. N. Es Kov, Yu. A. Stepin. Optical image stabilization methods and means. Sov.J.Opt.Technol,1982,49(1)
    [50]Jean Maheux, James Cruikshank, Leandre Sevigny. Video-Rate Image Stabilization System.1998,34(14)
    [51]Lewis G. R. Image Stabilization Techniques for Lang Rang Camera.1980
    [52]Toshiro Kinugasa, Naoki Yamamoto. Electronics image stabilizer for video camera use. IEEE Trans.on Consumer Electronics,1996,36(3):284-288
    [53]Kirishna Ratakoda. Real-time digital video stablization for multi-media applications. IEEE international Symposium on ISCAS'98,1998,4(31):69-72
    [54]C. Morimoto,R. Chellappa. Fast electronic digital image stablization. Technical Report of CVL,1995,
    [55]Andrew Litvin, Janusz Konrad, William C. Kail. Probabilistic video stabilization using Kalman filtering and mosaicking. Santa Clara, CA, USA:2003
    [56]R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. of the ASME-Journal of Basic Engineering,1960,:35-45
    [57]韩少坤,赵跃进,刘明奇.电子稳像技术概述.光学技术,2001,1(27):71-73
    [58]张永祥.基于陀螺仪的船载电子稳像技术研究:[博士学位论文].长春:中国科学院长春精密机械与物理研究所,2006
    [59]宋永江,夏良正,杨世周.多直线全局运动估计及其在图像稳定中的应用.东南大学学报,2002,32(2):211-217
    [60]沈宏海,刘晶红,贾平,等.摄像稳定技术.光学精密工程,2001,9(2):115-120
    [61]高彤,李瑞峰,孙立宁.移动机器人视频稳定方法的研究.哈尔滨工业大学学报,2007,39(9):1379-1382
    [62]陈跃庭,李奇,许东晖,等.投影算法与块匹配法结合的事实数字稳像方法浙江大学学报:工学版,2007,41(9):1537-1540
    [63]曹辉.船舶监控中的视频稳像与目标跟踪的研究:[博士学位论文].大连:大 连海事大学,2008
    [64]Hung-Chang Chang, Shang-Hong Lai, Kuang-Rong Lu. A Robust and Efficient Video Stabilization Algorithm.2004
    [65]Posner MI, Fan J. Attention as an Organ System:Neurobiology of perception and communication:From synapse to society. Cambridge UK:2004
    [66]M. I. Posner, S. E. Petersen. The attention system of the human brain. Annual Review of Neuroscience,1990,13:25-42
    [67]Ch Ullman, Koch, S. Shifts in selective visual attention:Towards the underlying neural circuitry. Human Neurobiology,1985,4:219-227
    [68]Koch, E. Niebur, Ch. Control of selective visual attention:Modeling the where pathway. Advances in Neural Information Processing Systems,1996,8:802-808
    [69]Koch, E. Niebur, Ch. Computational architectures for attention. Cambridge, Massachusetts:MIT Press,1998.163-186
    [70]R. Desimone, M. Wessinger, L. Thomas. Attentional control of visual perception: cortical and subcortical mechanisms.Cold Spring Harbor Laboratory Press,1990.
    [71]U. Neisser. Cognitive psychlogy. New York:Appleton,1967.
    [72]B. Julesz, J. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. Bell System Technical Journal,1983,62(6):1619-1645
    [73]C. W. Eriksen, Y. Y. Yeh. Allocation of attention in the visual field. Journal of Experimental Psychology:Human Perception and Performances,1985, (11): 583-597
    [74]Nabil Ouerhani. Visual Attention:From Bio-Inspired Modeling to Real-Time Implementation:[Ph.D学位论文].Universite de Neuchatel,2003
    [75]Bernardino A, Snntos-Victor J. Visual behaviours for binocular tracking. Robotics and Autonomous Systems,1998,25:3-4
    [76]N. Ouerhani, N. Archip, H. Hugli, et al. Visual atterntion guided seed selection for color image segmentation:International Conference on Computer Analysis of Images and Patterns.2001630-637
    [77]N. Ouerhani, N. Archip, H. Hugli, et al. A color image segmentation method based on seeded region growing and visual atterntion. International Journal of Image Processing and Communicaton,2002,8(1):3-11
    [78]于舟,张瑞,杨小康.基于视觉注意模型和HMM的足球视频语义分析.中国图象图形学报,2008,13(10):2031-2034
    [79]宋雁斓,张瑞,支睁,等.一种基于视觉注意模型的图像分类方法.中国图象图形学报,2008,13(10):1886-1889
    [80]刘伟,张宏,童勤业.视觉注意计算模型及其在自然图像压缩中的应用.浙江大学学报:工学版,2007,41(4):650-654
    [81]罗彤,陈裕泉.视觉注意引导和区域竞争控制的医学图像分割.浙江大学学报(工学版),2007,41(11):1780-1797
    [82]田媚,罗四维,黄雅平,等.基于局部复杂度和初级视觉特征的自底向上注意信息提取算法.计算机研究与发展,2008,45(10):1739-1746
    [83]Sun Y, Fisher R. Object-based visual attention:Toward a unifying model. Artificial Intelligence,2003,146(1):77-123
    [84]Salah A. A, Alpaydin E, Akarun L. A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,2002, 24(3):420-425
    [85]刘然.基于计算机立体视觉的双目立体成像研究:[博士学位论文].重庆:重庆大学,2007
    [86]郭焱,李保国.虚拟植物的研究进展.科学通报,2001,46(4):273-280
    [87]孙慧.用双目立体视觉技术重建电器触头立体图像:[硕士学位论文].河北:河北工业大学,2002
    [88]杨小波.计算机立体视觉技术及其在纺织业中的应用.上海纺织科技,2001, 29(2):61-62
    [89]潘锋.仿人眼颈视觉系统的理论与应用研究:[博士学位论文].杭州:浙江大学,2005
    [90]Roberts. Machine perception of three-dimensional solids. Cambridge:Mit Press, 1965.
    [91]Marr D. Vision. San Francisco:W.H.Freeman and Company,1988.
    [92]李奇,冯华君,徐之海,等.计算机立体视觉技术综述.光学技术,1999,1999(5):71-73
    [93]Chunping Hou, Silei Yu. A novel method of picture conversion from 2D to 3D. Acta Electrnonica Sinica,2002,30(12):1861-1864
    [94]Qingsheng Zhu, Ran Liu, Xiaoyan Xu. Properties of a binocular stereo vision modelWorld Scientific Press,2005.831-834
    [95]Diego Gonzalez-Aguilera, Javier Gomez-Lahoz. Dimensional analysis of a crime scene from a single image:2008 Congress on Image and Signal Processing. 2008510-515
    [96]Jean-Marc Lavest, Gerard Rives, Michel Dhome. Three-Dimensional Reconstruction by Zooming. IEEE Trans. on Robotics and Automation,1993, 9(2):196-207
    [97]Takayuki Nagai, Tadashi Naruse, Masaaki Ikehara, et al. Hmm-based surface reconstruction from single images:IEEE International Conference on Image Processing.2002
    [98]杜歆,周围,朱云芳,等.基于单目视觉的障碍物检测.浙江大学学报(工学版),2008,42(6):913-917
    [99]朱云芳,王怡术,杜歆.静态环境中基于光流的障碍物检测.浙江大学学报(工学版),2008,42(6):923-926
    [100]张大志,王勇涛,田金文,等.基于单目视觉系统的远距离场景重建算法研究.宇航学报,2008,29(1):289-294
    [101]黄桂平,李广云,王保丰.单目视觉测量技术研究.计量学报,2004,25(4):314-317
    [102]郭磊,徐友春,李克强,等.基于单目视觉的实时测距方法研究.中国图象图形学报,2006,11(1):74-81
    [103]王元庆.双焦距立体视觉中的光学成像模型.光学技术,2007,23(6):935-937
    [104]李金泉,陈善本,吴林.基于手眼立体视觉的弧焊机器人平面工件定位系统.焊接学报,2003,24(4):9-12
    [105]张兆礼,赵春晖,梅晓丹.现代图像处理技术及Matlab实现北京:人民邮电出版社,2001.
    [106]T. A. Nodes, N. C. Gallagher. Median filters:Some modification and their properties. IEEE Trans. on Acoustics, Speech and Signal Processing,1982,30: 739-746
    [107]H. M. Lin. Median filters with adaptive length. IEEE Trans. on Circuits and Systems,1988,35(6):675-690
    [108]P. T. Yu, C. S. Lee. Adaptive fuzzy median filter:International Symposium on Artificial Neural Networks.1993
    [109]J. Y. Tham. A general approach for analysis and application of discrete multi-wavelet transform. IEEE Trans.on Signal Processing,2000,48(2):457-464
    [110]S. M. Smith, J. M. Brady. SUSAN-A new approach to low level image processing. International Journal of Computer Vision,1997,23(1):45-78
    [111]A. P. Witkin. Scale space filtering:19831019-1021
    [112]T. Lindeberg, B. M. ter HarryRomeny. Linear scale space. Netherlands:Kluwer Academic Publishers,1994.
    [113]J. P. Jones, L. A. Palmer. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiol, 1987, (58):1233-1258
    [114]Wai Kin Kong, David Zhang, Wenxin Li. Palmprint feature extraction using 2-D Gabor filters. Pattern Recognition,2003,36(10):2339-2347
    [115]赵海英,冯月萍.应用Gabor滤波器和局部边缘概率直方图的全局纹理方向性度量.光学精密工程,2010,18(7):1668-1674
    [116]赵亮亮.双目立体视觉中的图像匹配技术研究:[硕士学位论文].南京:南京航空航天大学,2007
    [117]王九龙.基于动态实时立体匹配的立体视觉系统:[硕士学位论文].杭州:浙江大学,2008
    [118]刘红宁.基于双目立体视觉拟人机器人定位关键技术的研究:[硕士学位论文].河北:河北工业大学,2006
    [119]M. Ghanbari. The cross-search algorithm for motion estimation. IEEE Trans. Communication,1990,38:950-953
    [120]R. Li, B. Zeng, M. L. Liou. A new three-step search algorithm for block motion etimation. IEEE Trans. Circuits System Video Technology,1994,6:438-442
    [121]L. M. Po, W. C. Ma. A novel four-step search algorithm for fast block motion extimation. IEEE Trans. Circuits System Video Tehnology,1996,6:313-317
    [122]Derek Bradley, Tamy Boubekeur, Wolfgang Heidrich. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. Computer Vision and Pattern Recognition,2008,31(6):974-988
    [123]Iain E. G. H.264 and MPEG-4 Video Compression:JOHN WILEY &SONS, LTD, 2001
    [124]佟雨兵,张其善,祁云平.基于PSNR与SSIM联合的图像质量评价模型.计算机应用,2006,11(12):1758-1763
    [125]狄卫红,刘显峰.基于结构相似度的图像融合质量评价.光子学报,2006,35(5):766-771
    [126]汪孔桥,沈兰荪,刑昕.一种基于视觉兴趣性的图象质量评价方法.中国图 象图形学报,2000,4(5):309-303
    [127]A. Fitzgibbon, Y. Wexler. Image-based rendering using image-based priors. International Journal of Computer Vision,2005,63(2):141-151
    [128]R. Kurazume, S. Hirose. Development of Image Stabilization System for Remote Operation of Walking Robots:IEEE ICRA'2000. San Francisco:20001856-1860
    [129]张阳,王宣银.基于人眼特性的视频稳定方法研究.吉林大学学报(工学版),2010,40(2):529-533
    [130]Po. Larman, Ma. Wing-Chung. A Novel Four-step Algorithm for Fast Block Motion Estimation. IEEE Trans.on Circuits and Systems for Video Technology, 1996,6(3):182-186
    [131]S. J. KO, S. H. Lee, K. H. Lee. Iigital Image Stabilizing Algorithms Based on Bit-plane Matching. IEEE Trans.on Consumer Electronics,1998,44(3):617-622
    [132]J. K. Park, Y. C. Park, D. W. Kim. An Adaptive Motion Decision System for Digital Image Stabilizer Based on Edge Pattern Matching. IEEE Trans.on Consumer Electronics,2002,38(3):607-615
    [133]钟平,于前洋,王明嘉.提高用于电子稳像的会读投影算法精度的方法.光电子激光,2003,14(2):182-186
    [134]罗四维.视觉感知系统信息处理理论北京:电子工业出版社,2006.
    [135]宋雁斓,张瑞,支睁等.一种基于视觉注意模型的图像分类方法.中国图象图形学报,2008,13(10):1886-1889
    [136]刘伟,张宏,童勤业.视觉注意计算模型及其在自然图像压缩中的应用.浙江大学学报(工学版),2007,41(4):650-654
    [137]梁冬泰.多尺度多元图像分析机器视觉检测理论及其应用研究:[博士学位论文].杭州:浙江大学,2009
    [138]I. A. Rybak, V. I. Gusakova, Golovan A. V. A model of attention-guided visual perception and recognition. Vision Research,1998, (38):2387-2400
    [139]L. Itti, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience,2001,2(3):194-203
    [140]龙甫荟,郑南宁.基于非均匀采样及选择注意机制的多分辨率边缘检测.电子学报,1998,26(5):97-99
    [141]S. Engel, X. Zhang, B. Wandell. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature,1997,388(6637):68-71
    [142]Alexis M. Tourapis, Oscar C. Au, Ming L. Liou. Predictive Motion Vector Field Adaptive Search Technique(PMVFAST). San Jose, CA, USA:2001
    [143]http://media.xiph.org/video/derf/
    [144]Avci E, Avci D. An expert system based on fuzzy entropy for automatic threshold selection in image processing. Expert Systems with Application,2009,36(2)
    [145]张麒,汪源源,王威琪.活动轮廓模型和Contourlet多分辨率分析分割血管内超生图像.光学精密工程,2008,16(11):2303-2311
    [146]S. C. Chen, D. H. Li. Image binarization focusing on objects. Neurocomputing, 2006,69(16):2411-2415
    [147]J. Padayachee, M. J. Alport, W. I. Rae. Identification of the breast edge using areas enclosed by iso-intenstity contours. Computerized Medical Imaging and Graphics,2007,31(6):390-400
    [148]Zhang Tao, Fei Shumin, Li Xiaodong. Fast global motion estimation and moving objects extracition algorithm in image sequences. Journal of Southeast University: English Edition,2008,24(2):192-196
    [149]A. R. Victor, H. G. Carlos, P. G. Arturo. Circle detection on images using genetic algorithms. Pattern Recognition Letters,2006,27(6):652-657

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700