全方位视觉技术及其在智能移动机器人等领域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全方位视觉感知,又称全景视觉、全视觉,是指一次获得大于半球视场(360°×180°)的三维空间的全部视觉信息,是近几年被广泛关注、热门研究的视觉感知技术。由于其视域开阔,对于民用、军事还有宇航空间领域中的依赖于视觉信息做出决策的各行业都具有非常重要的意义。
     由于全方位视觉是一门新兴的技术,目前对于其基础理论的研究还不成熟,应用方面也有许多关键技术有待解决。针对国内外全方位视觉的研究现状,本文开展了全方位视觉技术及应用的研究。首先,对现有的全方位视觉成像方法进行了简单评价,对于利用反射镜的单视点折反射成像模型与约束条件进行了理论推导,从原理上解释了利用曲面反射镜可以获得视场增强效果的物理本质。
     针对已有的全景图像柱面展开逐点解算的方法,进行了解算效率的分析,对原算法进行了修正,提出了快速二次逆向还原解算法,在不改变图像还原效果的前提下,减少了解算的次数,提高了解算的速度。
     为解决全景图像柱形平展解算应用于开阔场景时,对于任意分布的局部景象存在比较严重的失真问题。本文提出了基于主视点的视窗平面图像还原解算法,使得解算后图像在这一情况下的失真得以改善。实验结果显示,相对于视觉系统主轴而言呈非直立分布的景物,视窗平面内的还原图像优于柱形还原成像的视觉效果,而直立分布景物的还原效果与柱形还原相同,同时还实现了对局部敏感区域的放大观察。并将本文提出的图像还原解算方法应用于实验室内人体运动目标的识别与跟踪实验的显示界面,对采集到的连续视频图像实时进行解算,实现了对视场全局的观察和运动目标的局部监视。在此基础上进一步,又提出了球形还原成像法,给出了解算的具体算法。使得还原解算后的图像对于视场空间内非整体结构零散分布的景物,更容易估计其方位信息,成像的局部效果接近视窗平面还原法。
     为将全视觉技术应用于智能移动机器人,论文针对机器人定位与导航问题开展了研究。根据全景视觉的特点,提出了利用单帧全景图像中多路标特
The omni-directional vision, in other name is panoramic vision, of which the visual area could be more extensive than a hemisphere (360 °×180° ), acquires all visual information of the three-dimensional space once, is a popular and widely concerned new visual perceiving technology in recent years. Due to its' extensive visual area, it is getting more important to the fields in which decision is made depending on visual information, such as in civil, military and space exploring fields.
    Because the omni-directional vision is a new developing technology, its basic theory is still unripe now, and a lot of problems need to be solved too. According to the domestic and overseas current situation of the omni-directional vision, this thesis focused on the study of the omni-directional visual technologies and applications.
    First part, briefly introduced the existing methods of omni-directional vision imaging, derived theory model of the imaging system with a reflector which has a single view point, explained the physical essence that visual area could be extended by using a reflector with curved surface.
    Aim at the existing method that revert a panoramic image to a spread cylinder image, efficiency of calculation is analyzed, the original algorithm is revised, a new algorithm named twice quick reverting arithmetic is proposed. The number of calculation is reduced, and speed of reverting is advanced on the premise of not changing the effect of reverted image.
    In order to solve the problem that serious distortedness are remained in the spread cylinder image of a panorama ,when the reverting method is used in extensive space imaging, and substances are distributing in any direction, this thesis propose a new method named flat window imaging which is based on the main view point of reflector, designs the reverting algorithm. By using this algorithm, the distortedness in reverted image is improved. The results of
引文
[1] Adelson, E. H. and Bergen, J. R. The plenoptic function and elements of early vision. In Computational Models of Visual Processing, 1991. chap. 1, Landy and Movshon (Eds.), MIT Press.
    
    [2] A. Goshtasby , W. A. Gruver. Design of a Single-Lens Stereo Camera System. Pattern Recognition, 1993,26(6): 923 - 937P
    [3] Born, M. and Wolf, E. 1965. Principles of Optics. Permagon Press.
    [4] Charles, J. R., Reeves, R., and Schur, C. 1987. How to build and use an all-sky camera. Astronomy Magazine, April.
    [5] Covault craig. A spirit dialogue. Aviation Week & Space Technology, 2004
    [6] David Wettergreen, Operating Nomad during the Atacama Desert Trek. Proc of IEEE ICRA, 1998:1016-1023P M
    [7] Dornheim Michael. A spirit itches to move. Aviation Week & Space Technology, 2004
    [8] Elkins R T, Hall E L. Three dimensional line following using omni-directional vision. Proc SPIE, 1994, 2354: 130-144P
    [9] Geyer C. Daniilidis K. Catadioptric projective geometry. International Journal of ComputerVision, 43, 223 - 243P
    [10] H. Philip Stahl, Aspheric surface testing techniques, SPIE1332,1996, 66-76P
    
    [11] J, Kumler and M, Baner. Fisheye lens designs and their relative performance. Proceedings of SPIE 4093, 2000, 360-369P.
    
    [12] Joshua Gluckman, Shree K. Nayar and Keith J. Thoresz, Real-Time Omnidirectional and Panoramic Stereo. In Fifth European Conference on Computer Vision, pages 218-232, 1998.
    
    [13] Janne Heikkila, 0lli Silven. A four step camera calibration??procedure with implicit image correction . Proc IEEE Comput. Soc.Conf. Comput. Vision and Pattern Recogn. 1997:1106-1112P
    [14] K. Yamazawa , Y.Yagi , M. Yachida. Obstacle avoidance with omnidirectional image sensors HyperOmni Vision. Proc of IEEE ICRA,1995:1062-1067P
    [15] Murphy, J. R. 1995. Application of panoramic imaging to a teleoperated lunar rover. In Proceedings of the IEEE SMC Conference, 3117 - 3121P.
    [16] Nayar, S. Catadioptric Omnidirectional Camera. In IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997:482 - 488P
    [17] Nayar, S. K. 1988. Sphereo: Recovering depth using a single camera and two specular spheres. In Proceedings of SPIE: Optics,Illumination, and Image Sensing for Machine Vision II.
    [18] Nalwa, V. S. 1996. A true omnidirectional viewer. Technical Report, Bell Laboratories, Holmdel, NJ 07733, USA
    [19] Powell, I., Panoramic lens, Applied Optics, vol. 33, no 31, Nov 1994:7356-7361
    [20] Rees, D. W. 1970. Panoramic television viewing system. United States Patent No. 3,505,465.
    [21] R. Micheals, A. Erkan, Frame-rate Multi-body Tracking for Surveillance. Proc IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn. 1999:1106-1112P
    [22] S.Chen. Quicktime VR-an image-based approach to virtual environment navigation. Computer Graphics: Proc. of SIGGRAPH'95,August, 1995, 29-38P.
    [23] S. K. Nayar and A. Kannarkar. 360 X 360 mosaics. Proc. IEEE Conf.Computer Vision and Pattern Recognition, June 2000, 388-395P.
    [24] SmithW J. Handbook of Op tics. New York:McGraw Hill Company, 1978
    [25] S. Derrien. and K. Konolige. Aproximating a single viewpoint in??panoramic imaging devices. In International Conference on Robotics and Automation, pages 3932- 3939, 1996.
    [26] Stein F, Medioni G. Map-based localization using the panoramic horizon. Proc IEEE ICRA, 1992, 2631—2637P
    [27] S. Bogner. Introduction to Panoramic Imaging. Proc. of IEEE SMC Conference, 1995: 3100-3106P
    [28] S. Baker and S. K. Nayar. Catadioptric Image Formation. Proc of International Conference on Computer Vision, 1998
    [29] Terry Boult, Applications of Omnidirectional Imaging: Multi-body tracking and remote reality. IEEE Trans. on PAMI, 1998,10(5):713-770P
    [30] Yagi Y, Kawato S, Tsuji S, Real-time omni-directional image sensor(COPIS) for vision-guided navigation. IEEE Trans Robotics and Automation, 1994, 1(1): 11-27P
    [31] Yamazawa, K., Yagi, Y., and Yachida, M. 1995. Obstacle avoidance with omnidirectional image sensor HyperOmni Vision. In Proceedings of the IEEE International Conference on Robotics and Automation, 1062-1067P.
    [32] Y. Yagi, M. Yachida. Real-time generation of environmental map and obstacle avoidance using omnidirectional image sensor with conic mirror. Proc of Conference on Computer Vision and Pattern Recognition, 1991:160-165P
    [33] 庞之浩.美欧掀起火星探测新热潮.导弹与航天运载技术.2004,2期:55-61页
    [34] 曾吉勇,苏显渝.折反射全景成像系统.激光杂志.2004,25(6):62-64页
    [35] 杨国光.180大视场环形全景凝视成像方法.中国发明专利(FMZL),200410015828.0,2004
    [36] 贾云得.机器视觉.北京:科学出版社,2000[37] 马颂德,张正友著.计算机视觉—计算理论与算法基础.北京:科学出版社,1998
    [38] 皮文凯.基于全方位视觉的人体运动检测与跟踪.北京大学硕士学位论文.2004:17-20页
    [39] 王亮.智能移动机器人定位技术研究.哈尔滨工程大学硕士学位论文.2004
    [40] 魏芳,董再励等.用于移动机器人的视觉全局定位系统研究.机器人.2001,23(5)401-403页.
    [41] 陈利红.机器人视觉系统的研究与开发.浙江大学硕士学位论文.2003,4-5页
    [42] Zheng J Y, Barth M, Tsuji S. Autonomous landmark selection for route recognition by a mobile robot. Proc IEEE ICRA , 1991: 2004-2009P
    [43] 蔡自兴.机器人学.北京:清华大学出版社,2000
    [44] 李磊,叶涛,谭民.移动机器人技术研究现状与未来.机器人技术与应用.2002,24(5)475-480页
    [45] 罗志增,蒋静坪.机器人感觉与多信息融合.北京:机械工业出版社,2002
    [46] 李开生,张慧慧,费仁元等.定位传感器及其融合技术综述.计算机自动测量与控制.2001.9(4):1-3页
    [47] 赵翊捷,陈卫东.基于地图的移动机器人定位技术新进展.上海交通大学学报.2002,36(10):1435-1438页
    [48] 白井良明著.王棣堂译.机器人工程.北京:科学出版社,2001:13-26页,66-70页,75-81页
    [49] 申铁龙著.机器人鲁棒控制基础.北京:清华大学出版社,2000:19-30页,35-43页,56-60页
    [50] 熊有伦编.机器人技术基础.武汉:华中理工大学出版社,1999
    [51] 马明山,朱绍文,何克忠等.室外移动机器人定位技术研究.电工技术学报.1998,13(2):43-46页
    [52] 王景川,陈卫东,曹其新.给予全景视觉里程计的移动机器人自定位方??法研究.机器人.2005,27(1)41-45页
    [53] 徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用.2001(3):7-14页
    [54] 秦永元,张洪钺,汪叔华著.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998:33-56页
    [55] 李玉榕,郭智疆,蒋静坪等.多传感器融合在移动机器人运动控制中的应用.仪器仪表学报.2002,23(1):106-110页
    [56] 摩雷RM,李泽湘,萨里特里 SS著.徐卫良,钱瑞明译.机器人操作的数学导论.北京:机械工业出版社,1998
    [57] 钟玉琢,乔秉新,李树青编著.机器人视觉技术.北京:国防工业出版社,1994:1-4页,14-16页,255-260页
    [58] 章毓晋编著.图像理解与计算机视觉.北京:清华大学出版社,2000:29-33页
    [59] 许辉.智能移动机器人视觉处理及自主导航方法研究.哈尔滨工程大学硕士学位论文,2000
    [60] 董再励,王光辉,田彦涛等.自主移动机器人激光全局定位系统研究.机器人.2000,22(3):207-210页
    [61] 邓秀娟.机器人视觉中基于轮廓提取的模板匹配算法研究.大连铁道学院硕士学位,2002
    [62] 何超.机器人视觉系统中的图像分割与目标检.浙江大学硕士学位,2003,13页
    [63] SAA7111A Enhanced Video Input Processor Datasheet. 1998
    [64] TMS320C6713, TMS320C6713B Floating-Point Digital Signal Processors datasheet. 2004
    [65] TMS320C6000 Peripherals Reference Guide Set. 2001
    [66] TMS320C6713 DSP Inter-Integrated Circuit (I~2C) Module Reference Guide. 2002
    [67] TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide. 2004[68] T MS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide. 2003
    [69] TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide. 2004
    [70] TMS320C6000 DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide. 2003
    [71] Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio. 2004
    [72] 8 Megabit Multi-Purpose Flash SST39VF800Q/SST39VF800 Datasheet. 1999
    [73] IS61LV512 512K×16High Speed Asynchronous CMOS Static RAM With 3.3V Supply Datasheet. 2003
    [74] MAX3110E/MAX3111E Datasheet. 1999
    [75] Configuring Mercury, APEX 20K (2.5 V), ACEX 1K&FLEX 10K Devices. 2003
    [76] 李方慧,王飞,何佩琨.TMS320C6000系列DSPs原理与应用.第2版.北京:电子工业出版社,2003
    [77] 张勇.C/C++语言硬件程序设计—基于TMS320C5000系列DSP.西安:电子科技大学出版社,2003
    [78] Stefan Sjohom,Lennart Lindh.VHDL设计电子线路.北京:清华大学出版社,2000
    [79] 赵忠旭,沈兰荪,王爱民.视频图像采集系统的设计与实现.测控技术.1998年,第17卷,第6期,39-42页
    [80] 潘志扬,潘俊民.基于双内存的图形采集卡的设计.电子技术应用.2000年,第11期,53-55页
    [81] 陆佩芸,宋莹,季晓勇.TMS320C6000 DSP系统的引导设计.微型机与应用.2004年,第3期,9-11页
    [82] 鲍晓宇,施克仁,洪玉萍,张伟.高速数据采集系统中高速缓存与海量缓存的实现.国外电子元器件.2003年,第7期,4-7页
    [83] 曾繁泰,陈美金.VHDL程序设计.北京:清华大学出版社,2001[84] 徐志军、徐光辉.CPLD/FPGA的开发与运用.北京:电子工业出版社,2002
    [85] 周鹏.基于DSP的视频监控系统.西北工业大学硕士学位,2002
    [86] 从森.基于DSP的图像采集处理系统.沈阳工业大学硕士学位,2003
    [87] 林杨.基于DSP的图像采集和处理系统.南京理工大学硕士学位,2004
    [88] 李弼程,彭天强等.智能图像处理技术.北京:电子工业出版社.2004
    [89] 郎锐.数组图像处理学Visual C++实现.北京:希望电子出版社.2002
    [90] Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, Boon-Lock, Lossless image compression using integer to integer wavelet transforms [J], AT&T-Labs, Tech. Rep., 1996.
    [91] D. Taubman, "High performance scalable image compression with EBCOT" IEEE Trans. on Image Processing, vol. 9, no. 7, pp. 1158-1170, July 2000.
    [92] M. Boliek, C. Christopoulos and E. Majani (editors), JPE62000Partl Final Draft International Standard[J], (ISO/IEC FDIS 15444-1), [SO/IEC JEC1/SC29/WG1 N1855, August 18, 2000
    [93] W. Sweldens, "The lifting scheme:a custom-design construction of biorthogonal wavelets," Appl. Comput. Harmonic. Analysis, vol. 3, no. 2, pp 186-200,1996
    [94] ISO/IEC JTC1/SC29/WG1N390R, New workitem: JPEG2000 image coding system [J], March 1997
    [95] FCD15444-1JPEG2000[S/OL]. http://www.JPEG.org/FCD15444-1.htm
    [96] David S. Taubman.魏江力译.JPEG2000图像压缩基础、标准和实践.电子工业出版社.2004:40-55页,172-211页,228-274页,328-412页,444-477页
    [97] 刘飞.JPEG200压缩算法的研究与实现.哈尔滨工程大学硕士学位论文.2005
    [98] Kenneth R. Castleman著.数字图像处理[M].朱志刚 林学阎等译,电子工业出版社.2002[99] 白友利.静态图像压缩标准-JPEG2000分析与应用.大连理工大学硕士学位论文.2003:5-7页,28-38页
    [100] 胡昌华等编著.基于MATLAB6.X的系统分析与设计——小波分析.西安电子科技大学出版社.2004:7-27页,312-317页
    [101] 周宁,汤晓军.提升小波快速算法及其在JPEG2000中的应用.中国有限电视.2002(18),6-10页
    [102] 曾剑芬,马争鸣.提升格式与JPEG2000.中山大学学报.2002(1),Vol.41,No.1,32-34页
    [103] 张晓娣,刘贵忠等.JPEG2000图像压缩编码系统及其关键技术.电视技术,2001,(8),13-17
    [104] 华林,朱珂等.一种适用于JPEG2000的高速MQ编码器的实现.固体电子学研究与进展.2003,(11),Vol.23,No.4,421-426页
    [105] Wu Xiaowen, K L Yeung, L M Li. A new Adaptive Error Correction Scheme for Wireless ATM Networks. 1st Annual UCSD Conference on Wireless Communications, San Diego Mar, 1998: 36-41P
    [106] Jing Cai, Okechukwa C. Ugweje. A Comparative Study of Wireless ATM MAC Protocal. IEEE Comm. 2002: 516-520P
    [107] B. Bing, High-Speed Wireless ATM And LANs, Norwood: Artech House, ch. 6: 167-244P
    [108] E. Ayanoglu, K.Y. Eng, M.J. Karol. Wireless ATM: limits, challenges, and proposals. IEEE Personal Communications Magazine 3, August 1996: 18-34P
    [109] Ender Ayanoglu. Wireless broadband and ATM systems. Computer Nerw-orks, 25 February 1999: 395-409P
    [110] M. zorzi, R. R. Rao: On Impact of Burst Errors on Wireless ATM, IEEE Per-sonal Communications, Vol. 6, No. 4, 1999: 65-76P
    [111] 张昱,刘庚峰,路建华.突发信道下无线ATM的前向差错控制方案,电讯技术,2002(05),115-118页
    [112] 左艳军.突发信道中ATM无线连接的性能分析及其改善.哈尔滨工程大学硕士学位论文.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700