基于图像分析的跨座式单轨交通PC轨道梁面裂纹检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展以及城市的快速扩张,城市轨道交通已经成为我国城市交通发展的主流,其健康安全状况是保证整个系统安全运行的关键之一。PC梁作为跨座式单轨梁桥系统的重要组成部分,其表面出现裂纹及其它缺陷,对单轨交通的安全运营造成了隐患,目前的人工巡检方式存在效率低下、耗人力、费用高等问题。因此,开展跨座式单轨交通PC轨道梁面裂纹缺陷检测技术的研究,设计有效的检测设备和自动检测算法是当前亟待解决的热点、难点问题。本文从梁面图像检测系统入手,针对自动检测算法中存在的一些难题,从梁面图像的去噪、增强、裂纹提取分割以及裂纹病害的分类、度量等多个方面进行了研究。
     本文首先给出了PC轨道梁裂纹病害检测的系统框架,采用数据采集系统和离线处理系统两部分组成。数据采集系统从线阵相机、数据采集和保存、照明以及精确定位等几个方面详细讨论了硬件特点以及需要注意的问题,并构建了适用于梁面数据采集的硬件系统。离线处理系统简要介绍了裂纹病害检测模块的各个主要工作流程,设计了基于图像分析的梁面裂纹病害检测策略。
     针对梁面图像噪声严重、裂纹边缘模糊及信噪比低等问题,本文提出了基于核各向异性扩散的裂纹图像去噪方法。在各向异性扩散的基础上,增加一个边缘增强算子,用于增强微弱的裂纹边缘信息,并且根据噪声均匀分布在多维空间的特点,把低维数据推广到高维空间,结合核方法的优点,在核空间中实现去噪,同时采用平均绝对差值的自动扩散终止规则也提高了核各向异性扩散的效率。实验结果表明,该方法对于PC轨道面线性裂纹图像的去噪有较好的效果,具有较高的信噪比,为后期进行梁面裂纹检测并精确的评价梁面质量打下了坚实基础。
     梁面图像中的裂纹信息往往较为弱小,与背景的对比度很低,难以直接检测到。基于此,本文提出了基于非下采样Contourlet变换(NSCT)的跨座式单轨梁面裂纹增强新算法。该方法根据NSCT域的不同特性,利用分数阶微分能增强信号的中频成分、非线性保留信号低频的特点,在平滑子带引入分数阶微分增强纹理信息;同时在高频方向子带根据NSCT对方向的敏感性,采用对弱边缘增强、强边缘保留、噪声去除的处理,使得视觉效果和对比度改善指数大大提高,增强效果良好。
     在裂纹提取分割上,本文提出了两种方法。首先提出基于凸残差的分割方法,由于裂纹缺陷相对背景而言所占比例为零或较小,直方图分布为单峰或接近单峰,该方法把直方图看做平面上的区域,根据待检测图像直方图的凹凸性,计算其凸包函数,并求取凸残差,当凸残差及相应的类间方差整体上达到最大时,所对应的灰度值即为分割阈值。另一种方法是基于曲率的裂纹检测算法,将二维平面图像映射到三维曲面空间,从微分几何出发,通过三维曲面中裂纹的曲率特征,由高斯曲率的极值点和负平均曲率来提取裂纹。对于检测结果中出现的伪裂纹,设计了结合面积、圆形度和长宽比的评判规则,消除过小、过短的缺陷,成功消除了绝大部分伪裂纹。
     根据不同类型裂纹的几何形态差异,本文通过提取裂纹的投影向量比值、面积以及方向角方差等具有鉴别意义的裂纹模式特征,设计了基于神经网络的分类器实现对裂纹的精确分类。另外在裂纹病害的度量上,采用裂纹缺陷面积、单根裂纹的长度和宽度度量方法,误差在可接受范围内,从而验证了算法的有效性。
With the high-speed development of chinese economy and fast expansion of urban, city rail transit system has been the main trend of city traffic mode in China, but its safety is a key problem to the whole transit system. The PC beam is an important component of Straddle Monorail traffic system, the surface of which has been covered with cracks and other flaws, it causes deficiencies to the safety of system. At present, the inspection is made by manual, which exists low efficiency, cost manpower, high cost, and so on. So the crack detection of Straddle Monorail traffic beam surface should be researched. Design efficient equipment and automatic analysis algorithms are the focus and difficulty problems. The paper proposes a crack inspection system for automatic component detection, including inspection equipment and detection methods such as image denoising, enhancement, crack segmentation, flaw classification, flaw measurement, and so on.
     First, the paper proposes a crack and flaw inspection frame of PC track beam, including data acquisition system and off-line processing system. The data acquisition system consists of line camera selection, data acquisition and save, lighting, precise locating, and other hardware integration problems which should be pain attention, and the hardware platform is built for track beam data collection. The off-line processing system briefly introduces the work flow of different flaw inspection module and the crack detection strategies of track beam base on image analysis.
     For the problems of track beam image polluted by noise, crack edge blurred and low signal to noise, a new kernel anisotropic diffusion noise removal algorithm is proposed in this paper. On the basis of anisotropic diffusion, an enhance operator which promotes the weak crack edge is added, and according to the characteristics of noise uniformly distributed in the multidimensional space, the low dimensional data is promoted to high dimensional space and denoised in the kernel space, also average absolute difference value of automatic diffusion termination criterion is introduced to enhance the efficiency of diffusion. This method has been applied to noise removal of low signal-noise ratio track beam surface crack, the kernel anisotropic diffusion outperforms other method for denoised result and signal-noise ratio, it thus provide the bases for the behind successful crack detection and precise positioning.
     The crack is difficult direct detection for it is usually weak, and has low contrast as comparison with background. Then, a new algorithm of crack enhancement of straddle-type monorail track beam surface based on non-subsampled contourlet transformation (NSCT) is presented. It is according to the characteristics of NSCT different domain, the fractional differentiation can enhance the mid-frequency component and retain the low frequency component nonlinearly, then the smooth sub-band texture of NSCT domain is enhanced by the fractional differentiation; at the same time, according to the direction sensitivity of high-frequency sub-band of NSCT domain, the weak edge is enhanced nonlinearly, strong edge is retained, and noise is removed. Experimental results show that the method proposed in this paper has greatly improved visual effects and contrast improve index, and the enhancement effect is good.
     Two methods for crack extracting have been proposed in this paper. The first one is automatic threshold segmentation approach based on convex residual. The proportion of crack is zero or small comparing to the background, so the histogram distribution is unimodal or close to unimodal. The histogram is regarded as an area of plane, according to the convexity and concavity of histogram of detected image, first compute the convex hull function, then obtain the convex residual which is the difference between convex hull function and the corresponding probability. The maximal value of convex residual join with between-class variance is the threshold value. Another one is based on the curvature of crack. The two dimensional images are mapping to three dimensional surface, starting from the differential geometry, the three dimensional surface curvature characteristics is computed, and the crack is extracted when the gaussian curvature is achieved extreme and the average curvature is negative. There are pseudo cracks appeared in the results, then area, rotundity degree, ratio of length and width are combined to judge between them, they can eliminate defects which are too small or too short, then most of pseudo cracks can be successfully removed.
     According to the different geometry type of cracks, the ratio of x axis projection and y axis projection of crack, crack area, and angle variance are selected to identify different crack type, and neural network classifier is designed to achieve precise classification of cracks. As well as, for the measure of crack and flaw, crack area, single crack length and width are adopt to measure, and the result error is acceptable, which verifies the validity of the algorithm.
引文
[1]刘浪.基于重庆轻轨2号线的单轨交通结构形式适应性分析[J].城市道桥与防洪. 2009(5):165-169.
    [2]周勇,向红.跨座式单轨交通的适应性分析[J].现代城市轨道交通.2006(4):76-80.
    [3]赛铁兵.跨座式单轨PC轨道梁线形调整施工技术[J].铁道标准设计, 2007(1):40-42.
    [4]沙庆林著.高速公路沥青路面早期破坏现象及预防.人民交通出版社.2001.
    [5] H.D.Cheng, M.Miyojim. Automatic pavement distress detection system[J]. Journal of Information Sciences 108, 1998:219-240.
    [6] Tsao, S.Kehtarnavaz, N.Chan, P.Lytton. Image-Based Expert-System Approach to Distress Detection on CRC Pavement[J]. Journal of Transportation Engineering, 1994,1(6):52-64.
    [7] Satoshi Abe, Toshio Abe, etc. System Integration of Road Crack Evaluation System. SPIE Machine Vision Application in Industrial Inspection, Vol.1907:38-48,1993.
    [8] Harry C.S.Rughooputh, Soonil D.D.V.Rughooputh, Jason Kinser. Automatic Inspection of Road Surfaces. In Machine Vision Application in Industrial Inspection, Proceedings of SPIE vol.4966:349-356(2000).
    [9]南京理工大学,“N-1型道路路面检测系统研制报告”,2002.
    [10] J Pynn, A Wright and R Lodge. Automatic Identification of Cracks in Road Surfaces, Proceedings of 7th International Congress on Image Processing and its Applications, vol.2,pp.671-675.
    [11]商涛平,童寿兴.混凝土裂缝深度的超声波检测方法研究[J].无损检测,2002,24(1):6-8.
    [12]段方英,徐志胜,赵望达.基于超声脉冲法的火灾损伤后混凝土裂纹深度检测[J],中国安全科学学报,2006,16(3):135-139.
    [13]杨永俊.探地雷达用于公路检测初探[J].公路交通科技, 2006(6):7-12.
    [14]张松涛,李宏基.地质雷达在公路路面检测中的应用[J].黑龙江科技信息,2004,11.
    [15]刘道斌.路面病害无损检测新技术及其综合应用[J].建材世界,2009,30(1):87-89.
    [16]邱钰,张金荣.无损检测技术在公路工程中的应用及发展[J].山西建筑,2008,34(8):288-289.
    [17] Seung-Nam Yu, Jae-Ho Jang, et al. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Automation in Construction, 2007,16:255-261.
    [18] Liviu Bursanescu,Francois Blais.Automated pavement distress data collection and analysis: a 3-D approach. International Conference on Recent Advances in 3-D Digital Imaging and Modeling.12-15,May 1997:311-317,1997.
    [19] D.Meignen, M.Bernadet, H.Briand. One Application of Neural Networks for Detection ofDefects Using Video Data Bases:Identification of Road Distress: IEEE,459-464,1997.
    [20]啜二勇.国外路面自动检测系统发展综述[J].交通标准化,2009(9),204.
    [21] Kelvin C, P.Wang, Weiguo Gong. Parallel Implementation of Image Algorithms for An Automated Real-time Cracking Survey System[C].TRB 2003 Annual Meeting.
    [22]高建贞,任明武,杨静宇.路面裂缝的自动检测与识别[J].计算机工程.2003,29(2):149-150.
    [23]王荣本,王超,初秀民.路面破损图像识别研究进展[J].吉林大学学报,2002,32(4).
    [24]高建贞,基于图像分析的道路病害自动检测研究[D].南京理工大学,2003.
    [25]胡曦.路面病害自动检测技术研究与系统实现[D].南京理工大学,2003.
    [26]唐磊,基于图像分析的路面病害自动检测[D].南京理工大学,2007.
    [27]王刚.路面病害光学无损检测技术[D].南京理工大学,2007.
    [28]刘宛予,谢凯等.公路路面自动检测系统发展综述[J]中外公路, 2007,27(2):30-33.
    [29] Siriphan Jitprasithsiri. Development of a new digital pavement image processing algorithm for unified crack index computation[D]. A Dissertation Submitted to the Faculty of the University of Utah,1997.
    [30]朱晓群.基于数字图像处理的路面损害检测和评价方法研究[D].复旦大学,2009.
    [31] Chou J C,O’Neil W A. Pavement distress evaluation using fuzzying logic and moment invariants. Transp. Res. Record. 1505, Transportation Research Board, Washington D C:144-148.
    [32]王刚,王娟,王德华等.基于Contourlet变换域统计模型的路面图像去噪算法[J].光电子激光,2009,20(10):1394-1398.
    [33]陈利利.基于多尺度图像分析的路面病害检测方法研究与分析[D].南京理工大学,2009.
    [34]禇燕利.路面裂缝自动检测图像识别系统研究[D].长安大学,2008.
    [35] Koutsopoulos H N, Downey A B. Primitive-based classification of pavement cracking images[J]. J.Transp. Engrg., 1993, 19(3): 136-143.
    [36]唐磊,赵春霞,王鸿南等.一种自适应路面图像模糊增强算法[J].光子学报,2007,36(10):1943-1948.
    [37] Cheng Hengda. Automated real-time pavement distress detection using fuzzy logic and neural network[J]. SPIE Proeeeding,1994,2946:140-151.
    [38]张大奇,曲仕茹等.道路裂纹线检测中的脊波域图像增强算法[J].中国公路学报,2009,22(2):26-30.
    [39]王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算法[J].光学学报,2007,27(7):1183-1190.
    [40]王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346.
    [41] Steven A.Velisky, K.R.Kirschke. Design consideration s for automated pavement crack selling machinery[R]. University of California Institute of Transportation Studies, 1991:77-80.
    [42] S.Paquis, V.Legeay, H.Konik, J.Charrier. Multiresolution Texture Analysis applied to Road Surface Inspection. SPIE vol.3652 1999:242-249.
    [43] R.M.Haralick, K.Shanmugam, I.Dinstein. Textural Features for Image Classification[J]. IEEE Transactions on Systems, Man, and Cybernetics,1973, SMC-3(6):610-621.
    [44] Bhagvati.C, Skonlnick.M.M, and Grivsa.D.A. Gaussian normalization of morphological size distributions for increasing sensitivity to texture variations and its application to pavement distress classification[C]. IEEE Computer Vision and Pattern Recognition Conference, Seattle, WA, 1994,20-24.
    [45] Naoki Tanaka, Kenji Uematsu. A crack detection method in road surface images using morphology.MVA’98 LAPR Workshop on Machine Vision. Nov.17-19,1998, Makuhari, Chiba, Japan.
    [46] F.P.Lovergine, A.Branca, G.Attolico, A.Distante. Leather inspection by oriented texture analysis with a morphological approach. IEEE 1997:669-671.
    [47]王倩,阮海波.快速模糊边缘检测算法[J].中国图象图形学报,2001,Vol.6,No.l:92-95.
    [48]汪亚明,吴国忠,赵匀,胡觉亮.基于模糊熵及遗传算法的图像增强技术[J].农业机械学报,2003,Vol.34,No.1:96-98.
    [49]刘金华,唐竞新,龙图景.一种改进的模糊边缘检测快速算法[J].系统仿真学报,2003,Vol.15,No.2:273-275.
    [50]李弼程,郭志刚,文超.图像的多层次模糊增强与边缘提取[J].模糊系统与数学,2000,14(4):77-83.
    [51] Cheng H D, Rong Jim. Novel approach to pavement cracking detection based on fuzzy set theory[J]. ASCE, 1999, 13(4): 270-280.
    [52] Ja Ching Chou, Wende A.O’Neil. Pavement Distress Classification Using Neural Networks. IEEE, 1994:397-401.
    [53] D.Meignen, M.Bernadet, H.Briand. One Application of Neural Networks for Detection of Defects Using Video Data Bases: Identification of Road Distresses. IEEE, 1997:459-464.
    [54] Kaseko.M.S.Ritchie.S.G A neural network-based methodology for Pavement crack detection and classification. Tans.Resc.1993.1(14):275-291.
    [55] Cheng.H.D,Wang.J., Hu.Y.G.,et al., A novel approach to pavement cracking detection based on neural network. Transportation Research Record 1764, Transportation Research Board, Washington,D.C.,2001:119-127.
    [56] Abdel-Qader,etc. PCA-Based algorithm for unsupervised bridge crack detection[J].Advancesin Engineering Software,37(2006):771-778.
    [57] H.G Zhang, Q.wang. Use of artificial living system for pavement distress survey. The 30th annual conference of the IEEE industrial Electronics Society, Novemeber 2-6,2004.Busan, Korea.
    [58]张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报. 2005,Vol.29,No.4:389-393.
    [59] G.H.Granlund, Description of texture using the general operator approach [A]. in Proceedings of the 5th International Conference on Pattern Recognition [C]. USA, Florida, Miami Beach, 1980:776- 779.
    [60] T.N.Tan, Texture edge detection by modeling visual cortical channels[J].Pattern Recognition, 1995,28(9):1283-1298.
    [61] C.M.Chen, H.H.Lu, K.C.Han, A textural approach based on Gabor functions for texture edge detection in ultrasound images[J]. Ultrasound in Medicine and Biology, 2001,27(4):515-534.
    [62] Sagiv Chen, N.A.Sochen, Y.Y.Zeevi, Integrated active contours for texture segmentation[J]. IEEE Transactions on Image Processing. 2006,15(6):1633-1646.
    [63] Grivas D A. Bhagvati C. Skolnick M M,et al. Feasibility of automating pavement distress assessment using mathematical morphology[J].Transportation Research Record, 1994(1435):52-58.
    [64] S.Paquis, V.Legeay, H.Konik, J.Charrier. Multiresolution Texture Analysis Applied to Road Surface Inspection. SPIE vol.3652, 1999,1:242-245.
    [65] N.Oguri, K.Himeno, A.Kawamura,and R.Nakamura. Application of wavelet analysis on evaluation of roughness of pavement surfaces, in Proc.4th Int. SymP. on Pavement Surface Characteristics of Roads and Airfields, 2000:57-66.
    [66] W.Liu, T.F.Fwa. Wavelet analysis for pavement roughness studies. in Proc. 8th Int. Conf. on Application of Advanced Technologies in Transportation Engineering.2004:455-459.
    [67] W.Liu, T.F.Fwa, and Z.Zhao, Wavelet analysis and interpretation of road roughness, J.Transp.Eng. 2005,131(2):120-130.
    [68]燕文浩,马彩文.基于小波变换的图像融合新算法[J].光子学报, 2006,Vol 35, No.4:638-640.
    [69]章毓晋.图像工程-图像分析(第二版)[M].清华大学出版社,2007.
    [70] Miyojim M, Cheng H D. Novel system for automatic pavement distress detection[J]. ASCE,1998,12(3):145-152.
    [71] Chun J, Chi F C. Airport pavement distress image classification using moment invariant neural networks[C]. 22nd Asian Conference on Remote Sensing,2001.
    [72] T.El-Korchi, M.A.Gennert,etc. An engineering approach to automated pavement surface distress evaluation[C]. Proceedings of the Automated Pavement Distress Seminar, Ames,Iowa, June 12-15,1990.
    [73]伯绍波.沥青路面裂纹图像检测算法研究[J].长安大学,2008.
    [74]刘榴娣,刘明奇,党长民.实用数字图像处理[M].北京理工大学出版社,1998.
    [75]崔扬.图像检测技术在皮革缺陷检测中的应用研究[D].浙江大学,2004:59-61.
    [76]张昱,基于机器视觉的TFT-LCD屏mura缺陷检测技术研究[D].哈尔滨工业大学, 2006:22-26.
    [77]张兆礼,赵春晖,梅晓丹.现代图像处理技术及Matlab实现[M].人民邮电出版社.2001.
    [78]许秀贞,李自田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343-347.
    [79]李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术[J].光学精密工程,2005,13(11):159-162.
    [80] Murakami K. Image Processing for Nondestructive Testing [J]. Welding International. 1998,4(2):144-149.
    [81]李粥程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社,2004.
    [82]赵彦玲.基于图像技术的钢球表面缺陷分析与识别[D].哈尔滨理工大学,2008:23-26.
    [83] Henri Maitre等著,孙洪译.现代数字图像处理[M].电子工业出版社,2006.
    [84]陆琳,孙福军,侯明,基因芯片图像去噪方法研究进展[J].检验检疫科学,2007,17(1-2):141-144.
    [85]胡学刚,吴勇.基于轮廓结构元素和阈值分割的形态学去噪[J].计算机工程,2009,35(23):212-216.
    [86]彭波,王一鸣.低照度图像去噪算法的研究与实现[J].计算机应用,2007,27(6):1455-1457.
    [87]戴君.数学形态学在图像处理中的应用[J].佛山科学技术学院(自然科学版),1998,16:114-156.
    [88]沈庭芝,方子文.数字图像处理与模式识别[M].北京:北京理工大学出版社,1998.
    [89]姜珊,王跃存.基于中值滤波和形态学的去噪算法[J].仪器仪表用户.2007,14(4):106-107.
    [90]叶德荣,汪伟,武文芳.基于多尺度形态学的医学图像局部对比度增强.北京生物医学工程.2005, 24(3):190-194.
    [91] Vese L,Chan T.A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Mode[J]. International Journal of Computer Vision,2002,50(3):271-293.
    [92] Zhao Hongkai, Chan T, Merrian B, et al. A Variational Level Set Approach to Multiphase Motion[J]. Journal of Computational Physics, 127(5): 179-195.
    [93]杨莉,杨新.基于区域划分的曲线演化多目标分割[J].计算机学报,2004,27(3):420-425.
    [94] Mumford D,Shah J.Optimal Approximation by Piece-wise Smooth Functions and AssociatedVariational Problems[J].Communications on Pure and Applied Mathematics,1989,42(5): 577-685.
    [95] Perona P, Malik J. Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990,12(7):629-639.
    [96] Jian Ling,Alan C.Bovik. Smoothing Low-SNR Molecular Images Via Anisotropic Median-Diffusion. IEEE Transactions on Medical Imaging. 2002,21(4):377-384.
    [97] Weickert. Coherence enhancing diffusion filtering. International Journal of Computer Vision. 1999,31(2/3):111-127.
    [98] S.Osher, L.I.Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis. 1990(27):919-940.
    [99]谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报.2006,34(1):59-64.
    [100] Lysaker M,Lundervold A,Taix C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing, 2003, 12(12):1579-1590.
    [101] Pollak I,Willsky A S, Krim H. Image segmentation and edge enhancement with stabilized inverse diffusion equations[J]. IEEE Transaction on Image Processing, 2000, 9(2):256-266.
    [102] Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denosing[J]. IEEE Transaction on Image Processing, 2002,11(7):689-703.
    [103] Gilboa G, Zeevi Y Y, Sochen N A. Complex diffusion process for image filtering [A]. Scale-Space’01, LNCS 2106[C].Berlin: Springer-Verlay,2001.299-307.
    [104]王毅,牛瑞卿,喻鑫等.基于时间变化的鲁棒各向异性扩散模型[J].自动化学报,2009,35(9):1253-1256.
    [105] Rosenfeld A, Thurston M. Edge and curve detection for visual scene analysis. IEEE Trans on Computers. 1971, C220:562-569.
    [106] Witkin A. Scale-space filtering. International Joint Conference on Artifical Intelligence, Karlsruhe, West Germany,1983: 1019-1021.
    [107] Koenderink J.The structure of images. Biological Cybernetics. 1984,50:363-370.
    [108] Hummel R A.Representations based on zero-crossings in scale-space[J]. Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Miami Beach,FL, 1986:204-209.
    [109]谢美华,王正明.用偏微分方程作图像分析与处理[J].激光与光电子学进展, 2005,42(8):36-40.
    [110] Weickert J. Coherence-enhancing diffusion of colour images. Image and Computer Vision,1999,17(3/4):199-210.
    [111] You Yu-Li,Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Transaction on Image Processing,2000,9(10):1723-1730.
    [112] Gilboa G.,Nir Sochen,etc.Image enhancement and denoising by complex diffusion processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2004,26(8): 1020-1036.
    [113] Acton S T. Multigrid anisotropic diffusion[J]. IEEE Transaction on Image Processing, 1998,7(3):280-291.
    [114] Shin-Min Chao, Du-Ming Tsai. An anisotropic diffusion-based defect detection for low-contrast glass substrates[J]. Image and Vision Computing 2008.26:187-200.
    [115] Jinhua Yu, Yuanyuan Wang, Yuzhong Shen. Noise reduction and edge detection via kernel anisotropic diffusion[J]. Pattern Recognition Letters. 2008. 03.002.
    [116] Cover, T. M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[J]. IEEE Trans. Electronic Computers. 1965. EC-14:326-334.
    [117]杜世强.基于核Fisher判别的人脸识别方法研究[D].陕西师范大学.2007.
    [118] Haykin S. Neural networks-a comprehensive foundation. Prentice Hall, 1999.
    [119] Black, M. J., Sapiro, G., Marimont, D. H. Robust anisotropic diffusion[J]. IEEE Trans. Image Processing. 1998.7:421-432.
    [120] Zhang, F., Yoo, Y. M., Koh, L. M. Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction[J]. IEEE Trans. Med. Imag. 2007.26: 200-211.
    [121]王刚、贺安之、肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报. 2006(3).Vol.26,No.3: 341-346.
    [122] M.Petrou, P.Bosdogianni. Image Processing:The fundamentals, John Wiley&Sons, LTD,1999.
    [123]迟健男,张闯,张朝晖等。基于反对称双正交小波重构的图像增强方法[J].自动化学报,2010,36(4):475-487.
    [124]迟健男.图像形态学和小波分析在图像增强与边缘检测中的应用[D].东北大学,2005.
    [125] L.Levi. Unsharp masking and related image enhancement techniques.Computer Graphics and Image Processing.1974,3:163-177.
    [126]杨词银,尚海波,贾晨光等.基于区域分割的自适应反锐化掩膜算法[J].光学精密工程,2003,11(2):188-192.
    [127] Ramponi G. A cubic unsharp masking technique for contrast enhancement [J] . Signal Process, 1998, 67(6):211-222.
    [128]杨词银.基于人眼视觉特性的数字X线医学图像增强方法的研究[D].中国科学院研究生院,2003:32-47.
    [129]胡广书.数字信号处理[M].北京:清华大学出版社.2003:93-150.
    [130] S.Mallat著,杨立华等译.信号处理的小波导引[M].北京:机械工业出版社,2002.
    [131]赵敏志.基于非下采样Contourlet变换的图像融合技术研究[D].合肥工业大学,2009:14-16.
    [132]连学强.无下采样Contourlet变换及其在图像处理中的应用研究[D].厦门大学,2008:9-10.
    [133] E.J.Candes,D.L.Donoho. Curvelets-a surprisingly effective nonadaptive representation for objects with edges[M].Saint-Malo:Vanderbilt University Press,1999:105-120.
    [134] Donoho D L. Orthononnal ridgelets and linear singularities[J].SIAM J.Math.Anal, 1998,31(5): 1062-1099.
    [135] D.H.Hubel,T.N.Wiesel. Receptive fields,binocular interaction and functional architecture in the cat’s visual cortex.Journal of Physiology,1962,160:106.
    [136]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981.
    [137] Candes E. J. Ridgelets:Theory and applications[D]. Department of Statistics,Stanford University, 1998.
    [138]侯彪,刘芳,焦李成.基于脊波变换的直线特征检测[J].中国科学E,2003,33(1):65-73.
    [139]赵小明,叶洗剑.一种新的脊波变换方法[J].计算机研究与发展.2008,45(5):915-922.
    [140] Do M N,Vetterli M.The Finite Ridgelet Transform for Image Representation[J].IEEE Transcations on Image Processing,2003,12(l):16.
    [141] Candes E J,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University, 1999.
    [142] Donoho David L,Duncan Mark R.Digital curvelet transform:Strategy,implementation and experiments.SPIE,2000,4056:12-30.
    [143] E.J. Candes, D.L. Donoho. New tight frames of curve-lets and optimal representation of objects with piecewise-singularities[J]. Commun. on Pure and Appl. Math,2004,57 (2).
    [144] E J Candes, L Demanet, D L Donoho, et al. Fast Discrete Curvelet Transforms[R]. Applied and Computational Mathematics. California Institute of Technology, 2005:1-43.
    [145]仇宫润,秦志远,李晓霞.基于二代Curvrlet变换的自适应图像去噪[J].测绘科学,2009,34(5):84-86.
    [146]冯鹏.高分辨图像处理用抗混迭Contourlet变换的若干关键问题研究[D].重庆大学,2007:21-24.
    [147] M.N.Do,M.Vetterli. The contourlet transform:an efficient directional multiresolution image representation. IEEE Trans. on Image Processing,2005,14(12):2091-2106.
    [148]吴一全,罗子娟,吴文怡.基于NSCT的红外图像小目标检测技术[J].中国图象图形学报,2009,14(3):477-481.
    [149] Coifman R R,Donoho D L. Translation invariant denoising[OL].[2006-12-26]. http://www-stat.stanford.edu/~donoho/reports.Html#1995.
    [150] Arthur L.da Cunha,Jianping Zhou,Minh N.Do. The nonsubsampled contourlet transform: theory, design and applications[J]. IEEE Trans. on Image Processing, 2006,15(10): 3089-3101.
    [151] Z. Cvetkovic and M. Vetterli, versampled filler banks, IEEE Trans.Signal Process., vol. 46, no. 5, pp. 1245-1255, May 1998.
    [152] J. H. McClellan, The design of two-dimensional digital filters by transformation, in Proc. 7th Annu. Princeton Conf. Information Sciences and Systems, 1973.
    [153] S. Mitra and R. Sherwood, Digital ladder networks[J]. IEEE Trans. Audio Electroacoust., vol. AU-21, no. 1:30-36, Feb. 1973.
    [154] W. Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Appl. Comput. Harmon. Anal., vol. 3, no. 2: 186-200, 1996.
    [155] T. Cooklev, T. Yosbida, and A. Nishihara, Maximally flat half-band diamond-shaped FIR filters using the Bernstein polynomial[J]. IEEE Trans. Circuits Syst. II, vol. 40, no. 11: 749-751, Nov. 1993.
    [156]袁晓松,王秀坛,王希勤.基于人眼视觉特性的自适应的图像增强算法研究[J].电子学报[J].1999,27(4):63-65.
    [157] M.Ibrahim Sezan,Kwok-Leung Yip,and Scott J.Daly. Uniform perceptual quantization: application to digital radiography. IEEE Trans on Systems, Man and Cybernetics,1987, SMC-17(4):622-634.
    [158] Lemuel R.MyersJr.,Steven K.Rogers,Matthew Kabrisky,and Thomas J.Bruns. Image Perception and enhancement for visually impaired. IEEE Engineering in Medicine and Biology,1995,No.9:594-601.
    [159] C.W.Thomas,G.C.Gilmore,and F.L.Royer.Models of contrast sensitivity in human vision. IEEE Trans. Systems,Man,and Cybernetics,1993,23(3): 857-862.
    [160] B.Mathieu, P.Melchior, etc. Fractional differentiation for edge detection[J]. Signal Processing,2003,83: 2421-2432.
    [161] A.Nakib,H.Oulhadj,P.Siarry. A thresholding method based on two-dimensional fractional differentiation[J]. Image and Vision Computing, 2009,27:1343-1357.
    [162]奥本海姆.信号与系统(第二版)(英文版)[M].电子工业出版社, 2002.8.
    [163]蒲亦非,王卫星,周激流等.数字图像纹理细节的分数阶微分检测及其分数阶微分滤波器实现[J].中国科学E辑,2008,38(12):2252-2272.
    [164]蒲亦非.数字图像的分数阶微分滤波器:中国,2006100217023[P].2006.
    [165] Pu Yifei. Fractional calculus approach to texture of digital image [C]. Proceedings of ICSP 2006. IEEE, 2006: 1002 -1006.
    [166]蒲亦非.将分数阶微分演算引入数字图像处理[J].四川大学学报(工程科学版),2007,39(3):124-132.
    [167]蒲亦非.分数阶微积分在现代信号分析与处理中应用的研究[D].四川大学,2006.
    [168] S.Grace Chang, Bin Yu,etc. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Transactions on Image Processing,2000,9(9):1522-1531.
    [169]程远航,薛定宇等.小波和曲波结合的图像增强算法[J].工程图学学报,2009,No.3,100-104.
    [170]王瑞生.图象理解[M].国防科技大学出版社,1995.
    [171] Fu K.S., Mui J.K., A survey on image segmentation[J]. Pattern Recognition, 1981,13:3-16.
    [172]刘海宾,何希勤,刘向东.基于分水岭和区域合并的图像分割算法[J].计算机应用研究,2007,24(9):307-308.
    [173]狄岚,林意,须文波.一种带脉冲噪声图像的图像分割方法[J].计算机应用研究,2007,24(9):315-316.
    [174]杨润玲,高新波,介军.一种基于模糊聚类的快速图像分割算法[J].西安建筑科技大学学报,2007,39(2):280-285.
    [175]沙芸,刘玉树,王军等.一种非刚体目标的视频分割算法[J].计算机工程与应用,2003,39(22):1-2.
    [176]万建,王继成.基于ISODATA算法的彩色图像分割[J].计算机工程,2002,28(5):135-136.
    [177]刘峰,孙超,李斌.一种改进的C均值法初始类划分方法[J].计算机工程与设计,2005,26(2):465-466.
    [178] Glasbey, C.A., An analysis of histogram-based thresholding algorithms[J]. CVGIP: Graphical Models and Image Processing 1993,55:532-537.
    [179] Lee, S.U., Chung, S.Y., Park, R.H., A comparative performance study of several global thresholding techniques for segmentation[J].Computer Vision, Graphics and Image Processing, 1990,52 (2): 171-190.
    [180] Sahoo, P.K., Soltani, S., Wong, A.K., Chan, Y.C., A survey of thresholding techniques[J]. Computer Vision, Graphics and Image Processing, 1988,41: 233–260.
    [181] Sezgin, M., Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging,2004,13 (1): 146–156.
    [182]陈果.图像阈值分割的Fishier准则函数法[J].仪器仪表学报.2003,24(6)(12):564-567.
    [183] L Varsano,V Adler, S R Rotman. Algorithms for tracking point targets in infrared sequences[J]. Proc. of SPIE, 2005, 5987:59870W.1-59870W.8.
    [184]陈尚峰,卢焕章.云杂波背景弱小目标自适应时-空域滤波检测研究[J].激光与红外,2008,38(7):723-726.
    [185] Eng Thiam Lim, Louis Shue, Ronda Venkarteswarlu. Adaptive Mean and Variance Filter for Detection of Dim Point-like Targets [J]. Proc. of SPIE, 2002, 4728:493– 502.
    [186]章毓晋.图象分割[M].科学出版社,2001:9-19.
    [187]贾永红。数字图像处理[M].武汉大学出版社,2003:79-83.
    [188]何斌,马天予,王运坚等.Visual C++数字图像处理[M].人民邮电出版社,2001:395-400.
    [189] Marr D, Hildreth E. Theory of edge detection[J]. Proceedings of R. Soc. London,1980, B207:187-217.
    [190] Otsu,N., A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man Cybernet SMC-9(1) (1979):62-66.
    [191] Hui-Fuang,Ng. Automatic thresholding for defect detection. Pattern Recognition Letters 27(2006) :1644-1649.
    [192] M. D., Kreveld M. V., Overmars M., Schwarzkopf O. Computational Geometry Algorithms and Applications(Second Edition).计算几何-算法与应用[M](第2版).邓俊辉译. 2005:262-278.
    [193] F.Preparata, M.Shames. Computational Geometry[M]. Springer, New York, 1985.
    [194]郝晓军.凸包算法的加速与改进研究[D].河北工业大学,2003:16-19.
    [195]杜玉越.一种求简单多边形凸包的最优算法[J].计算机应用与软件,1998,15(5):38-41.
    [196] Rosenfeld A, Torre P. Histogram concavity analysis as an aid in threshold selection. IEEE-SMC,1983,13:231-235.
    [197] M. Lopez, F. Lumbreras, Evaluation of methods for ridge and valley detection[J]. IEEE Trans. Pattern Mach. Intell.21 (1999): 327–335.
    [198]唐磊,赵春霞,王鸿南等.基于图像三维地形模型的路面裂纹自动检测[J].计算机工程,2008,34(5):20-21.
    [199] Shivprakash Iyer, Sunil K. Sinha. A robust approach for automatic detection and segmentation of cracks in underground pipeline images[J]. Image and Vision Computing, 23(2005):921-933.
    [200] V Lang, A G Belyaev, I A Bogaevsici,etc. Fast algorithms for ridge detection. Proceedings of the International Conference on Shape Modeling and Applications. Mar.3-6,1997:189-197.
    [201]张梅,文静华,张祖勋等.微分运算与形态学深度图像分割比较[J].计算机工程与应用,2010,46(19):173-176.
    [202] Forsyth D A,Ponce J.计算机视觉:一种现代方法[M].林学訚,王宏等译.北京:电子工业出版社,2004.
    [203]孙龙祥,程义民,王以孝等.深度图象分析[M].北京:电子工业出版社,1996.
    [204]程义民,丁红侠,王以孝等.基于几何特征的曲面物体识别[J].中国图象图形学报,2000,5(7):573-579.
    [205]马骊溟,徐毅,李泽湘.基于高斯曲率极值点的散乱点云数据特征点提取[J].系统仿真学报,2008,20(9):2341-2344.
    [206] Woo H, Kang E, Wang Sem-yung, et al. A new segmentation method for point cloud data[J]. International Journal of Machine Tools and Manufacture (S0890-6955), 2002, 42(2): 167-178.
    [207]闫茂德,伯绍波,贺昱曜.一种基于形态学的路面裂缝图像检测与分析方法[J].工程图学学报,2008,29(2):142-147.
    [208]中华人民共和国交通部.公路养护技术规范(JTJ 073-1996)[S].北京:人民交通出版社,1996.
    [209] Jain A K,Duin RPW,Mao Jiangchang. Statistical pattern recognition:a review.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
    [210]边肇棋,张学工.模式识别[M].北京:清华大学出版社,2000.
    [211] Keinosuke Fukunaga, Raymond R Hayes., Effect of sample size in classifier design, IEEE Trans Pattern and Machine,1989,11(8):873-885.
    [212] D.Rohrmus. Invariant texture features for web defect detection and classification,SPIE Proceedings on Machine Vision Systems for Inspection and Metrology VIII, Vol. 3836, Boston,MA, 1999, 144-155.
    [213]唐磊,赵春霞,王鸿南等.基于图像分析的路面裂纹检测和分类[J].工程图学学报,2008,3:99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700