复杂环境下的视频目标跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视频目标跟踪是计算机视觉领域的一个核心问题,在军事制导、视频监控、机器人视觉导航、人机交互、以及医疗诊断等许多方面有着广泛的应用前景。视频目标跟踪的研究目的是模拟人类视觉运动感知功能,赋予机器辨识序列图像中运动目标的能力,为视频分析和理解提供重要的数据依据。视频目标的跟踪往往由于复杂的背景图像和目标本身的运动变得非常困难。尽管人们对视频目标跟踪进行了较广泛的研究,并提出了许多有效的跟踪方法,但是针对复杂环境下的视频
     目标,开发出一套鲁棒的跟踪算法仍存在较多困难。本文针对复杂环境下的视频单目标和多目标跟踪问题进行了重点研究。对单视频目标跟踪时,重点研究了目标观测模型的设计;对多视频目标跟踪时,重点研究了目标在场景中出现和消失、目标具有相似外表、目标之间交叉运动和相互遮挡等问题。
     本文的主要研究成果如下:
     1.针对复杂环境下的视频目标,提出了一种多特征自适应融合的视频单目标跟踪算法。在该算法中,目标的观测由多种特征的融合信息描述。在对每个特征信息进行融合时,采用了基于模糊逻辑的融合策略,模糊逻辑根据当前的跟踪环境自适应调节各特征信息的权重,从而实现各特征信息间的自适应融合,增加了描述目标观测的可靠性,提高了目标观测模型的鲁棒性;在跟踪目标时,采用了概率粒子滤波算法,将多特征信息自适应融合的观测模型结合到概率粒子滤波算法中,实现了较复杂环境下的视频目标跟踪
     2.提出了一种基于自适应表面模型的视频单目标跟踪算法。该表面模型在跟踪期间能适应目标表面的缓慢或快速变化。在该模型中,每个像素的灰度值随时间的变化过程由一混合高斯分布描述。为了适应跟踪期间目标表面的变化,这些高斯参数通过EM算法在线更新;在对目标进行跟踪时,设计了基于自适应表面模型的目标观测模型,并将该观测模型结合到概率粒子滤波算法中去;针对目标发生部分和完全遮挡问题,我们通过采用一种鲁棒估计技术来降低被遮挡部分的像素对目标观测似然的影响以及对表面模型更新的影响。以上这些措施大大增加了复杂环境下视频目标跟踪的鲁棒性。
Visual target tracking is a key problem in computer vision, it has a wide range of applications in military guidance, visual surveillance, visual navigation of robots, human-computer interaction, and medical diagnose, etc. The goal of visual target tracking is to imitate the motion sensibility of human vision, empower the machine with the ability of perceiving the target motion in the image sequence, and provide an important data source for visual analysis and understanding. Visual target tracking often becomes very difficult due to complex image backgrounds and the target motion. Although visual target tracking has been widely researched and many effective algorithms have been proposed, there are still a lot of difficulties in tracking the targets in complex environments.
     In this dissertation, the research is focused on the tracking problems of single target and multiple targets. For single-target tracking, the work is focused on the design of the observation model. For multi-target tracking, the work is focused on the problems of the appearance and disappearance of targets in scene, the similar appearance of targets, the cross movement of targets, and occlusion, etc.
     The main contributions of this dissertation are summarized as follows:
     1. For the visual target in complex environments, a tracking algorithm based on the multi-cue adaptive fusion has been proposed. In this method, the target observation is represented by multiple cues. When fusing each cue, a fusion scheme based on fuzzy logic has been developed. The fuzzy logic adaptively adjusts the weight of each cue according to the current tracking situations, so each cue is adaptively fused during tracking, which increases the reliability of observation and improves the robustness of observation model. When tracking targets, the probabilistic particle filter has been adopted, and the
引文
[1] Cipolla R. and Pentland A., Computer Vision for Human-Machine Interaction, Cambridge University Press, 1998.
    [2] Davsion A. J. and Muray D. W., Mobile Robot Localization Using Active Vision, In Proceedings of the 5th European Conference on Computer Vision, 1998, 805-825.
    [3] Murray D. W., McLauchlan P. F., Reid I. D., and Sharkey P. M., Reactions to Peripheral Image Motion Using a Head/Eye Platform, In Proceedings of the 4th International Conference on Computer Vision, 1993, 403-411.
    [4] Espiau B., Chaumete F., and Rives P., A New Approach to Visual Servoing in Robotics, IEEE Transactions on Robotics and Automation, 1992, 8 (3): 313-326.
    [5] Taylor M., Blake A., and Cox A., Visually Guided Grasping in 3D. In Proceedings of IEEE International Conference on Robotics and Automation, 1994, 761-766.
    [6] Davidson C. and Blake A., Error-Tolerant Visual Planning of Planar Grasp, In Proceedings of the 6th International Conference on Computer Vision, 1998, 911-916.
    [7] Rimon E. and Blake A., Caging 2D Bodies by One-Parameter Two-Fingered Gripping Systems, In Proceedings of IEEE International Conference on Robotics and Automation, 1996, 1458 -1464.
    [8] Ayache N., Cohen I., and Herlin I., Medical Image Tracking, In: Active Vision, Chapter 20, MIT Press, 1992.
    [9] Marais P., Guillemaud R., Sakuma M., Zisserman A., and Brady M., Visualising Cerebral Asymmetry, Visualization in Biomedical Computing, Lecture Notes in Computer Science, 1996, 411-416.
    [10] Collins R. T., et al. A system for video Surveillance and Monitoring, CMU-RI-TR-00-12.
    [11] http://www.cordis.lu/esprit/src/23515.htm.
    [12] http://www-sop.inria.fr/orion/ADVISOR.
    [13] Matsuyama T., Cooperative Distributed Vision, In Proceedings of DARPA Image UnderstandingWorkshop, 1998, 365-384.
    [14] Welch G. and Bishop G., An Introduction to the Kalman Filter, Technical Report, University of North Carolina at Chapel Hill, August, 1997.
    [15] Bucy R. S. and Senne K. D., Digital Synthesis of Nonlinear Filter, Automatica, 1971, 7: 287-298.
    [16] Haykin S., Kalman Filtering and Neural Networks, John Wiley and Sons Press, 2001.
    [17] Li P. H. and Zhang T. W., Unscented Kalman Filter for Visual Curve Tracking, Image and Vision Computing, 2004, 22 (2): 157-164.
    [18] Ristic B., Arulampalam S., and Gordon N., Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House Press, 2004.
    [19] Oron E, Kumar A, and Bar-Shalom Y. Precision Tracking with Segmentation for Imaging Sensors, IEEE Transactions Aerospace and Electronic Systems, 1993, 29 (3): 977-987.
    [20] Kumar A,Bar-Shalom Y, and Oron E., Precision Tracking based on Segmentation with Optimal Layering for Imaging Sensors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 (2): 182-188.
    [21] Koller D., Weber J. and Malik J., Robust Multiple Car Tracking with Occlusion Reasoning, In Proceedings of the 3rd European Conference on Computer Vision, 5, 1994,189-196.
    [22] Salmond D. J. and Bircht H., A Particle Filter for Track-Before-Detect, In Proceedings of the American Control Conference, June, 2001, 3755-3760.
    [23] John L. A. and Krishnamurthy V., Performance Analysis of a Dynamic Programming Tracking Before Detection Algorithm, IEEE Transactions on Aerospace and Electronic Systems, 2003, 38 (1): 228-242.
    [24] Boers Y. and Driessen J. N., Particle Filter based Track Before Detect Algorithms, In Proceedings of the Small Targets Conference at the SPIE Annual Meeting 2003, August, 2003, 20-30.
    [25] 胡洪涛, 敬忠良, 胡士强, 基于辅助粒子滤波的红外小目标检测前跟踪算法, 控制与决策, 2005, 20 (11): 1208-1211.
    [26] 龙腾, 崔智社, 张岩, 图像序列中机动目标的形心跟踪, 航空学报, 2001, 22 (4): 312-316.
    [27] 张风超, 杨杰, 红外图像序列的目标增强和检测, 红外与激光工程, 2004, 33 (4): 380-384. 108
    [28] Comaniciu D., Ramesh V., and Meer, P., Kernel-based Object Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5): 564-577.
    [29] Liu T. L. and Chen H. T., Real-time Tracking Using Trust-region Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (3), 397-402.
    [30] Nummiaro K., Koller-Meier E., Svoboda T., Roth D., and Gool L. V., Color-based Object Tracking in Multi-Camera Environments, In Proceedings of the 25th Pattern Recognition Symposium DAGM 2003, 2003, 591-599.
    [31] Baker K. D., Grove T. D., and TAN T. N., Color based Object Tracking, In Proceedings of 14th International Conference on Pattern Recognition, 1998,1442-1444.
    [32] Koller D., Weber J., Huang T., Malik J., Ogasawara G., Rao B, and Russel S., Towards Robust Automatic Traffic Scene Analysis in Real-time, In Proceedings of the International Conference on Pattern Recognition, October, 1994, 126-131.
    [33] Li P. H., Zhang T. W., and Arthur E. C. P., Visual Contour Tracking based on Particle Filters, Image and Vision Computing, 2003, 21(1): 111-123.
    [34] Li P. H., Chaumette F., and Tahri O., A Shape Tracking Algorithm for Visual Servoing, In Proceedings of IEEE International Conference on Robotics and Automation, April, 2005, 2858-2863.
    [35] Lipton A., Fujiyoshi H., and Patil R., Moving Target Classification and Tracking from Real Time Video, In Proceedings of the Workshop on Application of Computer Vision, October, 1998, 47-58.
    [36] Black M. J. and Jepson A. D., Eigentracking: Robust Matching and Tracking of Articulated Objects Using a View-based Representation, In Proceedings of European Conference on Computer Vision, April, 1996, 329-342.
    [37] Tissainayagam P. and Suter D., Object Tracking in Image Sequences Using Point Features, Pattern Recognition, 2005, 38 (1): 105-113.
    [38] Hager G. D., Dewan M., and Stewart C. V., Multiple Kernel Tracking with SSD, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2004, 790-797.
    [39] Dai Y. P., Yu G. H., and Hirasawa K., New Development on Tracking Algorithm withDerivation Measurement, In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 2001, 3181-3186.
    [40] Kass M., Witkinm A., and Terzopoulos D., Snakes: Active Contour Models, International Journal on Computer Vision, 1987, 1: 321-331.
    [41] Kim W., Lee C. Y., and Lee J. J., Tracking Moving Object Using Snake's Jump based on Image Flow, MECHATRONICS, 2001, 11: 199-226.
    [42] Black M. and Anandan P., A Framework for the Robust Estimation of Optical Flow, In Proceedings of the International Conference on Computer Vision, 1993, 231-236.
    [43] Barron J. L., Fleet D. J., and Beauchemin S. S., Performance of Optical Flow Techniques, International Journal of Computer Vision, 1994, 12 (1): 43-77.
    [44] Horn B .K .P. and Schunck B. G., Determine Optical Flow, Artificial Intelligent, 1981,17: 85-203.
    [45] Lucas B. D. and Kanade T., An Iterative Image Registration Technique with an Application to Stereo Vision, In Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981, 674-679.
    [46] Gennery D., Tracking Known Three-dimensional Objects, In Proceedings of the National Conference on American Association of Artificial Intelligence, August, 1982, 13-17.
    [47] Harry L. Van Trees, Detection, Estimation, and Modulation, Part I: Detection, Estimation, and Linear Modulation Theory, John Wiley and Sons Press, 2001.
    [48] Gelb A., Applied Optimal Estimation, MIT press, 1974.
    [49] Bar-Shalom Y. and Fortmann T. E., Tracking and Data Association, Academic Press, 1988.
    [50] Jazwinski A. H., Stochastic Process and Filtering Theory, Academic Press, 1970.
    [51] Anderson B. and Moore J., Optimal Filtering, Prentice Hall Press, 1979.
    [52] Aspach D. L. and Sorenson H. W., Nonlinear Bayesian Estimation Using Gaussian Sum Approximation, IEEE Transactions on Automatic Control, 1972, 17 (4): 439-448.
    [53] Julier S. J., Uhlmann J. K., and Durrant-Whyte H. F., A New Approach for Filtering Nonlinear Systems, In Proceedings of the American Control Conference, 1995, 1628-1632.
    [54] Julier S. J. and Uhlmann J. K., A General Method for Approximating Nonlinear Transformations 110of Probability Distributions, Technical Report, Robotics Research Group, Department of Engineering Science, University of Oxford, 1994.
    [55] Julier S. J. and Uhlmann J. K., A New Extension of the Kalman Filter to Nonlinear Systems, In Proceedings of AeroSense: the 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida, 1997.
    [56] Van der Merwe R. and Wan E. A., The Square-root Unscented Kalman Filter for State and Parameter-estimation, In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2001, 6: 3461 –3464.
    [57] Julier S. J. and Uhlmann J. K., Unscented Filtering and Nonlinear Estimation, In Proceedings of the IEEE Aerospace and Electronic Systems, 2004, 92 (3): 401-422.
    [58] Liu J. S. and Chen R., Sequential Monte Carlo Methods for Dynamical Systems, Journal of the American Statistical Association, 1998, 93 (5): 1032-1044.
    [59] Arulampalam S., Maskell S., Gordon N., and Clapp T., A Tutorial on Particle Filters for Online Non-linear/Non-Gaussian Bayesian Tracking, IEEE Transactions on Signal Processing, 2002, 50 (2): 174-188.
    [60] Kitagawa G., Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models, Journal of Computational and Graphical Statistics, 1996, 5 (1): 1-25.
    [61] Van der Merwe R., Doucet A., Freitas N., and Wan E. A., The Unscented Particle Filter, In Advances in Neural Information Processing Systems (NIPS13), MIT Press, 2000.
    [62] Doucet A., Godsill S. J., and Andrieu C., On Sequential Monte Carlo Sampling Methods for Bayesian Filtering, Statistics and Computing, 2000, 10 (3): 197-208.
    [63] Doucet A., Freitas N., and Gordon N., Sequential Monte Carlo Methods in Practice, Springer-Verlag Press, 2001.
    [64] Gordon N. J., Salmond D. J., and Smith A. F. M., Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation, In IEE Proceedings on Radar and Signal Processing, 1993, 140 (2): 107-113.
    [65] Hue C., Le Cadre J-P., and Perez P., Sequential Monte Carlo Methods for Multiple Target Tracking and Data fusion, IEEE Transaction on Signal Processing, 2002, 50 (2): 309-325.
    [66] Isard M. and Blake A., Condensation-conditional Density Propagation for Visual Tracking, International Journal on Computer Vision, 1998, 29 (1): 5-28.
    [67] Koller-Meier E. B. and Ade F., Tracking Multiple Objects Using the Condensation Algorithm, Journal of Robotics and Autonomous Systems, 2001, 34: 93-105.
    [68] Kanazawa K., Koller D., and Russell S. J., Stochastic Simulation Algorithms for Dynamic Probabilistic Networks, In Proceedings of the 11th Annual Conference on Uncertainty in AI, 1995, 346-351.
    [69] 胡洪涛, 主/被动目标跟踪研究, 上海交通大学博士学位论文, 2005.
    [70] Higuchi T., Monte Carlo Filtering Using Genetics Algorithm Operator. Journal of Statistical Computation and Simulation, 1997, 59 (1): 1-23.
    [71] Mo Y. W. and Xiao D. Y. Hybrid System Monitoring and Diagnosing Based on Particle Filter Algorithm, Acta Automation Sinica, 2003, 29 (3): 641-648.
    [72] 王亮, 胡卫明, 谭铁牛, 人运动的视觉分析综述, 计算机学报, 2002, 25 (3): 225-237.
    [73] Comaniciu D., Ramesh V., and Meer P., Real-time Tracking of Non-rigid Objects Using Mean Shift, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1: 142-149.
    [74] Nummiaro K., Koller-Meier E., and Van Gool L., Color Features for Tracking Non-rigid Objects, Special Issue on Visual Surveillance, Chinese Journal of Automation, 2003, 29 (3): 345-355.
    [75] Nummiaro K., Koller-Meier E., and Van Gool L., An Adaptive Color-based Particle filter, Image and Vision Computing, 2003, 21 (1): 99-110.
    [76] Perez P., Hue C., Vermaak J., and Gangnet M., Color-based Probabilistic Tracking, In Proceedings of European Conference on Computer Vision, 2002, 1: 661-675.
    [77] Vignon D., Lovell, Brian C., Andrews, and Robert J., General Purpose Real-time Object Tracking Using Hausdorff Transforms, In Proceedings of IPMU2002, July, 2002, 1-6.
    [78] Bradski G. R., Computer Vision Face Tracking as a Component of a Perceptual User Interface, In Proceedings of IEEE Workshop on Applications of Computer Vision, October, 1998, 214-219.
    [79] Birchfield S., Elliptical Head Tracking Using Intensity Gradients and Color Histograms, In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,June, 1998, 232-237.
    [80] Tao X. and Christian D., Monte Carlo Visual Tracking Using Color Histograms and a Spatially Weighted Oriented Hausdorff Measure, In Proceedings of the Conference on Analysis of Images and Patterns, August, 2003, 190-197.
    [81] Kwolek B., Stereovision-based Head Tracking Using Color and Ellipse Fitting in a Particle Filter, In Proceedings of the 8th European Conference on Computer Vision, May, 2004, 192-204.
    [82] Spengler M. and Schiele B., Towards Robust Multi-cue Integration for Visual Tracking, Machine Vision and Applications, 2003, 14: 50–58.
    [83] Akmal Butt M. and Maragos P., Optimum Design of Chamfer Distance Transforms, IEEE Transactions on Image Processing, 1998, 7 (10): 1477-1484.
    [84] Shi D., Gunn S. R., and Damper R. I., Handwritten Chinese Radical Recognition Using Nonlinear Active Shape Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (2): 277-280.
    [85] Chehadeh, Y., Coquin, D., and Bolon, P., A Skeletonization Algorithm Using Chamfer Distance Transformation Adapted to Rectangular Grids, In Proceedings of the 13th International Conference on Pattern Recognition, August, 1996, 2: 131-135.
    [86] Gavrila D. M., Multi-feature Hierarchical Template Matching Using Distance Transforms, In Proceedings of the 14th International Conference on Pattern Recognition, Brisbane, August, 1998, 439-444.
    [87] Huttenlocker D. P., Klanderman G. A., and Rucklidge W. J., Comparing Images Using the Hausdorff Distance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (9): 850-863.
    [88] Wang L. X., Stable Adaptive Fuzzy Control of Nonlinear Systems. IEEE Transactions on Fuzzy System, 1993, 1(2): 146-155.
    [89] Some test videos can be available at website: http://vision.stanford.edu/~birch.
    [90] Hager G. D. and Belhumeur P. N., Efficient Region Tracking with Parametric Models of Geometry and Illumination, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (10): 1025-1039. 113
    [91] Nguyen H. T., Worring M., and Van den Boomgaard R., Occlusion Robust Adaptive Template Tracking, In Proceedings of International Conference on Computer Vision, 2001, 1: 678-683.
    [92] Papanikolopoulos N., Khosla P., and Kanade T., Visual Tracking of a Moving Target by a Camera Mounted on a Robot: a Combination of Control and Vision, IEEE Transactions on Robotics and Automation, 1993, 9 (1): 14-35.
    [93] Sidenbladh H., Black M. J., and FleetD. J., Stochastic Tracking of 3D Human Figures Using 2D Image motion, In Proceedings of European Conference on Computer Vision, 2000, 2: 702-718.
    [94] Wu Y. and Huang T. S., Color Tracking by Transductive Learning, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000, 1: 133-138.
    [95] Black M. J. and Jepson A. D., Eigentracking: Robust Matching and Tracking of Articulated Objects Using View-based Representation, International Journal of Computer Vision, 1998, 26 (1): 63-84.
    [96] Ross D., Lim J. and Yang M.-H., Adaptive Probabilistic Visual Tracking with Incremental Subspace Update, In Proceedings of European Conference on Computer Vision, 2004, 2: 470-482.
    [97] Jepson A. D., Fleet D. J., and El-Maraghi T. F., Robust Online Appearance Models for Visual Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10): 1296-1311.
    [98] Zhou S. K., Chellappa R., and Moghaddam B., Visual Tracking and Recognition Using Appearance-adaptive Models in Particle Filters, IEEE Transactions on Image Processing, 2004, 13 (11): 1491-1506.
    [99] Lee D-S., Effective Gaussian Mixture Learning for Video Background Subtraction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (5): 827-832.
    [100] Dempster A. P., Laird N. M., and Rubin D. B., Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society B, 1977, 39: 1-38.
    [101] Bilmes J. A., A Gentle Tutorial of the EM Algorithm and Its Applications to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report TR-97-021, International Computer Science Institute, University of Berkeley, California, 1998.
    [102] Huber P. J., Robust statistics, Wiley, 1981.
    [103] Some test sequences are available at the websites: http://vision.stanford.edu/~birch, http://www.cs.toronto.edu/~dross/ivt,http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html.
    [104] 周宏仁,敬忠良,王培德,机动目标跟踪,国防工业出版社,1991.
    [105] Singer R. A. and Stein J. J., An Optimal Tracking Filter for Processing Sensor Data of Imprecisely Determined Origin in Surveillance Systems, In Proceedings of the IEEE Conference on Decision and Control, 1971,171-175.
    [106] Singer R. A. and Sea R. G., A New Filter for Optimal Tracking in Dense Multi-target Environments, In Proceedings of the 9th Conference on Circuit and System Theory, 1971, 201-211.
    [107] Fortmann T. E., Bar-Shalom Y., and Scheffe M., Multi-target Tracking Using Joint Probabilistic Data Association, In Proceedings of the 19th IEEE Conference on Decision and Control, 1980, 807-812.
    [108] Fortmann T. E, Bar-Shalom Y., and Scheffe M., Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association, IEEE Journal of Oceanic Engineering, 1983, 8 (3): 173-184.
    [109] Bar-Shalom Y., Multitarget-multisensor Tracking: Advanced Applications, Norwood, Artech House Press, 1990.
    [110] Reid D. B., An Algorithm for Tracking Multiple Targets, IEEE Transactions on Automatic Control, 1979, 24 (12): 843-854.
    [111] Singer R. A., Sea R. G., and Housewright K. B., Derivation and Evaluation of Improved Tracking Filters for Use in Dense Multitarget Environments, IEEE Transactions on Information Theory, 1974, 20 (7): 423-432.
    [112] Mahler R., A Theoretical Foundation for the Stein-Winter Probability Hypothesis Density (PHD) Multi-target Tracking Approach, In Proceedings of the MSS National Symposium on Sensor and Data Fusion, 2000.
    [113] Mahler R., Multi-target Moments and Their Application to Multi-target Tracking, In Proceedings of Workshop on Estimation, Tracking and Fusion: A tribute to Yaakov Bar-Shalom, Monterey,2001, 134-166.
    [114] Mahler R., Random Set Theory for Target Tracking and Identification, Handbook of Multisensor Data Fusion, Chapter 14, CRC Press, 2002.
    [115] Mahler R., Multi-target Bayes Filtering via First-order Multi-target Moments, IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4): 1152-1178.
    [116] Vo B., Singh S., and Doucet A., Sequential Monte Carlo Implementation of the PHD Filter for Multi-target Tracking, In Proceedings of International Conference on Information Fusion, 2003, 792-799.
    [117] Vo B., Ma W.-K., and Singh S., Locating an Unknown Time-varying Number of Speakers: A Bayesian Random Finite Set Approach, In Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Philadelphia, 2005, 4: 1073-1076.
    [118] Vo B., Singh S., and Doucet A., Sequential Monte Carlo Methods for Multi-target Filtering with Random Finite Sets, IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
    [119] Ng W., Li J., Godsill S., and Vermaak J., A Hybrid Approach for Online Joint Detection and Tracking for Multiple Targets, In Proceedings of the IEEE Aerospace Conference, 2005, 1-16.
    [120] Ng W., Li J., Godsill S., and Vermaak J., Multiple Target Tracking Using a New Soft-gating Approach and Sequential Monte Carlo Methods, In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2005, 4: 1049–1052.
    [121] Li J., Ng W., Godsill, S., and Vermaak, J., Online Multitarget Detection and Tracking Using Sequential Monte Carlo Methods, In Proceedings of the 8th International Conference on Information Fusion, 2005, 1: 115-121.
    [122] Bertsekas D. P., Auction Algorithms for Network Flow Problems: A Tutorial Introduction, Computational Optimization and Applications, 1992, 1: 7–66.
    [123] Blackman S. and Popoli R., Design and Analysis of Modern Tracking Systems, Artech House Press, 1999.
    [124] Isard M. and MacCormick J., BraMBLe: A Bayesian Multiple-blob Tracker, In Proceedings of International Conference on Computer Vision, 2001, 34-41.
    [125] Kjeldsen R., and Kender J., Toward the Use of Gesture in Traditional User Interfaces, In Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition, 1996, 151-156.
    [126] Wren C., Azarbayejani A., Darrell T., and Pentland A., Pfinder: Real-time Tracking of the Human Body, In Proceedings of the 2nd International Conference On Automatic Face and Gesture Recognition, 1996, 51-56.
    [127] MacCormick J. and Blake A., A Probabilistic Exclusion Principle for Tracking Multiple Objects, In Proceedings of International Conference on Computer Vision, 1999, 572-578.
    [128] Tao H., Sawhney H. S., and Kumar R. A., Sampling Algorithm for Tracking Multiple Objects, In Workshop on Vision Algorithms, 1999, 53-68.
    [129] Hue C., Le Cadre J.-P., and Perez P., Tracking Multiple Objects with Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (3): 791-812.
    [130] Okuma K., Taleghani A., De Freitas N., J. Little J., and G. Lowe D., A Boosted Particle Filter: Multitarget Detection and Tracking. In Proceedings of European Conference on Computer Vision, 2004, 1: 28-39.
    [131] Vermaak J., Doucet A., and Perez P., Maintaining Multi-modality Through Mixture Tracking, In Proceedings of International Conference on Computer Vision, 2003, 2: 1110-1116.
    [132] Viola P. and Jones M., Robust Real time Object Detection, International Journal of Computer Vision, 2004, 57 (2): 137-154.
    [133] Viola P. and Jones M., Rapid Object Detection Using a Boosted Cascade of Simple Features, In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 1: 511-518.
    [134] Cheng C., Ansari R., and Khokhar A., Multiple Object Tracking with Kernel Particle Filter, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 20-25
    [135] 薛建儒, 郑南宁, 钟小品, 多目标跟踪的序贯分层抽样信任传播算法, 中国科学E辑信息科学, 2005, 35 (10): 1049-1063.
    [136] Vermaak J., Maskell S., Briers M., and Perez P., A Unifying Framework for Multi-target Tracking and Existence, In Proceedings of the 8th International Conference on Information Fusion, 2005, 1:250- 258.
    [137] Yu T. and Wu Y., Collaborative Tracking of Multiple Targets, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2004, 1: 834-841.
    [138] Freund Y. and Schapire R. E., Experiments with a New Boosting Algorithm, In Proceedings of the 13th Conference on Machine Learning, 1996, 148-156.
    [139] Rowley H., Baluja S., and Kanade T., Neural Network-based Face Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20: 22-38.
    [140] Schneiderman H. and Kanade T., A Statistical Method for 3D Object Detection Applied to Faces and Cars, In Proceedings of International Conference on Computer Vision, 2000.
    [141] Sung K. and Poggio T., Example-based Learning for View-based Face Detection, IEEE Transactions on Pattern and Analysis Machine Intelligence, 1998, 20: 39-51.
    [142] Crow F., Summed-area Tables for Texture Mapping, In Proceedings of the 11th Annual Conference on Computer graphics and interactive techniques, 1984, 18 (3): 207-212.
    [143] The test video can be available at website: http://www.cs.ubc.ca/spider/okumak/research.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700