空间站力矩平衡姿态研究与姿态控制器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间站代表着当今世界航天技术最复杂、最先进、整合程度最高的水平,具有重要的、其他航天器不可替代的作用。空间站的动量管理是监测CMG角动量状态,并保证CMG不发生饱和的过程,动量管理对节省空间站上的能量消耗有着重要的作用,空间站采用力矩平衡姿态是实现动量管理的一种重要方法。空间站的姿态控制系统是空间站的一个基本组成部分,对于空间站来说,保持空间站姿态的稳定性和指向是十分重要的。本文以空间站的力矩平衡姿态与姿态控制为主要研究内容,完成了以下几个方面的工作:
     首先,建立了空间站的姿态动力学模型。研究了空间站的刚性姿态动力学模型,采用集中质量法建立了挠性附件的振动方程,并将挠性振动方程引入到空间站的姿态动力学方程中,建立了空间站的挠性姿态动力学模型。
     其次,研究了动量管理中一个重要内容——力矩平衡姿态。这部分建立了空间站所受到的扰动力矩模型,并给出了扰动力矩在轨道坐标系和本体坐标系下的表达式,给出了一种迭代算法用来计算空间站的力矩平衡姿态,阐述了力矩平衡姿态自稳定的概念,并给出了相应的判断方法。最后通过仿真讨论了两种影响力矩平衡姿态的主要因素——大气密度与惯量积。
     最后,对空间站的姿态控制器的进行了设计。通过引入控制力矩陀螺的角动量方程建立了姿态控制与CMG角动量管理的线性化模型,采用状态反馈的极点配置法分别设计了俯仰通道与滚转/偏航通道的状态反馈控制器。在控制器的设计过程中,讨论了挠性振动模态所带来的约束,仿真结果表明设计的控制器可以很好的实现对考虑挠性附件影响的空间站的姿态控制以及CMG的角动量管理
Representing the most complicated, advanced and integrated level of astronautical technology, Space Station has more important applications than other spacecrafts. The attitude control system is a fundamental component of the Space Station. It is playing an important role in the higher requirements of Space Station’s pointing accuracy and its attitude stability. Momentum Management is aimed to monitor the momentum of CMG and keep it from saturation. Space Station can save its energy with the help of momentum management. The attitude control and momentum management control law have been studied in this thesis. The main contents are as follows:
     First, the kinetics model of Space Station is founded in this part. The attitude of Space Station is depicted in the form of Euler angle. In the assumption that the Space Station is a rigid body, kinetics model of rigid Space Station. Then, the vibration equation of beam appendage is derived by using lumped-mass method and the attitude dynamic model for flexible Space Station is obtained.
     Afterwards, the torque equilibrium attitude of Space Station is discussed. In this part, the models of aerodynamic torque, gravity gradient torque and gyroscopic torque are founded. Based on these models, an iterative algorithm which is used to calculate the torque equilibrium attitude is developed. Furthermore, the concept of the stability of torque equilibrium attitude and its judging methods are given. Then, two important factors, atmospheric density and the product of inertia, which are determinant to the torque equilibrium attitude, are discussed.
     The final part of this thesis is the design of the attitude control and momentum management controller. The kinetics model of the Space Station is linearized about the earth-oriented attitude. Based on the linearized equation and the momentum control equation of CMG, the state space equation of the attitude control and momentum management is obtained. In order to achieve the control purposes, state feedback controller is employed. By using the pole placement method, the state feedback controller is applied in both the pitch axis and roll/jaw axes. The flexible attitude dynamic model of Space Station is considered in the controller design procedures. The simulation results show that this controller can maintain the attitude of Space Station as well as keep momentum from saturation when disturbance exits.
引文
1袁建平,罗建军.空间站的发展及我国发展空间站的意义.科技前沿与学术评论. 1998, 20(6):99~101
    2于云登.航天与力学.中国科学技术出版社. 2005:161~164
    3 W. B. Chubb, H. F. Kennel, C. C. Rupp. Flight Performance of Skylab Attitude and Pointing Control System. NASA, TND-8003, 1975
    4 Y. R. Semyenov, V. P. Legostayev. Some Aspects of Salyut-7/Mir Station Operations. A87-15828, 1986
    5 H. H. Woo, H. D. Morgan. Momentum Management Concepts for Space Station. AIAA 86-2047,1986
    6 H. H. Woo, H. D. Morgan. Momentum Management and Attitude Control Design for a Space Station. Journal of Guidance, Control, and Dynamics. 1988, 11(1):19~25
    7 Likins P, Roberson R E. Uniqueness of Equilibrium Attitudes for Earth Pointing Satellites. Journal of Astronautical Sciences, 1966, 13: 87– 88
    8 Roberson R E, Longman R W. General Solution for the Equilibria of Orbiting Gyrostats Subject to Gravitational Torque. Journal of the Astronautical Sciences, 1969,16: 49– 58
    9 Michael R. Elegersma, David S. Chang. Determination of Torque Equilibrium Attitude for Orbiting Space Station. AIAA-92-4481CP, 1992
    10程迎坤,孙承启,张锦江.空间站力矩平衡姿态和动量平衡姿态的研究.航天控制. 2008, 26(2): 3~8
    11 J. A. Yeichner, J. F. Lee, D. Barrows. Overview of Space Station Attitude Control System with Active Momentum Management. AAS88- 044, 1988
    12 B. Wie, K.W. Byun, V. W. Warren. New Approach to Attitude/Momentum Control for the Space Station, Journal of Guidance, Control and Dynamics. 1989, 12(5):714~722
    13 S. R. Vadali, H. S. Oh. Space Station Attitude Control and Momentum Management:a Nonlinear Look. Journal of Guidance, Control and Dynamics. 1992, 15(3):577~586
    14 J. J. Sheen, R. Bishop. Spacecraft Nonlinear Control. The Journal of the Astronautical Sciences. 1994, 42(3):361~377
    15 S. J. Paynter, R. H. Bishop. Indirect Adaptive Nonlinear Attitude Control and Momentum Management of Spacecraft Using Feedback Linearization. AAS95- 418, 1995
    16周黎妮,唐国金,李海阳.基于稳定度设计的空间站姿态TEA稳定LQR控制器.宇航学报. 2007, 28(5):45-51
    17 S. R. Vadali, K. S. Singh. Attitude Control of Spacecraft Using Neural Networks. Advances in the Astronautical Sciences. 1993, 82:271~285
    18 G. J. Balas, A. Packard, J. T. Harduvel. Application ofμ-synthesis Techniques to Momentum Management and Attitude control of the Space Station. AIAA-91- 2662, 1991
    19 Shain E B, Spector V A. Adaptive Torque Equilibrium Control of the Space Station. AIAA-85-0028, 1985
    20 Wie B, Hu A, Singh R. Multi-body Interaction Effects on Space Station Attitude Control and Momentum Management. Journal of Guidance, Control and Dynamics, 1990, 13(6):993~999
    21吴忠,赵建辉.空间站姿态控制与动量管理系统设计与仿真.系统仿真学报. 2006, 18(1):151~154
    22 Singh S N, Bossart T C. Feedback Linearization and Nonlinear Ultimate Boundedness Control of the Space Station Using CMG. AIAA-90-3354,1990
    23 S. J. Paynter, R. H. Bishop. The Singularities of Nonlinear Attitude Control with Momentum Management. AIAA-97-0111, 1997
    24 Choi M T, Flashner H. Neural-Network-Based Spacecraft Attitude Control and Momentum Management. AIAA-2000-4455, 2000
    25 Parlos A G, Sunkel J W. Adaptive Attitude Control and Momentum Management for Large-angle Spacecraft Maneuvers. Journal of Guidance, Control and Dynamics. 1992, 15(4): 1018-1028
    26 Mapar J, Hu T H. Momentum Management Controller Design for Space Station during Payload Maneuvers. AIAA-95-3310CP. 1995
    27 Kumar R R, Seywald H. Attitude Control and Momentum Management of Spacecraft Based on a Sensitivity Observation. AAS 96-176, 1996
    28 Chang D S, Lee J F L. Flexible of Space Station Attitude Control System Analysis & Design. AIAA-1992-4486-CP, 1992
    29胡珊,袁建平,李文.空间站姿态控制和动量管理研究.航天控制. 2004,22(5):837~842
    30邓以军,田军,王亚锋,雷军委.飞行器姿态控制方法综述.战术导弹控制技术. 2006(2):7~13
    31 Jianhua Zheng, Stephen P. Banks, Hugo Alleyne. Optimal attitude control for three-axis stabilized flexible spacecraft. Acta Astronautica. 2005, 56(5):519-528
    32 C E Rohrs. Robustness of Adaptive Control Algorithm in The Presence ofUnmodeled Dynamics. Proc. of CDC.1982
    33 J.J.Shan,Dong Sun and Dun Liu. Design for Robust Component Synthesis Vibration Suppression of Flexible Structures with On-off Actuators. IEEE Trans. Robotics and Automation. 2004, 1(3):512~525
    34 Ganesh B Maganti, Sahjendra N Singh. Simplified adaptive control of an orbiting flexible spacecraft. Acta Astronautica. 2007,61(7-8):575~589
    35 Hyochoong Bang, Cheol Keun Ha, Jin Hyoung Kim. Flexible spacecraft attitude maneuver by application of sliding mode control. Acta Astronautica. 2005, 57(11):841~850
    36 Yen Wen Liang,Sheng Dong Xu,Che Lun Tsai. Study of VSC Reliable Designs with Application to Spacecraft Attitude Stabilization. IEEE Transactions on Control Systems Technology. 2007, 15(2): 332~338
    37 Morteza Shahravi,Mansour Kabganian,Aria Alasty. Adaptive Robust Attitude Control of A Flexible Spacecraft. International Journal of Robust and Nonlinear Control. 2006, 16(6): 287~302
    38刘暾,赵均.空间飞行器动力学.哈尔滨工业大学出版社. 2003:153~166
    39胡恒章.航天器控制.宇航出版社. 1997:143~144
    40 G S Nurre. Dynamics and Control of Large Space Structures. Journal of Guidance, Control and Dynamics. 1984.7(5):514~526
    41 F L Lee J. Space station attitude control system. 43rd Congress of the International Astronautical Federation. 1992
    42章仁为.卫星轨道姿态动力学与控制. 1998: 184~185
    43周黎妮,唐国金,罗亚中.空间站力矩平衡姿态稳定性研究.系统工程与电子技术. 2005, 15(9): 1162~1166
    44 B. Wie, K.W. Byun, V. W. Warren. A New Momentum Management Controller for the Space Station. AIAA-88-4132CP, 1988
    45 Alexander, G. Parlos, John, W. Sunke. Attitude Control/Momentum Management of the Space Station Freedom for Large Angel Torque Equilibrium Attitude Configurations. AIAA-90-3352CP, 1990
    46 J. W. Sunkel, L. S. Shieh. Optimal Momentum Management Controller for Space Station. Journal of Guidance, Control and Dynamics. 1990, 13(4):659~668
    47周军.航天器控制原理. 2001:51~54
    48 Renith R. Kumar, Michael L. Heck. Predicted Torque Equilibrium Attitude Utilization for Space Station Attitude Control. AIAA-90-3318CP, 1990
    49 David A. Vallado, David Finkleman. A Critical Assessment of Satellite Drag and Atmospheric Density Modeling. Astrodynamics Specialist Conference andExhibit. 2008
    50 Sahjendra N. Singh, Theodore C. Bossart. Exact Feedback Linearization and Control of Space Station Using CMG. IEEE Transactions on Automatic Control. 1993, 38(1):184~187
    51 T. B. Garber. Influence of Constant Disturbing Torques on the Motion of Gravity-Gradient Stabilized Satellites. AIAA Journal. 1(4):968~969
    52 AnnM.Delleur, TimothyW.Propp. Operational Workarounds for the Space Station Beta Gimbal Anomaly. Journal of Spacecraft and Rockets. 2005, 42(4):721~728
    53 L. R. Bishop, K. L. Lindsay. Proposed CMG Momentum Management Scheme for Space Station. AIAA-87-2528, 1987
    54 X. M. Zhao, L. S. Shieh. Self-Tuning Control of Attitude and Momentum Management for the Space Station. Journal of Guidance, Control and Dynamics. 1992, 15(1):17~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700