高性能风扇/压气机三维叶片气动设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机作为航空发动机三大核心部件之一,其叶片通道内部的损失直接影响着整台发动机的性能、稳定性和经济性。当现代先进航空发动机的设计趋势朝着高推重比的方向不断发展时,压气机通道内的逆压梯度和叶片负荷随之不断增加,此时角区分离或者轮毂-角区失速极易在通道内出现并造成严重的总压损失。三维叶片设计技术通过改变积叠线的空间位置,引入了径向上的作用力,改变了叶片表面和端壁面的压力分布,减弱了叶片端部和轮毂表面低能流体的积聚,从而降低角区分离强度,减小叶片通道内的流动损失,压气机的效率和稳定裕度得以提高。本质上而言,通道内的流动过程就是不同涡系的发展运动及其相互掺混作用的过程,只有从涡运动的角度出发,通过详细的参数化计算和流场测量实验,才能更深入地了解和揭示三维叶片在通道内部的减损机理和影响规律。
     本文以一台双级低速轴流压气机试验器为研究对象,通过数值方法,改变第1级静子的积叠线形式以及弯高、弯角等积叠线参数,研究了带有根部间隙时的简单贝塞尔曲线(SBC)和直线-贝塞尔曲线-直线(BLB)两种积叠线形式的弯曲静子和不带有根部间隙下的BLB形式弯曲叶片对压气机性能和通道内涡系结构的影响,从而揭示弯曲叶片在两种安装形式下的降损机制。根据数值计算的结果,选取了带有根部间隙下效果最好的一组BLB形式弯曲叶片进行加工,并加装在压气机上进行实验研究。实验获得了直叶片和弯曲叶片压气机的特性曲线,并通过4根不同长度的五孔探针和1根四孔探针,测量了最大流量工况和近失速工况下直叶片和弯曲叶片通道内不同轴向位置截面上的气流参数。除此之外,本文还在不同畸变进气条件下对直、弯叶片压气机进行了总特性测量和第1级静子出口截面流场测量。对弯曲叶片在畸变进气条件下的作用机理进行了简要的探讨。
     从不带有根部间隙的计算结果可知,在小流量范围内,轮毂-角区失速是压气机第1级静子S1通道内损失的主要来源。由于弯曲叶片减小了叶片两端的叶片负荷和轮毂表面低压区的面积,减弱了叶片端部低能流体的聚积和端壁附面层低能流体从压力面到吸力面的横向流动,轮毂表面分离涡和集中脱落涡的强度由此降低。同时分离涡在向下游发展过程中,不再向上跃起与吸力面集中脱落涡进行掺混,因此叶片通道内的损失大幅度地降低。弯曲叶片积叠线分别为SBC和BLB两种形式时,效率最大增幅都达到1个百分点左右。
     带有根部间隙的计算结果表明,在带有根部间隙的叶片通道中,叶尖分离涡、叶根泄漏涡以及叶根泄漏涡与下通道涡之间的掺混是造成总压损失的主要原因。弯曲主要是通过改变端部的叶片负荷,从而控制叶尖和叶根的附面层聚积以及轮毂低能流体横向移动,主要涡系的强度因此减小,同时下通道涡的位置更远离泄漏涡,它们之间的相互掺混程度也由此降低,总压损失减小。当叶片带有根部间隙时,BLB形式的弯曲叶片主要改善了小流量范围内的压气机性能。在近失速点附近,弯高为10%叶高,弯角为15°的叶片获得了最大的效率增益,为0.3个百分点。
     无论是否带有间隙,计算的结果均表明,弯曲的效果主要体现在通道内损失较大的小流量范围,而在损失较小的大流量范围内,弯曲对压气机性能的改善并不明显;同时,弯角和弯高过大使得叶片表面摩擦损失增加,甚至导致弯曲叶片压气机的效率低于直叶片压气机的。这是由于弯曲叶片最终降损效果是其减小的分离损失和弯曲带来的摩擦损失之间的折衷。
     带有根部间隙的弯曲叶片压气机实验证实了弯曲叶片对压气机性能的改善作用,其对压气机的性能提升也主要体现在损失较高的小流量范围。由于数值计算对叶尖区域的分离预估相比实验值要小,实验得到的效率增益大于数值计算的结果。在流量系数为0.637时,效率增益达到最大的1个百分点。静子通道内的损失主要来源于叶尖角区分离、叶根泄漏涡以及其与下通道涡的掺混。在小流量范围内,弯曲叶片降低并减小了叶尖分离涡、叶根泄漏涡和下通道涡的强度和尺度,同时使得后面两个涡系的形成位置更加靠后,从而减小了通道内的总压损失。
     弯曲叶片同样能在畸变进气条件下改善压气机的性能。在叶尖径向进气畸变和180°周向进气畸变下,弯曲叶片的最大效率增益均为1个百分点左右。但在叶尖径向畸变下,弯曲叶片主要是在大流量范围内提升压气机的性能,随着流量减小,弯曲叶片压气机的性能最后基本与直叶片压气机的相差无几。而在周向畸变下,弯曲叶片的效果随着流量的减小逐渐得以体现。造成这样的原因是因为叶尖径向畸变使得叶尖的损失加大,而叶根损失减小。在小流量范围,由于弯曲叶片在叶尖区域的降损能力非常微弱,而叶根处的损失相对较小,损失减小幅度也并不大。在周向畸变下,压气机可以简单近似地被看作是“均匀进气”下两台工作在不同流量的子压气机组合。当弯曲叶片在进口流量较小的子压气机内降损能力较弱时,而在另一台子压气机内还有一定的降损能力,因此整台压气机的性能得以继续提升。
As a principal part of the aero-turbo engine, the flow loss in the blade channel is affecting totalaerodynamic performance, stability, and economy. The adverse pressure gradient and blade loadingin compressor blade channel keep increasing when the modern aero-tubo engine design demandshigher and higher thrust-weight ratio. The corner separation or hub-corner stall will arise and causegreat total pressure loss. The three-dimensional blading design technique changes the location ofblade stacking line to introduce the radial force, which will change the static pressure distribution onthe suction and hub surface, to control the vortex development and strength of shockwave, so it hasthe ability to improve total performance and stability of the compressor. The flow development in thecompressor blade passage is the development and mixing of all kinds of vortex, so it is necessary tostudy the loss decrease mechanism and effect law of the three-dimensional blade through detailednumerical simulation and flow field measurement in the view of vortex development.
     Numerical investigation is carried out on a two-stage low speed axial compressor. The SBC andBLB type stacking lines of the first stage stator S1are chosen to study the effect of bowed parameter,bowed height and bowed angles, on the total performance and vortex with and without hub clearance,after that the loss decrease mechanism is discussed. Based on the numerical simulation results, a set ofBLB blades with best effectiveness is produced and installed on the compressor. Then experiments arecarried out in the straight blade compressor and bowed blade one. The flow field at five differenttransverse sections is measured by four different lengths of five-hole hole probes and a four-holeprobe. Finally, experiments of the both compressor with inlet distortion are carried out. Through theexperiment total performance of compressor and flow field of outlet transverse sections of S1aremeasured, the mechanism of loss decrease with inlet distortion is discussed.
     It is found that hub-corner stall is the main cause for the rapid increase of total pressure loss inthe compressor stator passage with hub clearance at near stall condition. Bowed stator has suppressesthe accumulation of low energy fluid at both ends of blade and the cross-flow on the hub surface bydecreasing the blade loading at both blade ends and the area of low static pressure on the hub surface,so it decreases the strength of hub separation vortex and concentrated shedding vortex. Moreover, thehub separation vortex does not go up and mix with concentrated shedding vortex so the loss isdecreased greatly and the hub-corner stall disappears. Efficiency has been increased by one percentaround both in the SBC b and BLB type blade.
     The result with hub clearance shows that tip separation vortex, hub leakage vortex and lowerpassage vortex are the main cause for the increase of loss in the blade passage. The bowed bladereduces the blade loading at both ends to suppresses the accumulation of low energy fluid, and thecross-flow at the hub surface, so the distance between lower passage vortex and hub leakage vortexgets bigger, which makes the mixing loss between the two vortexes decrease. At the near the stallpoint, the BLB blades with10%blade height and15°degrees has increased the efficiency by0.3percent. It is proved that bowed blade improves the performance of compressor mainly at low flowrate, whether with hub clearance or without. While at great flow rate the effect of bowed stator is notclear. Moreover, the efficiency of bowed blade compressor may be smaller than the straight one. It isbecause that bowed blade can decrease the flow loss, it also bring the surface friction loss on the otherhand. It is a comprehensive result for bowed blade.
     The experiment has verified that the bowed stator with hub clearance can improve theperformance indeed. The biggest efficiency profit is about one percent at the flow rate of0.637. Themain flow loss is caused by the tip corner separation, hub leakage vortex, and the mixing between hubleakage vortex and lower passage vortex. At low flow rate, bowed blade has decrease the strength ofthose vortexes, and it also has delays the appearance of hub leakage vortex and lower passage vortex,so the flow loss has decreased.
     Bowed blade can also improve performance of the compressor with inlet distortion. Theefficiency profit of bowed blade is one percent both under radial distortion and circumferential one.Bowed blade improves performance of the compressor mainly at great flow rates. As the flow rategets smaller, there is nearly no different between bowed blade compressor’s performance and straightone. While the effect of bowed blade becomes more and more clear when the flow rate gets smaller.The reason is that tip radial distortion makes the loss near the blade tip more serious, while the lossnear the hub less serious. As the flow rate gets smaller, the bowed blade’s capability of reducing lossis reaching its limitation. On the other hand, the loss near the hub is not serious, so there is noobvious efficiency profit near the hub. Under the circumstantial distortion the compressor is dividedinto two segment compressors. One segment is under a bigger flow rate, the other is under a smallerflow rate. So when the bowed blade in the former reaches its limitation, while the latter still has someresidual capacity to reduce the loss. So the entire compressor’s performance keeps improved.
引文
[1]王巍巍,郭琦,黄顺洲. IHPTET计划的先进项目管理方法.燃气涡轮试验与研究,2011,24(2):58~62.
    [2]方昌德.航空发动机的发展前景.航空发动机,2004,30(1):1~5.
    [3]吴大观.关于新版综合高性能涡轮发动机技术计划—兼谈航空发动机研制中“基础技术”和“验证机”的重要作用.航空发动机,2003,29(2):1~4.
    [4]刘大响.航空动力发展的历史性机遇.2005,31(2):1~3.
    [5]期刊特约记者.APTD计划取得阶段性成果.燃气涡轮试验与研究,2006,19(3):6~7.
    [6]陈懋章.风扇/压气机技术发展和对今后工作的建议.航空动力学报,2002,17(1):1~5.
    [7] Koch C C, Smith L H. Loss Sources and Magnitudes in Axial-Flow Compressors. ASMEJournal of Engineering for Power,1976,98(2):411~416.
    [8]程荣辉.轴流压气机设计技术的发展.燃气涡轮实验与研究,2004,17(2):1~8.
    [9]季路成等.轴流压气机设计中“掠”的另类认识.工程热物理学报,2005,26(4):567~571.
    [10] Smith L H, Yeh H. Sweep and Dihedral Effects in Axial-Flow Turbomachinery. Journal of BasicEngineering,1963,85:404~414.
    [11] Sasaki T, Breugelmans F. Comparison of Sweep and Dihedral Effects on Compressor CascadePerformance. Journal of Turbomachinery,1998,120:454~464.
    [12] Weingold H D, Neubert R J, Behlke R F. Bowed Stator: An Example of CFD Applied toImprove Multistage Compressor Efficiency. Journal of Turbomachinery,1997,119:161~168.
    [13] Cumpsty N A. Unresolved Problems in Turbomachine Design-3D Design of Blades. IowaTurbomachinery Course Notes,1990.
    [14] Place J M. Three-Dimensional Flow in Axial Compressors. Ph.D. Thesis, University ofCambridge,1997.
    [15] WANG Z Q, Su J X, Zhong J. The Effect of the Pressure Distribution in a Three-DimensionalFlow of a Cascade on the Type of Curved Blades. ASME Paper94-GT-409,1994.
    [16]胡骏,吴铁鹰,曹人靖.航空叶片机原理,北京:国防工业出版社,2006.
    [17] Breugelmans F A E, Demuth M. Influence of Dihedral on the Secondary Flow in aTwo-Dimensional Compressor Cascade. ASME Journal of Engineering for Gas Turbines andPower,1984,106:578~584.
    [18] Wisler D C. Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing.Journal of Engineering for Gas Turbine and Power,1985,107(2):354~363.
    [19] Shang E, Wang Z Q, Su J X. The Experimental Investigations on the Compressor Cascades WithLeaned and Curved Blades. ASME Paper93-GT-50,1993.
    [20] Gümmer V,Wenger U, Kau H. Using Sweep and Dihedral to Control Three-Dimensional Flow inTransonic Stators of Axial Compressors. ASME Paper2000-GT-0491,2000.
    [21] Gallimore S J, Bolger J J, Cumpsty N A. The Use of Sweep and Dihedral in Multistage AxialFlow Compressor Blading, Part2: Low and High Speed Designs and Test Verification. ASMEPaper2002-GT-30329,2002.
    [22] Roy B, Laxmiprasanna PA, Vishal B. Low Speed Studies of Sweep and Dihedral Effects onCompressor Cascades. ASME Paper,2002-GT-30441,2002.
    [23] Fischer A, Riess W, Seume J R. Performance of Strongly Bowed Stators in a4-Stage HighSpeed Compressor. ASME Paper,2003-GT-38392,2003.
    [24]王仲奇.一代新型轴流式透平机械叶片──叶片的弯扭联合气动成型理论及其实验结果.工程热物理能源利用学科气动热力学发展战略研讨会专题报告汇编:55~65,1989.
    [25]苏杰先,冯国泰,闻杰,王仲奇.弯曲叶片在压气机中的应用.工程热物理学报,1990,114:407~407.
    [26] Han Wanjin, Shi Hong, et al. Effects of Leaning and Curving of Blades with High TurningAngles on the Aerodynamic Characteristics of Turbine Rectangular Cascades. ASME J. ofTurbomachinery,1994,116:351~354.
    [27]顾发华,王仲奇,杨弘,冯国泰.叶片的周向弯曲与弦向弯曲及其数值分析.工程热物理学报,1994,15(3):264~269.
    [28]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究,[博士学位论文].哈尔滨:哈尔滨工业大学,1995.
    [29]张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [30]张永军.扩压叶栅采用弯叶片控制流场结构与改善气动性能的研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [31]陆华伟.轴向间隙对直、弯静叶轴流压气机时序效应影响的研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [32]毛明明.跨声速轴流压气机动叶弯和掠的数值研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [33]单鹏,桂幸民,周盛.高负荷后掠风扇设计若干基本问题.工程热物理学报,1999,20(5):576~579.
    [34]邹正平,赵令德,陈懋章.叶轮机叶片的三维造型及其对叶片气动负荷的影响.航空动力学报,1998,13(3):235~240.
    [35]聂晶,杨瑾,童悦.大型民机发动机关键技术与发展趋势.航空制造技术,2012,(1):34~37.
    [36]蒋洪德.美国航空发动机和计算流体力学发展情况介绍.气动热力学发展战略研讨会专题报告汇编,1989.
    [37]肖柳.系列化发展的PW4084型发动机.国际航空,1992,(6):21~23.
    [38]单晶叶.核心机之路—浅谈第四代大推力军用涡轮风扇发动机发展.航空档案,2009,(9):56~65.
    [39] Tubbs H, Rea A. Aerodynamic Development of the High Pressure Compressor for the IAEV2500Aeroengine. Imech EC425/023,1991.
    [40] Lakshminarayana B, Horlock J H. Review: Secondary Flows and Losses in Cascades and AxialFlow Turbomachines.1963, International Journal of Mechanical Science.
    [41] Horlock J, Lewis J, Perciva L, Lakshminarayana B. Wall Stall in Compressor Cascade.1966,ASME Journal of Basic Engineering.
    [42] Muller R, Vogeler K. Endwall Boundary Layer Control in Compressor Cascades. ASME Paper2004-GT-53433,2004.
    [43] Denton J D. Loss Mechanisms in Turbomachines.ASME Paper93-GT-435,1993.
    [44] Hosny W, Tabakoff W. An Analysis of Losses and Secondary Flow in Turbine Cascade.AD-736853.
    [45] Moore X, Richardson Y. Skewed Boundary Layer Flow near End Walls of a CompressorCascade. ASME J.of Engineering for Gas Turbines and Power,1957,79:1789~1800.
    [46] Salvage J W. Investigation of Secondary Flow-Behaviour and End Wall Boundary LayerDevelopment through Compressor Cascades. Von Karman Institute for Fluid Dynamics,Technical Note107,1974.
    [47] Inoue M, Kuroumaru M. Three-Dimensional Structure and Decay of Vortices Behind an AxialFlow Rotation Blade Row. ASME Paper83-GT-69,1983.
    [48] Kang S. Investigation of the Three Dimensional Flow within a Compressor Cascade with andwithout Tip Clearance. Ph.D. Thesis, Dept. of Fluid Mechanics, Vrije Universiteit Brussel,1993.
    [49] Inoue M, Kuroumaru M. Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor.ASME Journal of Turbomachinery,1989,111:250-256.
    [50] Smith G, Cumpsty N. Flow Phenomena in Compressor Casing Treatment. ASME Journal ofEngineering for Gas Turbines and Power,1984,106(3):532~541.
    [51] Khalid S. The Effects of Tip Clearance on Axial Compressor Pressure Rise. Ph.D. Dissertation,Dept. of Mechanical Engineering, Massachusetts Inst. of Tech., Cambridge, MA,1995.
    [52] Yang H, Nuemberger D, Nieke E A. Numerical investigation of casing treatment with aconservative mixed-cell approch. ASME Paper2003-GT-28483,2003.
    [53] Wilke I, H Kau. A numerica linvestigation of the flow mechanism in a HPC front stage withaxial slots. ASME Paper, GT-2003-38481,2003.
    [54]楚武利,卢新根,吴艳辉.带周向槽处理的压气机内部流动数值模拟与实验.航空动力学报,2006,2(1):100~105.
    [55] Hiller S, Matzgeller R, et al. Stability Enhancement Of a Multi Stage Compressor By AirInjection. ASME Paper2009-GT-59868,2009.
    [56] Cassina G, Beheshti B. Parametric Study of Tip Injection in an Axial Flow Compressor Stage.ASME Paper,2007-GT-27403,2007.
    [57] Suder K, Hathaway M. Compressor Stability Enhancement Using Discrete Tip Injection. ASMEJ. Turbomachinery,2001,123(1):14-23.
    [58] Berdanier R. Hub Leakage Flow Resarch inAxial Compressors: ALiterature Review. Reports.
    [59] Cheng P, Prell E, Greitzer E, Tan C. Effects of Compressor Hub Treatment on Stator StallMargin and Performance. Journal of Aircraft,1984,21(7):469~475.
    [60] Dong Y, Gallimore S, Hodson H. Three-Dimensional Flows and Loss Reduction in AxialCompressors. ASME Journal of Turbomachinary,1987,109:354-360.
    [61] Storer J A, Cumpsty N A. Tip Leakage Flow in Axial Compressors. ASME, Journal ofTurbomachinery,1991,113(2):252~259.
    [62] Storer J A, Cumpsty N A, An Approximate Analysis and Prediction Method for Tip ClearanceLoss in Axial Compressors. ASME Journal of Turbomachinery,1994,116(4):648-656.
    [63] Gbadebo S, Cumpsty N, Hynes T. Interaction of Tip Clearance Flow and Three-dimensionalSeparations in Axial Compressors. ASME Paper2006-GT-90071,2006.
    [64] Swoboda M, Ivey P, Wenger U, Gummer V. An Experimental Examination of Cantilevered andShrouded Stators in a Multistage Axial Compressor. ASME Paper GT-98-282,1998.
    [65] Crook A, Greitzer E, et al. Numerical Simulation of Compressor Endwall and Casing TreatmentFlow Phenomena. ASME Journal of Turbomachinery,1993,115:510-521.
    [66] Tschirner T, Johann E, Müller R,Vogeler K. Effects of3D Aerofoil Tip Clearance Variation on a4-Stage Low Speed Compressor. ASME Paper2010-GT-90902,2010.
    [67] Lee C Y, Song J, Lee S, et al. Effect of a Gap Between Inner Casing and Stator Blade on AxialCompressor Performance. ASME Paper2010-GT-22439,2010.
    [68]陆华伟,郭爽,陈浮等.带根部间隙的直、弯压气机静叶流场的实验.推进技术,2009,30(5):581~587.
    [69]张少平,苏廷铭,罗秋生等.航空发动机压气机径向间隙设计方法研究.燃气涡轮实验与研究,2011,24(4):25~31.
    [70]左志涛,朱阳历,张冬阳等.静叶轮毂间隙对高压压气机气动性能的影响.推进技术,2011,32(3):329~338.
    [71]田江涛,吴艳辉,李清鹏等.静子轮毂角区失速与尖隙流动相互作用机理分析.工程热物理学报,2011,32(12):2034~2039.
    [72]余春华,蒋洪德,袁巍等.轮毂旋转对环形叶栅角区流场的影响.航空动力学报,2012,27(12):2792~2798.
    [73] Lei, V M, Spakovszky Z S, Greitzer E M. A criterion for axial compressor hub-corner stall.ASME Paper GT-2006-91332,2006.
    [74] Horlock J, Percival P. Wall Stall in Compressor Cascades. ASME Fluids Engineering Division,Winter Annual Meeting, NewYork, Paper64-WA/FE-29,1964.
    [75] R Peacock. Boundary-Layer Suction to Eliminate Corner Separation in Cascades of Airfoils.Tech. rep., Reports and Memoranda, No.3663, Engineering Department,University ofCambridge,1965.
    [76] Stratford B. The prevention of separation and flow reversal in the corners of compressor bladecascades. Aeronautical Journal:1973,249~256.
    [77] Joslyn H, Dring R. Axial Compressor Stator Aerodynamics. ASME Journal of Engineering forGas Turbinesand Power,1985,107:485~493.
    [78] Schulz H, Gallus H. Experimental Investigation of the Three-Dimensional Flow in an AnnularCompressor Cascade. ASME Journal of Turbomachinary,1988,110:467~478.
    [79] Wellborn S, Okiishi T. Effects of Shrouded Stator Flows on Multistage Axial CompressorAerodynamic Performance. NASA Contractor Report198536,1996.
    [80] Barankiewicz W, Athaway M. Impact of Variable-Geometry Stator Hub Leakage in a Low SpeedAxial Compressor. ASME Paper98-GT-194,1998.
    [81] Hah C, Loellbach J. Development of Hub Corner Stall and its Influence on the Performance ofAxial Compressor Blade Rows. ASME Journal of Turbomachinary,1999,121:67–77.
    [82] Demargne A, Longley J. The Aerodynamic Interaction of Stator Shroud Leakage andMainstream Flows in Compressors. ASME Paper2000-GT-570,2000.
    [83] Kirtley K, Graziosi P. Design and Test of an Ultra-Low Solidity Flow-Controlled CompressorStator. ASME Paper2004-GT-53012,2004.
    [84] Eugen L, Dragan K, Stark U. Experimental and Numerical Analysis of Hub-Corner Stall inCompresso Cascades. ASME Paper2010-GT-22704,2010.
    [85] Schulz H, Gallus H. Experimental Investigation of the Three-Dimensional Flow in an AnnularCompressor Cascade. ASME Journal of Turbomachinary,1988,110:467~478.
    [86] H Schulz, H Gallus, Lakshminarayana B. Three-Dimensional Separated Flow Field in theEndwall Region of an Annular Compressor Cascade in the Presence of Rotor-StatorInteraction:Part1-Quasi-Steady Flow Field and Comparsion with Steady-State Data. Journal ofTurbomachinery, ASME,1990,1(112):669~678.
    [87] Barankiewicz W, Hathaway M. Impact of Variable-Geometry Stator Hub Leakage in a LowSpeed Axial Compressor. ASME Paper98-GT-194,1998.
    [88] Hah C, Loellbach J. Development of Hub Corner Stall and its Influence on the Performance ofAxial Compressor Blade Rows. ASME Journal of Turbomachinary,1999,121:67~77.
    [89] Weber A, H Schreiber, Fuchs H, et al.3-D Transonic Flow in Compressor Cascade withShock-Induced Corner Stall. Journal of Turbomachinery,2002,124:358~365.
    [90] Culley D, Bright M, Prahst P, et al. Active Flow Separation Control of a Stator VaneUsingEmbedded Injection in a Multistage Compressor Environment. ASME J. ofTurbomachinary,2003,126(1):24~34.
    [91]刘大响,叶培梁,胡骏等.航空燃气涡轮发动机稳定性设计与评定技术.北京:航空工业出版社,2004.
    [92] FuhsAE. Intuoduction to Distortion Induced Engine Instability.AGARD LS-7, London,1974.
    [93] Billet G, Huard J. Experimental and numerical study of the response of an axial compressor todistorted inlet flow. Journal of Fluids Engineering,1988,110(4):355~360.
    [94] Chue R, Hynes T, Greitzer E, et al. Calculation of Inlet Distortion Induced Compressor FlowField Instability. International Journal of Heat and Fluid Flow,1989,10(3):211~223.
    [95] Hale A, O'Brien W. AThree Dimensional Turbine Engine Analysis Compressor Code (TEACC)for Steady-State Inlet Distortion. Journal of Turbomachinery,1998,120(3):422~430.
    [96] Hah C, Rabe D, Sullivan T, et al. Effects of Inlet Distortion on the Flow Field in a TransonicCompressor Rotor. ASME Paper96-GT-547,1996.
    [97]乔渭阳,蔡元虎,陈玉春.进气畸变对压缩系统稳定性影响的数值模拟.推进技术,2001,22(4):307~310.
    [98]王永明,胡骏,邓艳.进气畸变对轴流压气机性能影响的准三维计算.推进技术,2004,25(4):343~348.
    [99]江勇,李军,桑增产.发动机进气畸变流场的测量系统分析.燃气涡轮试验与研究,2000,13(1):53~56.
    [100]胡骏.进气畸变对轴流压气机性能影响实验研究.航空动力学报,2001,16(2):142~146.
    [101] Sun Peng, Han Ji’ang, Zhong Jingjun. Effects of Bowed Stator on aTransonic Fan DistortedInlet. ASME Paper2008-GT-50523,2008.
    [102] Wadia A, Szucs P. FORWARD SWEPT ROTOR STUDIES IN MULTISTAGE FANS WITHINLET DISTORTION. ASME2002-GT-30326,2002.
    [103]张永军,颜培刚,黄家烨等.进口总压径向畸变对扩压叶栅弯叶片流场性能的影响.推进技术,2006,27(4):331~335.
    [104]孙鹏,钟兢军,冯国泰.跨声速风扇流场中弯叶片抗畸变能力研究.工程热物理学报,2008,29(7):1111~1115.
    [105] Leer B V. CFD education: past, present, future.AIAApaper,1999-0910,1999.
    [106] Denton J. Some Limitations of turbomachinery CFD. ASME Paper2010-GT-22540,2010.
    [107]王志强.高压压气机低速模拟方法研究,[博士学位论文].南京:南京航空航天大学,2010.
    [108] Numeca Fine/Turbo用户手册.
    [109]罗钜.弯曲叶片对压气机轮毂角区失速的影响.南京航空航天大学学报,2012,44(2):39~145.
    [110] Kjelgaard S. Theoretical Derivation and Calibration Technique of a Hemispherical-TippedFive-Hole Probe. NASA Technical Memorandum4047,1988.
    [111]闫久坤,吴昌明.小球型五孔探针在压气机试验中的应用.航空动力学报,1991,6(4):352~354.
    [112]钟兢军,宋彦萍,芦文才.五孔探针非对向测量法在风洞自动测试系统的应用.哈尔滨工业大学学报,1997,29(3):61~64.
    [113] Morrison G, Schobeiri M, Pappu K. Five-hole Pressure Probe Analysis Technique, FlowMeasurement and Instrumentation. Flow Measurement and Instrumentation,1998,9(3):153~158.
    [114]杨敏官,王军锋,罗惕乾等.流体机械内部流动测量技术.北京:机械工业出版社,2006.
    [115]侯敏杰,刘方余.球面压力五孔探针的校准与使用.燃气涡轮试验与研究,1997,(2):37~41.
    [116]屠宝锋.风扇/压气机动态失速过程和多尺度非定常气动稳定性研究,[博士学位论文].南京:南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700