角叉菜四分孢子和果孢子早期发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角叉菜(Chondrus)是一种重要的经济红藻,广泛应用于食品行业及卡拉胶的提取工业。从种苗繁育的角度看,对角叉菜早期发育的研究意义重大。自然环境下角叉菜的生活史循环已得到阐释,但对其四分孢子及果孢子在室内条件下的早期发育过程还远远了解不够,因此有必要对其早期发育的具体特征和影响因素进行详细的分析研究。
     本研究以青岛海域常见的角叉菜(Chondrus ocellatus Holm)作为实验材料,分析了实验室培养条件下温度及光强两个环境因子对其四分孢子和果孢子早期生长发育的影响,同时对整个发育过程进行了观察与记录。研究结果表明角叉菜两种孢子的早期生长发育过程基本一致,从孢子附着后萌发到长出幼苗,整个过程经历三个发育阶段:分裂期、盘状体期和直立幼苗形成期。另外,在早期发育过程中观察到多个盘状体融合的现象,这种融合使得孢子幼苗对基质的附着更加稳固,有利于其生存。通过设定6个温度梯度(10℃、15℃、20℃、22℃、25℃、28℃)及2个不同光照强度(10、60μmol photos m-2s-1)条件,确立了角叉菜果孢子及四分孢子最适培养温度为20℃,而最适光照强度为60μmol photos m-2s-1。角叉菜四分孢子和果孢子的早期生长发育均显示出较宽的温度耐受范围(10-25℃),但在28℃的高温条件下,两种孢子均会逐渐褪色死亡。分别采用单因素方差分析和独立样本t检验两种统计学方法分析温度和光强的影响,发现温度、光强的变化对角叉菜盘状体生长均有显著性影响。高光照可促进两种孢子的生长与发育,而低温(10℃)则会抑制孢子的的生长与发育。
Chondrus is one of the commercial red seaweeds widely used for food and carrageen production. The early development is crucial for the seedling nursing. Natural cycle of the algal life history is well understood, but the properties of development of tetraspore and carpospore are still very poorly known. It is therefore necessary to understand the physiological influences on its early development. Here in our study, the thalli of C. ocellatus Holm were collected from the natural habitants in Qingdao, China, from Oct. to Dec. 2008. The effects of temperature and irradiance on the early development of C. ocellatus tetraspores and carpospores under laboratory conditions were conducted, and meanwhile the properties of development process was observed and recorded. It is showed that there are no obvious differences existing between the early development of tetraspores and carpospores, and the development can be regarded as three stages: division stage, discoid crust stage and seedling stage. Besides, the coalescences of two or three discoid crusts during the early development were observed, which enhanced the adhesion of sporelings to the substrates. The released tetraspores and carpospores were cultivated at 6 different temperatures (10°C, 15°C, 20°C, 22°C, 25°C, 28°C) and two irradiances (10, 60μmol photos m-2s-1) with a photoperiod of 12:12h (L:D). It was showed that the optimal temperature suitable to the early development of C. ocellatus Holm is 20°C, and a maximum growth rate occurred above 60μmol photos m-2s-1. Both tetraspores and carpospores showed a wide tolerance to temperature from 10-25°C, but too high temperature of 28°C will lead to the death of tetraspore and carpospore. According to statistic analysis by means of one-way ANOVA and independent-samples t test, the variations of temperature and irradiance significantly affected discoid crust growth. High light intensity significantly accelerated growth and development. Low temperature of 10°C retarded the growth and development.
引文
1.丁源.我国药用海藻名录及其应用.海洋药物,1982,2 (2): 44-45
    2.方积年.多糖研究现状.药学学报,1986,21: 944-946
    3.费修绠,鲍鹰,卢山.海藻栽培-传统方式及其改造途径.海洋与湖沼,2000,31 (5): 575-580
    4.杭金欣,孙建章.浙江海藻原色图谱.浙江:浙江科学技术出版社,1992.
    5.胡自民,曾晓起,段德麟.核酸分析技术在红藻分子系统学研究中的应用.2005,35 (6): 977-983
    6.胡自民,曾晓起,段德麟,Alan T. Critchley.运用核糖体18S rRNA基因序列鉴别两种红藻.中国海洋大学学报,2006,36 (6): 946-952
    7.纪元坤,郭军.温度对角叉菜生长发育的影响,大连水产学院学报,1992,7 (1): 32-37
    8.李忠.多糖类成分的药理作用.医学通报,1988,23 (8): 455-456
    9.栾日孝,张淑梅.大连角叉菜属(杉藻科)的研究.植物分类学报,1998,36 (3): 268-272
    10.师然新.中国科学院海洋研究所硕士论文.角叉菜多糖硫酸酯抗肿瘤药用价值的研究,1998.
    11.师然新,徐祖洪,李智恩.降解的角叉菜多糖的抗肿瘤活性.海洋与湖沼,2000,31 (6): 653-656
    12.苏乔,栾日孝,安利佳,祖元刚.中国角叉菜属(Chondrus)的分类研究:形态观察和rbcL序列分析.植物研究,2002,22 (l): 10-18
    13.苏乔,栾日孝,杨君,安利佳,祖元刚.中国杉藻科(Gigartinaeeae)两个新记录种的研究.植物研究,2001,21 (2): 187-190
    14.陶平,贺凤伟.大连沿海3种大型速生海藻的营养组成分析.中国水产科学,2001,7 (4): 60-63
    15.王吉桥,邓宏相,王秀新,刘海金.白化牙鲆幼鱼与角叉菜和孔石莼混养的能量平衡和体色恢复率.大连水产学院学报,2005,20 (4): 283-289
    16.王素平,姜红如.条斑紫菜Porphyra yezoensis游离丝状体生态的研究.海洋水产研究.1983,5: 77-99
    17.夏邦美,张峻甫.中国海藻志.北京:科学出版社,1999,2: 5
    18.徐宁,吕颂辉,陈菊芳等.温度和盐度对锥状斯氏藻生长的影响.海洋环境科学,2004,(3): 98-103
    19.张全启.角叉菜(Chondrus ocellatus Holm)原生质体分离、培养与再生的研究.青岛海洋大学学报,1991,21 (1): 52-62
    20.曾呈奎等.中国经济海藻志.北京:科学出版社,1962.
    21.曾成奎.中国常见海藻.北京:科学出版社,1983.
    22.周革非.不同季节角叉菜乙醇提取物的抗氧化活性.食品科学,2008,29 (3): 457-459
    23.周贞英,陈灼华.福建海藻名录.台湾海峡,1983,2 (1): 91-102
    24. Amat M.A. and Braud J.P. Ammonium uptake by Chondrus crispus Stackhouse (Gigartinales, Rhodophyta) in culture. Hydrobiologia, 1990, 204/205 : 467-471
    25. Baker C.S., Dalebout M.L., Lavery S. and Howard A.R. Keeping taxonomy based in morphology. Trends Ecol. Evol., 2003, 18 (6):270-271
    26. Bouzon Z.L., Ouriques L.C. and Oliveira E.C. Ultrastructure of tetraspore germination in the agar-producing seaweed Gelidium floridanum (Gelidiales, Rhodophyta). Phycologia, 2005, 44: 409-415
    27. Bouzon Z.L., Ouriques L.C. and Oliveira E.C. Spore adhesion and cell wall formation in Gelidium floridanum (Rhodophyta, Gelidiales). J. Appl. Phycol., 2006, 18: 287-294
    28. Burns R.L. and Mathieson A.C. Ecological Studies of Economic Red Algae. II. Culture studies of Chondrus crispus Stackhouse and Gigartina stellata (Stackhouse) batters. J. Exper. Mar. Bio. Ecol., 1972, 8 (1): 1-6
    29. Caceres P.J., Carlucci M.J., Damonte E.B., Matsuhiro B. and Zuniga E.A. Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry, 2000, 53 (1): 81-86
    30. Chen L.C.M., Mclachean J., Neish A. C. and Shacklook P. F. The ratio ofκ- toλ-carrageenan in nuclear phases of the rhodophycean algae Chondrus crispus and Gigartinastellata. J. Mar.Biol. Ass. U.K., 1973, 53:11-16
    31. Chen L.C.M. and Taylor A.R.A. Medullary tissue culture of the red alga Chondrus crispus.Can. J. Bot., 1978, 56:883-886
    32. Chen M.Q. and Ren G.Z. The development process of sporelings of Gracilaria verrucosa (Hudson) Papenfuss. Oceanologia et Limnologia Sinica , 1985, 16 (3): 181-187
    33. Coobe D. Autitumor active of edible Marine algae: effect of Crude fucoia an fraction prepared from edible Seaweeds against tumor. Int. J Cancer, 1987, 39: 82-85
    34. Deirdre R., Coombe Christopher R. Parish, Ian A. Ramshaw and John M.Snowden. Analysis of the inhibition of tumor metastasis by sulphated polysaccharides. Int. J.Cancer, 1987, 39: 82-88
    35. Duke C. S., Litaker W. and Ramus J. Effect of temperature, N supply, and tissue N on ammonium uptake rates of the Ulva curuata and Codium decorticatum. J. Phycol., 1989, 25: 113-120
    36. Dunn C.P. Keeping taxonomy based in morphology. Trends Ecol. Evol., 2003, 18(6):270-271
    37. Enright C.T. and Craigie J.S. Effects of temperature and irradiance on growth and respiration of Chondrus crispus Stackhouse. In: Levring, T. ed. Proceedings of the International Seaweed Symposium. Walter de Gruyte, Berlin. 1981, p. 271-276
    38. Eppley R.W. Temperature and phytop lankton growth in the sea. Fish Bull U S, 1972, 70: 1063-1085
    39. Fonck E., Martínez R., Vásquez J. and Bulboa C. Factors that affect the re-attachment of Chondracanthus chamissoi (Rhodophyta, Gigartinales) thalli. J. Appl. Phycol., 2008, 20: 311-314
    40. Fredericq S. Themolecular systematics of some agar- and carrageenan- containing marine red algae based on rbcL sequence analysis. Hydrobiologia, 1996, 326/327: 125-135
    41. Genevieve de Lestang Bremond, Marcel Quillet and Michel Bremond.λ-carrageenan in the gametophytes of chondrus crispus. Phytochemistry, 1987, 26 (6): 1705-1707
    42. Gepp E.S. Chinese marine algae. J.Bot., 1904, 42:161-165
    43. Goldman J.C. Outdoor algalmass cultures II. Photosynthetic yield limitations. Water Res., 1979, 13: 119-136
    44. Hori T. An Illustrated Atlas of the Life History of Algae. Vol. 2. In: Brown and Red Algae. Uchdia Roka-kuho Publishing Co., Ltd., Tokyo. Japan, 1993.
    45. Hu Z.M., Zeng X.Q., Alan T.C., Steve L.M.and Duan D.L. Primary species recognition and phylogeny of Chondrus(Gigartinales, Rhodophyta) using 18S rDNA sequence data. Chin. J. Oceanol. Limnol, 2007, 25 (2): 174-183
    46. Ji Y.K. and Guo J. The effect of temperature on the growth and development of Chondrus ocellatus. Journal of Dalian Fisheries College, 1992, 7: 32–37
    47. Jones W.E. Effect of spore coalescence in the early development of Gracilaria verrucosa (Huds.) Papenfuss. Nature, 1956, 178: 426-427
    48. Kim Y.S., Choi H.G. and Nam K.W.. Phenology of Chondrus ocellatus in Cheongsapo near Busan. Korean J. Appl. Phycol., 2006, 18: 551-556
    49. Komiyama T. and Sasamoto M. Studies on the propagation of Gracilaria verrucosa (Huds.) PapenfussΙ. On the settling of the spores and development of the early stage. Report of the Investigations on the Ariake Sea, 1957, 4: 25-34
    50. Lipscome D. The intelleetual eontent of taxonomy: a comment on DNA in taxonomy. Trends Eeol. Evol., 2003, 18: 65-67
    51. McCandless E. L., Craigie J. S. and Walter J. A.. Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta, 1973, 112: 201-212
    52. McLachlan J. L. General principles of on-shore cultivation of seaweeds: effects of light on production. Hydrobiologi, 221 (1): 125-135
    53. Noda H. 1990. Antitumor activity of marine algae. Proc Int. Seaweed Symp., 1991, 13: 577-584
    54. Neushul M. Antiviral carbohydrates from marine red algae. Hydrobiologia, 1990, 204/205: 99-104
    55. Okhyun A., Royann J.P. and Paul J.H. Ammonium and nitrate uptake by Laminariasaccharina and Nereocystix luetkeana originating from a salmon sea cage farm. J. Appl. Phycol., 1998, 10: 333-340
    56. Parish C. Pharmacological properties of a marine natural product. Biophys. Acta., 1987, 936: 55-59
    57. Provasoli L. Media and prospects for the cultivation of marine algae. In: Watanabe, A. and A. Hattori eds. Cultures and Collection of Algae. Japanese Society of Plant Physiology, Tokyo. 1968, p. 63-77
    58. Ruperez P., Ahrazem O. and Leal J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem., 2002, 50: 840-845
    59. Santelices B., Hormazabal M., Correa J. and Flores V. The fate of overgrown germlings in coalescing Rhodophyta. Phycologia, 2004, 43 (4): 346-352
    60. Simpson. F.J., Neish A.C., Shacklock P. and Robson D. The Cultivation of Chondrus crispus. Effect of pH on growth and carrageenan production. Bot.Mar., 1978, 21: 229-235
    61. Simpson F.J. and Shacklock P.F.,. The Cultivation of Chondrus crispus. Effect of Temperature on Growth and Carrageenan Production. Bot.Mar., 1979, 22: 295-298
    62. Taylor A.R.A. and Chen L.C.M. Chondrus Stackhouse. In: Akatsuka, I. ed. Biology of Economic Algae. SPB Academic Publishing, Hague., 1994, p. 35-76
    63. Tasende M.G. Fatty acid and sterol composition of gametophytes and sporophytes of Chondrus crispus (Gigartinaceae, Rhodophyta). SCI. MAR., 2000, 64 (4): 421-42
    64. Vera C., Lobos P. and Romo H. Gametophyte-sporophyte coalescence in populations of the intertidal carrageenophyte Mazzaella laminarioides (Rhodophyta). J. Appl. Phycol., 2008, 20: 883-887
    65. Wang A.H., Wang J.C. and Duan D.L. Early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol., 2006, 24 (2): 129-133
    66. Yin M.Y., Hu X.Y. and Tseng C.K. Filament formation and differentiation in seven species of red algae. Bot.Mar., 2007, 50:113-118
    67. Zertuche-Gonzalez J.A., Garcia-Lepe G., Pacheco-RuizI., Chee A., Gendrop V. and Guzman J.M. Open water Chondrus crispus Stackhouse cultivation. J. Appl. Phycol., 2001, 13: 249-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700