大叶藻科的系统发育与大叶藻居群遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大叶藻(Zostera marina Linnaeus)隶属于沼生目(Helobiae)、大叶藻科(Zosteraceae)、大叶藻属(Zostera),广泛分布于太平洋和大西洋沿海。针对大叶藻科在形态及分子分类方面不尽相同的研究结果,本研究基于matK、rbcL和ITS部分序列对大叶藻科及国内5种大叶藻进行了系统发育研究,并且开展了大叶藻不同地理居群遗传多样性的AFLP和微卫星DNA分析。主要研究结果如下:
     1、比较分析了15种大叶藻的matK基因和ITS片段的核苷酸序列,结果发现胞嘧啶(C)在2个目的片段上含量均较低。ITS基因片段检测到228处核苷酸替换,表现出丰富的遗传多态性,matK基因片段上有249处核苷酸替换,且大部分替换来自于第三密码子的同义替换,种间在氨基酸水平上产生了一定的分化。基于matK基因和ITS片段,利用邻接法、最大简约法、最大似然法和贝叶斯法构建的系统发育树结果基本一致,明显分为4大支,大叶藻亚属、异叶藻属、拟大叶藻亚属和虾形藻属分别构成一支。大叶藻亚属和拟大叶藻亚属的核苷酸差异值在29.09%-35.51%,超过了屈良鹄等提出的大部分被子植物ITS属间核苷酸差异值(9.60%-28.80%),在分子水平上两亚属都达到了属间差异。研究结果支持Tomlinson和Posluszny对大叶藻科的划分结果,建议将大叶藻科分为4个属。
     2、运用PCR直接测序法,对采自爱尔兰、日本、韩国以及中国的大叶藻、矮大叶藻、丛生大叶藻和红须根虾形藻叶绿体的matK、rbcL和核糖体ITS的部分片段进行测序,并结合GenBank中的宽叶大叶藻相关序列,比较分析了5种大叶藻3个目的片段的核苷酸差异,结果发现胞嘧啶(C)在3个目的片段上含量均较低。ITS片段检测到172处核苷酸替换,表现出丰富的遗传多态性。matK基因片段上有52处核苷酸替换,rbcL基因片段上有20处核苷酸替换,且大部分替换来自于第三密码子的同义替换,种间在氨基酸水平上产生了一定的分化。基于ITS、matK和rbcL 3个片段,利用邻接法、最大简约法、最大似然法和贝叶斯法构建的系统发育树结果基本一致,明显分为3大支。矮大叶藻与属间3种大叶藻的核苷酸最小差异值为19.33%,明显超过了屈良鹄等提出的大部分被子植物ITS属间核苷酸差异值,在分子数据上达到了属的水平。基于matK和rbcL基因片段拼接序列的分析结果表明:大叶藻与丛生大叶藻的分化时间约在上新世,与宽叶大叶藻的分化时间约在上新世,与矮大叶藻的分化时间约在渐新世,与红须根虾形藻的分化时间约在始新世。4个地区的大叶藻的ITS片段序列完全相同,结果表明大叶藻ITS区的变异程度与地理距离无相关性,ITS不适合用于大叶藻不同地理株间的分子系统演化。该研究进一步阐述了5种大叶藻的系统发育关系,同时也为国内海草的分子系统发育研究提供了重要参考。
     3、基于AFLP技术对6个不同地理居群的63株大叶藻进行了居群遗传学研究。6对引物共得到235条条带,其中160条(68.09%)是多态性的。最高平均杂合度值和Shannon多样性指数出现在爱尔兰克莱尔郡居群(0.072和0.115),而最低值出现在青岛胶南居群(0.007和0.011)。6个居群遗传相似性系数(S)范围为0.660-0.924,相应的遗传距离(D)范围为0.076-0.340。AMOVA分析结果显示83.29%的变异来自居群间,16.71%的变异来自于居群内。由UPGMA系统树可以看出,中国的3个居群聚类到一起,而天鹅湖居群与胶南居群亲缘关系较近,可能是由于历史大海草场退化后的小片段居群发展起来的,遗传结构也是历史海草场的一小部分;山东半岛沿岸的海洋环流很容易造成一些独立的生境斑块,从而造成了天鹅湖居群与俚岛居群的隔离,阻碍了两个大叶藻居群间的基因交流。地理距离是中国、韩国、日本和爱尔兰大叶藻居群间产生遗传分化的主要原因。
     4、采用4对微卫星引物对7个大叶藻居群进行了遗传多样性与遗传结构分析。在148株植株上扩增得到57个等位基因,每个位点等位基因数约为14,大叶藻居群的平均期望杂合度(He)为0.687,平均观测杂合度(Ho)为0.417。以青岛湾居群的遗传多样性最高(A=7.750,AR=7.043),俚岛居群最低(A=4.750,AR=4.543)。从FST值来看,7个大叶藻居群间存在中度分化。UPGMA系统树显示中国的4个居群聚类到一起,可能是由于历史大海草场的遗留小片段居群造成的;而中国、韩国、日本和爱尔兰大叶藻居群间遗传分化则主要是由于地理距离造成的。自由交配估计结果支持海草的东亚起源说。青岛湾居群遗传多样性较高,应该得到优先保护,并可优先作为大叶藻移植修复的材料和基因库。
Zostera marina Linnaeus, a vital member of Zostera (Zosteraceae, Helobiae), is a dominant seagrass species and a monoecious marine angiosperm distributed in the northern hemisphere. Because of the different classification results of morpholgy and molecule, we analysed phylogenetic relationships in Zosteraceae and five Zostera in China based on partial nucleotide sequences of matK、rbcL and ITS. Population genetics of Z. marina based on AFLP and SSR also should be discussed.
     1. Partial nucleotide sequences of matK and ITS gene were sequenced and analyzed for Zosteraceae, and nucleotide composition analysis indicated a strong bias against cytimidine (C) in both fragments. 228 nucleotide substitutions were found in ITS gene, showing the high genetic polymorphism. 249 nucleotide substitutions were checked in matK gene, and most of them were synonymous transitions at the third codon positions. The Zosteraceae species had a certain degree of differentiation at the amino acid level. Based on partial sequences of matK and ITS gene, phylogenetic trees were constructed by NJ, MP, ML and Bayes methods and the results were consistent. The phylogenetic trees showed four separate lineages: (1) subgenus Zostera, (2) Heterozostera, (3) subgenus Zosterella and (4) Phyllospadix. The pairwise percentage divergences between the samples of subgenus Zostera and subgenus Zosterella were from 29.09% to 35.51% and were much higher than the standard divergence among genera of most angiosperm, which were from 9.60% to 28.80%. Both of them would be the generic rank. We agreed with the notion of Tomlinson and Posluszny, who recommended taxonomic delimition of Zosteraceae as four genera.
     2. Fragments of the chloroplast (matK and rbcL) and the nuclear ribosome (ITS) regions were successfully suitable for phylogenetic relationship analysis. With sequencing by PCR amplification, the paper analyzed the phylogenetic relationship of 5 Zosteraceae species (Zostera marina, Z. japonica, Z. caespitosa, Z. asiatica and P. iwatensis), which were collected from Ireland, Japan, Korea, China and GenBank. Partial nucleotide sequences of matK, rbcL gene and ITS were analyzed for five Zosteraceae species, and nucleotide composition analysis indicated a strong bias against cytimidine (C) in three fragments. 172 nucleotide substitutions were found in ITS fragment, showing the high genetic polymorphism. 52 nucleotide substitutions were checked in matK gene and 20 nucleotide substitutions were checked in rbcL gene, most of them were synonymous transitions at the third codon positions. The five species had a certain degree of differentiation at the amino acid level. Based on partial sequences of ITS, matK and rbcL gene, phylogenetic trees were constructed by NJ, MP, ML and Bayes methods, the results were consistent and the phylogenetic trees showed three separate lineages. The minimum pairwise percentage divergences in the samples of Z. japonica and other Zostera species was 19.33% and much higher than the standard (9.60%-28.80%) among genera of most angiosperm and it would be the generic rank from the molecular data. Based on the synonymous nucleotide substitution rate of the rice chloroplast genome matK combined with rbcL gene, we estimated the divergence time between five Zosteraceae species was approximately ranged from Eocene to Pliocene. The ITS sequences of all Z. marina samples were identical, which fell into the same cluster. It was concluded that variation within ITS region of Z. marina was not correlated to their geographical distance, and ITS region was unsuitable for identification of population groups on a regional or oceanic scale. The research further elaborated phylogenetic relationship of five Zosteraceae species, also provided theoretic basis for seagrass phylogeny in China.
     3. Genetic relationships of Z. marina were analyzed using AFLP analysis. A total of 235 bands were generated from 63 individuals by 6 primers combinations; of these, 160 (68.09%) were polymorphic. The population with the highest Nei’s gene diversity value (H) and Shannon’s information index value (I) was detected in the population Finavarra (0.072 and 0.115), while the lowest was population Jiaonan (0.007 and 0.011). Genetic similarity values among 6 populations ranged from 0.660 to 0.924 with the corresponding distance values ranging from 0.076 to 0.340. The results of AMOVA analysis indicated that 83.29% of the species’total genetic variation was due to differences among populations and 16.71% occurred within populations. By screening the UPGMA tree, population Tian’ehu was genetically closer to population Jiaonan than population Lidao, which may be attributable to eelgrass meadow fragments and some marine gyres/currents. The geographic distance was responsible for the genetic differentiation among populations in China (Lidao, Tian’ehu and Jiaonan), Japan (Tokyo Bay), Korea (Naepo) and Ireland (Finavarra). The results of the present study highlight the utility of DNA-based markers for conservation in genetically depauperate species and any future restoration and conservation projects use only locally eco-sourced materials for population augmentations.
     4. Genetic diversity and population structure of seven natural populations of Z. marina were investigated by using microsatellite markers (SSR). A total of 57 alleles were identified in 148 individuals across the four microsatellite primers analysed, with a mean value of 14 alleles per locus. The mean expected heterozygosity (He) and observed heterozygosity (Ho) across all populations were 0.687 and 0.417, respectively, and a higher level of diversity was found in population Qingdao Bay (A=7.750, AR=7.043) than other populations. FST values suggested moderate genetic differentiation within most of the Z. marina populations. From the UPGMA tree, four populations in China clustered together, and the genetic relationships may be attributable to eelgrass meadow fragments. The geographic distance was responsible for the genetic differentiation among populations in China (Lidao, Tian’ehu, Qingdao Bay and Dalian), Korea (Naepo), Japan (Tokyo Bay) and Ireland (Finavarra). Results of possible number of clusters agreed with the seagrass origin of East Asia. Population Qingdao Bay of the species has higher genetic diversity. Thus, populations of the region deserve prior conservation and utilization for breeding programmes.
引文
陈仁芳,余茂德,刘秀群,等。桑种质资源ITS序列与系统进化分析。中国农业科学,2010,43:1771-1781
    陈永燕,李德铢,王红。基于三个DNA片段讨论菖蒲科的分子系统学。云南植物研究,2002,24:699-706
    范航清,石雅君,邱广龙。中国海草植物。北京:海洋出版社,2009:6-23
    郭栋,张沛东,张秀梅,等。荣成俚岛近岸海域大叶藻的生态学研究。中国海洋大学学报,2010,40:51-55
    胡自民,Alan T. Critchley,段徳麟擞?nrDNA ITS数据研究角叉菜属(Chondrus)在红藻门中的系统进化地位。海洋与湖沼,2009,6:753-760
    郝家胜,孙晓燕,石庆会,等。苔藓动物的谱系发生位置与早期分歧时间。微体古生物学报,2010,27:1-12
    江鑫。花鲈与日本鲈群体遗传结构与多样性研究。青岛:中国海洋大学,2009
    金虹,施苏华,潘恒昶,等。含笑亚族及其近源植物matK基因序列分析。中山大学学报,1999,38:93-97
    姬生国,潘胜利,王峻,等。基于叶绿体matK基因序列探讨10种石杉科石杉属植物的系统关系及分子鉴定。中国中药杂志,2007,32:1971-1975
    孔凡娜,茅云翔,高珍,等。青岛石老人海域石花菜遗传多样性分析。中国海洋大学学报,2010,40:75-78
    林鹏。海洋高等植物生态学。北京:科学出版社,2006:85-108
    刘名。太平洋鲱和大头鳕的群体遗传学研究。青岛:中国海洋大学,2010
    刘元刚,王光辉。大叶藻移植在海参养殖中的应用。齐鲁渔业,2006,23:12
    刘艳如,庄惠如,田宝玉,等。一株海洋金藻的18S rRNA基因序列分析及分类。海洋科学,2010,34:53-57
    李文涛,张秀梅。海草场的生态功能。中国海洋大学学报,2009,39:933-939
    屈良鹄,陈月琴。生物分子分类检索表-原理与方法。中山大学学报,1999,38:1-6
    任国中,张起信,王继成,等。移植大叶藻提高池养对虾产量的研究。海洋科学,1991,1:52-57
    孙祥钟。中国植物志(第8卷)。北京:科学出版社,1992:85-95
    孙静,于志刚,甄毓,等。运用PCR-DGGE技术对3种原甲藻18S rDNA部分序列的差异性分析。中国海洋大学学报,2010,40:52-56
    王中仁。植物遗传多样性和系统学研究中的等位酶分析。生物多样性,1994,2:91-95
    王建波,张文驹,陈家宽。核rDNA的ITS序列在被子植物系统与进化研究中的应用。植物分类学报,1999,37:407-416
    汪文俊,王飞久,陈松林,等。浒苔ITS区的扩增和分析。海洋水产研究,2008,29:124-129
    向建英,管开云,杨俊波。应用ITS区序列对秋海棠属无翅组分类学问题的探讨。云南植物研究,2002,24:455-462
    叶春江,赵可夫。高等植物大叶藻研究进展及其对海洋沉水生活的适应。植物学通报,2002,19:184-193
    杨宗岱,吴宝玲。中国海草场的分布、生产力及其结构与功能的初步探讨。生态学报,1981,1:84-89
    于函,马有会,张岩,等。大叶藻的生态学特征及其与环境的关系。海洋湖沼通报,2007,z1:112-120
    张宏意,廖文波,陈月琴,等。大血藤的rDNA ITS序列分析。广西植物,2008,28:737-740
    邹喻萍,葛颂,王晓东。系统与进化植物学中的分子标记。科学出版社,2001
    周亮,伊珍珍,林晓凤,等。利用核糖体小亚基RNA基因序列对环须虫属,突口虫属及旋口虫属(原生动物,纤毛门,异毛纲)系统地位的探讨。动物分类学报,2010,35:518-522
    Aioi K. A daybreak in the studies on Japanese Zostera beds. (in Japanese with English abstract). Aquabiology, 2000, 22:516-523
    Alberto F, Mata L, Santos R. Genetic homogeneity in the seagrass Cymodocea nodosa at its northern Atlantic limit revealed through RAPD. Marine Ecology Progress Series, 2001, 221:299-301
    Ban Y. Methods of DNA and RNA isolation of Oryza sativa. In: Shimamoto K, Sasaki T (Eds.). PCR Experiments Protocol of Plants. Shujunsha, Tokyo. 1997:34-40
    Bakker F., Olsen J., Stam W., et al. Nuclear ribosomal dna internal transcribed spacer regions (its1 and its2) define discrete biogeographic groups in Cladophpra albida (Chlorophyta). Journal of Phycology, 1992, 28:839-845
    Bird C. A review on recent taxonomics concepts and developments in Gracilariaceae(Rhodophyhta). Journal of Applied Phycology, 1995, 7:255-267
    Botstein D., White R., Skolnick M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32:314-331
    Campanella J., Bologna P., Smith S., et al. Zostera marina population genetics in Barnegat Bay, New Jersey, and implications for grass bed restoration. Population Ecology, 2010a, 52:181-190
    Campanella J., Bologna P., Smith S., et al. Population structure of Zostera marina (eelgrass) on the western Atlantic coast is characterized by poor connectivity and inbreeding. Journal of Heredity, 2010b, 101:61-70
    Chen X., Gao Y., Zhao N., et al. An AFLP analysis of genetic diversity and structure of Caragana microphylla populations in Inner Mongolia steppe, China. Biochemical Systematics and Ecology, 2009, 37:395-401
    Chiang Y., Chou C., Huang S., et al. Possible con-sequences of fungal contamination on the RAPD fingerprinting in Miscanthus (Poaceae). Australian Journal of Botany, 2003, 51:197-201
    Cao H., Sasaki Y., Fushimi H., et al. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences. Acta Pharmaceutica Sinica, 2010, 45:926-933
    Costanza R., d Arge R., Groot R., et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387:253-260
    Coyer J., Miller K., Engle J., et al. Eelgrass meadows in the California Channel Islands and adjacent coast reveal a mosaic of two species, evidence for introgression and variable clonality. Annals of Botany, 2007, 101:73-87
    Dahlgren R., Clifford H., Yeo P. The Families of the Monocotyledons. Springer, Berlin Heidelberg New York, 1985
    Dakin E., Avise J. Microsatellite null alleles in parentage analysis. Heredity, 2004, 93:504-509
    De Heij H., Nienhuis P. Intraspecific variation in isozyme patterns of phenotypically separated populations of Zostera marina L. in the south-western Netherlands. Journal of Experimental Marine Biology and Ecology, 1992, 161:1-14
    Demesure B., Sodzi N., Petit R. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 1995, 4:129-131den Hartog C. The Seagrasses of the World. Amsterdam: North Holland Publication Co, 1970, 59:1-275
    den Hartog C., Kuo J. Taxonony and biogeography of seagrasses. In: Larkum A., Orth R., Duarte C. (Eds.), Seagrasses: Biology, Ecology and Conservation. Netherlands: Springer, 2006:1-23
    Dumolin-Lapegue S., Pemonge M., Petit R. An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular Ecology, 1997, 6:393-398
    Eckardt T. Monocotyledonae. 1. Reihe Helobiae. In: Melchior H. (edu) A. Engler’s Syllabus der P?anzenfamilien, 12th edn. Springer, Berlin Heidelberg New York. 1964
    Excoffier L., Laval G., Schneider S. Arlequin ver 3.1: An integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology University of Berne, Switzerland. 2006
    Falush D., Stephens M., Pritchard J. Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164:1567-1587
    Frankel O. Genetic perspectives of germplasm conservation. Genetic Manipulation: Impact on Man and Society. Arber W. et al., eds. Cambridge, UK: Cambridge University Press, 1984:161-170
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 1981, 17:368-376
    Flannery B., Wenburg J., Gharret A. Variation of amplified fragment length polymorphism in Yukon River chum salmon: population structure and application to mixed-stock analysis. Transactions of the American Fisheries Society, 2007, 136:911-925
    Freshwater D., Fredericq S., Bailey J. Characteristics and utility of nuclear-encoded large subunit ribosomal gene sequences in phylogenetic studies of red algae. Phycological Research, 1999, 47:33-38
    Fonseca M., Fisher J. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series, 1986, 29:15-22
    Gagnon P., Vadas R., Burdick D., et al. Genetic identity of annual and perennial forms of Zostera marina L. Aquatic Botany, 1980, 8:157-162
    Garoia F., Guarniero I., Grifoni D., et al. Comparative analysis of AFLPs ans SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Molecular Ecology, 2007, 16:1377-1387
    Goudet J. F-STAT (v1.2): a computer program to calculate F-statistics. Journal of Heredity, 1995, 6:485-486
    Harvey A., Broadwater S., Woelkerling W., et al. Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the hapalidiaceae for the subfamilies choreonematoideae, Austrolithoideae, and Melobesioideae. Journal of Phycology, 2003, 39:988-998
    Hasegawa M., Kishino H., Saitou. On the maximum likelihood method in molecular phylogenetics. Journal of Molecular Evolution, 1991, 32:443-445
    Heck K., Able K., Roman C., et al. Composition, abundance, biomass and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries, 1995, 18:379-389
    Hemminga M., Harrison P., van Lent F. The balance of nutrient losses and gains in seagrass meadows. Marine Ecology Progress Series, 1991, 71:85-96
    Hemminga M., Duarte C. Seagrass Ecology. Cambridge University Press, Cambridge, 2000
    Hewitt G.. Some genetic consequences of ice ages, and their role in divergence and speciation. Biology Journal of the Linnean Society, 1996, 58:247-276
    Hsiao C., Chatterton N., Asay K. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome, 1994, 37:112-120
    Huelsenbeck J., Crandall K. Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics, 1997, 28:437-466
    Huenneke L. Ecological implications of genetic variation in plant populations// Falk D., Holsinger K., (Eds.). Genetics and Conservation of Rare Plants. New York: Oxford University Press, 1991:31-44
    Jacobs S., Les D., Moody M. New combinations in Australasian Zostera (Zosteraceae). Telopea, 2006, 11:127-128
    Jaquiéry J., Vogel V., Keller L. Multilevel genetic analyses of two European supercolonies of the Argentine ant, Linepithema humile. Molecular Ecology, 2005, 14:589-598
    Johannesson K., AndréC. Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology, 2006, 15:2013-2029
    Jones T., Gemmill C., Pilditch C. Genetic variability of New Zealand seagrass (Zostera muelleri) assessed at multiple spatial scales. Aquatic Botany, 2008, 88:39-46
    Junak S., Ayers T., Scott R., et al. A Flora of Santa Cruz Island. Santa Barbara Botanic Garden in collaboration with the California Native Plant Society. Santa Barbara, CA, 1995
    Kato Y., Aioi K., Omori Y., et al. Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: Implications for the origin and diversification of seagrasses in Japanese waters. Genes and Genetic Systems, 2003, 78:329-342
    Kirsten J., Dawes C., Cochrane B. Randomly amplified polymorphism detection (RAPD) reveals high genetic diversity in Thalassia testudinum Banks ex K?nig (Turtlegrass). Aquatic Botany, 1998, 611:269-287
    Koriba K., Miki S. Archaeozostera, a new genus from Upper Cretaceous in Japan. Palaeobotanist, 1958, 7:107-110
    Krauss S. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Molecular Ecology, 2000, 9:1241-1245
    Kuo J., McComb A. Zosteraceae. In: Kubitzki K. (Eds.) The Families and Genera of Vascular Plants. Berlin: Springer. 1998:496-502
    Kuo J. Chromosome numbers of the Australian Zosteraceae. Plant Systematics and Evolution, 2001, 226:155-163
    Kuo J., den Hartog C. Seagrass taxonomy and identification key. In: Short F., Coles R. (Eds.), Global Seagrass Research Methods. Amsterdam: Elsevier Science, 2001:31-58
    Larkum A., den Hartog C. Evolution and biogeography of seagrasses. In: Larkum A., McComb A., Shepherd S. (Eds.), Biology of Seagrass. Amsterdam: Elsevier Press, 1989:112-156
    Larkin P., Quevedo E., Salinas S., et al. Genetic structure of two Thalassia testudinum populations from the south Texas Gulf coast. Aquatic Botan, 2006, 85:198-202
    Laushman R. Population genetics of hydrophilous angiosperms. Aquatic Botany, 1993, 44:147-15
    Launey S., Ledu C., Boudry P., et al. Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. Journal of Heredity, 2002, 93:331-338
    Les D. Breeding systems, population structure, and evolution in hydrophilous angiosperms. Annals of the Missouri Botanical Garden, 1988, 75:819-835
    Les D., Cleland M., Waycott M. Phylogenetic studies in Alismatidae. II: Evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany, 1997, 22:443-463
    Les D., Moody M., Jacobs S., et al. Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Systematic Botany, 2002, 27:468-484
    Li W. Molecular Evolution. Sunderland, MA: Sinauer Associates, 1997
    Li J., Alexander J., Zhang D. Paraphyletic Syringa (Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Systematic Botany, 2002, 27:592-597
    Li C., Lu S., Yang Q. Asian origin for Polystichum (Dryopteridaceae) based on rbcL sequences. Chinese Science Bulletin, 2004, 49:1146-1150
    Liu J., Gao T., Yokogawa K., et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution, 2006, 39:799-811
    Liu J., Gao T., Wu S., et al. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Molecular Ecology, 2007, 16:275-288
    Lucchini V. AFLP: a useful tool for biodiversity conservation and management. Comptes Rendus-Biologies, 2003, 326:43-48
    Lynch M., Milligan B. Analysis of population genetic structure with RAPD markers. Molecular Ecology, 1994, 3:91-99
    McKay J., Christian C., Harrison S., et al.“How local is local?”-A review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 2005, 13:432-440
    Mariette S., Le C., Kremer A. Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology, 2000, 11:1145-1156
    Mark W., Harold H. Silica gel: An idea material for field preservation of leaf samples for DNA studies. Taxon, 1991, 40:215-220
    Mattioni C., Casasoli M., Gonzalez F., et al. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theoretical and Applied Genetics, 2002,104:1064-1070
    Meyer A. Evolution of Mitochondrial DNA in Fishes. Amsterdam: Elsevier Press, 1993:1-36
    Müller K., Sheath R., Vis M., et al. Biogeography and systematies of Bangia (Bangiales, RhodoPhyta) based on the Rubisco spacer, rbcL gene and 18S rRNA gene sequences and morphometric analyses: 1. North Ameriean, Phyeologia, 1998, 37:195-207
    Nakaoka M., Aioi K. Ecology of seagrass Zostera spp. (Zosteraceae) in Japanese water: A review. Otsuchi Marine Science, 2001, 26:7-22
    Nylander J., Ronquist F., Huelsenbeck J., et al. Bayesian phylogenetic analysis of combined data. Systems Biology, 2004, 53:47-67
    Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 2004, 13:1143-1155
    Oetjen K., Ferber S., Dankert I., et al. New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers. Marine Biology, 2010, 157:81-89
    Olsen J., Stam W., Coyer J., et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L.. Molecular Ecology, 2004, 13:1923-1941
    Omori Y. Seed coat anatomy of subgenus Zostera. Proceedings of International Workshop on Seagrass Biology, Kominato, 1993:45-50
    Orth R., Luckenbach M., Marion S., et al. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquatic Botany, 2006, 84:26-36
    Palstra F., Ruzzante D. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology, 2008, 17:3428-3447
    Palumbi S., Grabowsky G., Duda T., et al. Speciation and population genetic structure in tropical Pacific sea urchins. Evolution, 1997, 51:1506-1517
    Phillips R., Me?ez E. Seagrasses. Smithsonian contribution to marine science. Smithsonian Institution Press, Washington, 1988
    Posada D., Crandall K. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14:817-818
    Pritchard J., Stephans M., Donnelly P. Inference of population structure using multilocusgenotype data. Genetics, 2000, 155:945-959
    Qian W., Ge S., Hong D. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theoretical and Applied Genetics, 2001, 102:440-449
    Rasmussen E. The wasting disease of eelgrass (Zostera marina) and its effects on environmental factors and fauna. In: Seagrass ecosystems: a scientific perspective (marine science). New York: Dekker, 1977:2-51
    Raymond M., Rosset F. Genepop: population genetics software for exact test and ecumenism. Journal of Heredity, 1995, 86:248-249
    Reusch T., Stam W., Olsen J. Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations. Molecular Ecology, 1999, 8:317-321
    Reusch T. Five microsatellite loci in eelgrass Zostera marina and a test of cross-species amplification in Z. noltii and Z. japonica. Molecular Ecology, 2000, 9:365-378
    Reusch T., Stam W., Olsen J. A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Molecular Ecology, 2000, 9:127-140
    Reusch T. Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. American Society of Limnology and Oceanography, 2002, 47:78-85
    Rice W. Analyzing tables of statistical test. Evolution, 1989, 43:223-225
    Ritland K., Clegg M. Evolutionary analysis of plant DNA sequences. American Naturalist, 1987, 30:74-100
    Ronquist F., Huelsenbeck J. MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19:1572-1574
    Rose C., Paynter K., Hare M. Isolation by distance in the Eastern oyster, Crassostrea virginica, in Chesapeake Bay. Journal of Heredity, 2006, 97:158-170
    Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4:406-425
    Setchell W. A preliminary survey of the species of Zostera. Proceedings of the National Academy of Sciences, 1933, 19:810-817
    Sheng S., Yan P., Zhang C., et al. Identification of Fallopia species based on the chloroplast matK gene sequences. Wuhan University Journal of Natural Sciences, 2010, 15:521-526
    Short F., Coles R., Pergent-Martini C. Global seagrass distribution. In: Short F., Coles R. (Eds.), Global Seagrass Research Methods. Amsterdam: Elsevier Press, 2001:5-30
    Soltis P., Soltis D. Genetic variation in endemic and widespread plant species examples from Saxifragaceae and Polystichum. Aliso, 1991, 13:215-223
    Soros-Pottruff C., Posluszny U. Developmental morphology of reproductive structures of Zostera and a reconsideration of Heterozostera (Zosteraceae). International Journal of Plant Sciences, 1995, 156:143-158
    Steel M., Hendy M., Penny D. Loss of information in genetic distance. Nature, 1988, 336:118
    Stetchell W. Geographic elememts of the marine flora of the North Pacific Ocean. American Naturalist, 1935, 69:560-577
    Swofford D. PAUP: phylogenetic analysis using parsimony. Version 3.0. program and documentation. Illinois Natural History Survey, Urbana, 1993
    Swofford D. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta. Sunderland: Sinauer Associates Incorporated, 2001
    Tamura K., Dudley J., Nei M., et al. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4. 0. Molecular Biology and Evolution, 2007:1596-1599
    Tanaka N., Kuo J., Omori Y., et al. Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. Journal of Plant Research, 2003, 116:273-279
    Taylor A. A reconsideration of the taxonomic position of Zostera tasmanica. In: XIII International Botanical Congress, Sydney: Australian Academy of Science, 1981:338
    Thayer G., Bjorndal K., Ogden J., et al. Role of larger herbivores in seagrass communities. Estuaries, 1984, 7:351-376
    Techaprasan J., Klinbunga S., Jenjittikul T. Genetic relatioanships and species authentication of Boesenbergia (Zingiberaceae) in Thailand based on AFLP and SSCP analyses. Biochemical Systematics and Ecology, 2008, 36:408-416
    Tomlinson P. Anatomy of the Monocotyledons. VII. Helobiae (Alismatidae). New York: Oxford University Press. 1982
    Tomlinson P., Posluszny U. Generic limits in the seagrass family Zosteraceae. Taxon, 2001, 50:429-437
    Van Oosterhout C., Hutchinson W., Wills D., et al. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 2004, 4:535-538
    Wachira F., Waugh R., Hackett C., et al. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38:201-210
    Wang W., Chen L., Yang P., et al. Assessing genetic diversity of populations of topmouth culter (Culter alburnus) in China using AFLP markers. Biochemiacal Systematics and Ecology, 2007, 35:662-669
    Waycott M. Assessment of genetic variation and clonality in the seagrass Posidonia australis using RAPD and allozyme analysis. Marine Ecology Progress Series, 1995, 116:289-295
    Waycott M., Barnes P. AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Marine Biology, 2001, 139:1021-1028
    Weir J., Schluter D. Calibrating the avian molecular clock. Molecular Ecology, 2008, 17:2321-2328
    White T., Bruns T., Lee S., et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., et al. (Eds.), PCR Protocols: A Guide to Methods and Application. San Diego: Academic Press, 1990:315-322
    Widmer A., Lexer C. Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecology Evolution, 2001, 16:267-269
    Williams S., Davis C. Population genetic analyses of transplanted eelgrass (Zostera marina) beds reveal reduced genetic diversity in Southern California. Restoration ecology, 1996, 4:163-180
    Williams S., Orth R. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries, 1998, 21:118-128
    Wolfe K., Li W., Sharp P. Rates of nucleotide substitution vary greatly among plant mitochondrial. chloroplast and nucear DNAs. Proceedings of the National Academy of Sciences, 1987, 84:9054-9058
    Wright S. Evolution and the Genetics of Populations. Vol. 4. Variability within and amongnatural populations. Chicago: University of Chicago Press
    Xia T., Chen S., Chen S., et al. ISSR analysis of genetic diversity of the Qinghai-Tibet Plateau endemic Rhodiola chrysanthemifolia (Crassulaceae). Biochemical Systematics and Ecology, 2007, 35:209-214
    Xie G., Wang D., Yuan Y., et al. Population genetic structure of Monimopetalum chinense (Celastraceae), an endangered endemic species of eastern China. Annals of Botany, 2005, 95:773-777
    Yeh F., Yang R., Boyle T., et al. POPGENE 1.32, Microsoft Windows-based freeware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada, 2000
    Yip M. The anatomy and morphology of the vegetative and floral parts of Zostera L. M.Sc. These. Guelph University, Guelph, Ontario, 1988
    Zhan A., Hu J., Hu X., et al. Fine-seale population genetic structure of Zhikong seallop (Chlamys forreri): Do local marine currents drive geographical differentiation? Marine Biotechnology, 2009, 11:223-235
    Zhang D., Hewitt G. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 2003, 12:563-584
    Zhang Z., Li D. Molecular phylogeny of section Parrya of Pinus (Pinaceae) based on chloroplast matK gene sequence data. Acta Botanica Sinica, 2004, 46:171-179
    Zieman J., Wetzel R. Productivity in Seagrasses: methods and rates. Philips R., McRoy C. (Eds.) Handbook of Sea-grass Biology, an Ecosystem Perspective. Garland, New York, 1980:87-116
    Zietkiewiez E., Rafalksi A., Labuda D. Genome fingerpnnting by simple sequence repeats (SSR) anehored polymerase chain reaetion amplication. Genomies, 1994, 20:176-183
    Zurawski G., Clegg M. Evolution of higher-plant chloroplast DNA-coded genes: Implications for structure-function and phylogenetic studies. Annual Review of Plant Biology, 1987, 38:391-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700