含油气盆地中岩浆活动对砂岩的改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油气盆地中岩浆活动对砂岩的改造表现为:当辉绿岩侵入到未固结的沉积层时,除在泥岩、砂岩中形成气孔—杏仁构造外,还在砂岩中碎屑石英颗粒边部形成栉状石英,孔隙中形成枝条状石英,远离辉绿岩外接触带次生加大石英含量增加。当次火山岩侵入到砂岩或含煤砂岩中时,首先导致砂岩及煤层发生脆性破裂,尔后引起邻近砂岩中的基质重结晶形成绢云母、黑云母以及其它低温变质矿物,在稍远处形成相对高温的自生矿物并引起次生加大石英和方解石的重新分布。这是典型的热接触—热对流成岩作用模式。热流体的发生时间与东山组及松木河组火山活动热事件的时代是一致的。与热流体有关的自生矿物的分布,导致储层的非均质性。
There are forty-six Mesozoic and Cenozoic petroleum-bearing basins inNortheast China. They belong to various types and mainly formed and developedin the Mesozoic. As an important section of circum-Pacific volcanic belt, theNortheast China saw frequent and intensive magmatic intrusion and eruption inMesozoic period. The Mesozoic volcanic rock is extensively distributed in bothmountains and Mesozoic fault basins, which is controlled by fault belts extendingin NW and NE direction in the basement, especially the joint of fault belts. Suchimportant petroleum-bearing basins as Songliao, Sanjiang and Jixi are affected bymagmatic activities at different extent.
    At present, studying on diagenesis of heat convection caused by the magmaticactivity in petroleum-bearing basins in East China is a key to the research of boththe evolution fluid and diagenesis in basins. To explain the effect of magmaticactivity on oil reservoir rocks and its contribution to diagenesis, three questionshave to be considered. The first is the type and occurrence of authigenic minerals.The second is the alteration of epithermal magmatic activity on diagenesis of thesemi-solidified or solidified sandstone. The third question is the effect of diagenesisof heat convection, caused by the magmatic activity, on reservoir characteristics ofthe sandstone. The Songliao, Sanjiang and Jixi basins are favorable for the solutionof these questions.
    In the southern Songliao basin, dolerite veins intrude the semi-solidifiedsandstone of the Yingcheng formation. The abrupt intrusion of dolerite veinscaused the pore-almond structures in the semi-solidified sandstone wall rock.Moreover, the magmatic intrusion results in brittle fractures in clastic grains around,then these fractures can be closed along with continuous increasing of temperature.However, due to continuous pressure and high temperature, the pressure at jointpoint of different quartz grains becomes more and more concentrated, which causesthe compaction dissolution and comb quartz grains surrounding the primary quartz.The dissolution of the quartz under the high temperature causes increasing ofsilicon content in the fluid in holes. Owing to fluid diffusing, the fluid rich insilicon flows from the high-energy zone to the low-energy one and results in thedendritic minicrystal quartz by recrystallization. More and more farther fromcontact belt of intrusive bodies, minicrystal quartzes get less and less, shorter andshorter as well as larger and larger. In addition, the content of enlargement in thequartz becomes more and more.In Zhangxin coal deposit in Jixi basin, the gabbro porphyrite intrudes thestrata of Chengzihe formation. In the gabbro porphyrite, the growing zone of thelaumontite can be found. The laumontite is contemporary with the authigenicsericite and lode carbonate minerals in the sandstone. All those are resulted fromthe same magmatic hydrothermal activity. The thermometamorphism taking placein the contact zone between intrusive rock and sandstone caused suchlow-temperature metamorphic minerals as authigenic sericite, biotite. Thanks to thepressure caused by abruptly intruding of a mass of magma, thin fractures formed inthe sandstone of Cengzihe formation covering the gabbro porphyrite body inZhangxin coal deposit in Jixi basin. The distribution of carbonate cement in thesandstone, isotopic data of carbon and oxygen and the homogeneous temperature ofenlargement of quartz can confirm the hydrothermal activity.In Suibin depression region in Sanjiang basin, frequent volcanism can beproved by extensive occurrence of volcanic bodies and subvolcanic ones. There areandesite and andesitic porphyrite in strata of Dongrong formation, alterated
    andesite in strata of Chengzihe formation. High-value abnormities of thereflectance of vitrodetrinite show that intensive volcanic activities affected thepaleogeothermic field. The volcanism changed the diagenetic system by heatingformation water and resulted in such authigenic minerals as muscovite, biotite,quartz and illite. The autigenic muscovite is mainly located in pores and fracturesin clastic particles. The amount of muscovite is high up and below the volcanicrock, and it becomes lower and lower far from volcanic rocks. The occurrence ofvolcanic rocks and authigenic minerals, abnormities of the reflectance ofvitrodetrinite indicate the hydrothermal activity in Suibin depression region. Thestudying on the distribution of authigenic minerals and thin fractures shows that theamount of muscovite and calcite is higher near the volcanic rocks. It may be provedthat the diagenesis caused by heat convection can bring the reallocation ofinterstitial materials in reservoir rocks as well as anisotropism of these rocks.The K-Ar isotopic ages of authigenic illite from Jixi and Sanjiang basins areless than those of strata around, which suggests that hydrothermal activities takeplace in late stage of the early Cretaceous period and be associated with the heatingcaused by the magamtism in Dongshan and Songmuhe period.
引文
[1] 刘立, 于均民, 孙晓明, 等. 热对流成岩作用的基本特征与研究意义[J]. 地球科学进展, 2000, 15(5): 583~585.
    [2] 刘立, 彭晓蕾, 等. 东北及华北含油气盆地岩浆活动对碎屑岩的改造与成岩作用贡献. 世界地质. 2003. 22(4): 319~325.
    [3] 高玉巧, 刘立. 岩浆侵入活动对砂岩的改造作用研究简介. 地质科技情报, 2003, 22(2): 13~16
    [4] 高玉巧, 刘立, 等. 辉绿岩侵位对半固结砂岩的改造作用-以松辽盆地东南部下白垩统为例. 新疆地质, 2003, 21(4): 474~478.
    [5] 于英太. 二连盆地火山岩油藏勘探前景. 石油勘探与开发, 1988, 15(4): 9~19.
    [6] 王有孝, 范璞, 程学惠, 等. 异常地热对沉积有机质生烃过程的影响——以辉绿岩侵入体为例, 石油与天然气地质, 1990, 11(1): 73~77.
    [7] 陈荣书, 何生, 王青玲, 等. 岩浆活动对有机质成熟作用的影响初探. 石油勘探与开发, 1989, 16(1): 29~38.
    [8] 冯乔, 汤锡元. 岩浆活动对油气藏形成条件的影响. 地质科技情报, 1997, Vol.16 No.4: 59~65.
    [9] 曾溅辉. 自由对流及其对成岩作用和烃类运移的影响. 地质论评, 1998,44(2): 165~171.
    [10] 曾溅辉. 东营凹陷热流体活动及其对水—岩相互作用的影响[J]. 地球科学——中国地质大学学报, 2000, 25(2): 133~142.
    [11] 杨文宽. 球状侵入体的散热过程及对干酪根的影响. 石油与天然气地质, 1983, 4(3): 283~293.
    [12] 孙永传, 陈红汉, 李蕙生, 等. 莺-琼盆地 YAB-1 气田热流体活动与有机/无机成岩响应[J]. 地球科学——中国地质大学学报, 1995, 20(3): 276~282.
    [13] 李思田. 沉积盆地的动力学分析. 地学前缘, 1995, 23: 1~8.
    [14] 解习农. 李思田, 董伟良, 等. 热流体活动示踪标志及其地质意义—以莺歌海盆地为例[J]. 地球科学—中国地质大学学报, 1999, 24(2): 183~188.
    [15] 李思田. 为实现油气领域的重大突破——活动热流体的历史研究简介. 中国海上油 气(地质), 1992, 6(6): 69~70.
    [16] 王大锐, 张映红. 渤海湾油气区火成岩外带储集层中碳酸盐胶结物成因及意义. 石油勘探与开发. 2001, 28(2): 40~42.
    [17] 张枝焕, 等. 水岩相互作用研究及其在石油地质中的应用, 地质科技情报, 1998, 17(3): 69~74.
    [18] 陈红汉, 李思田. 活动热流体与成藏、成矿动力学研究进展[J]. 地学前缘, 1996, 3(4): 259~262.
    [19] 周立宏, 吴永平, 肖敦清, 等. 黄骅坳陷第三系火成岩与油气关系探讨. 石油学报, 2000, 21(6): 29~33.
    [20] 唐忠驭. 三水盆地火山活动与油气的关系. 石油与天然气地质, 1984, 5(2): 89~101.
    [21] 李明诚. 地壳中的热流体活动与油气运移. 地学前缘, 1995, 24: 155~162.
    [22] 田克勤, 等. 异常压力与深层油气藏——黄骅坳陷为例[J]. 勘探家, 1998, 3(9): 37~41.
    [23] 郭占谦. 火山活动与沉积盆地的形成和演化. 中国地质大学学报, 1998, 23 (1): 59~64.
    [24] 胡善亭, 杨启, 潘治贵. 鸡西煤田深部动力学特征与煤的变质作用. 东北煤炭地质, 1996, 2: 57~60.
    [25] 胡善亭, 杨启, 潘治贵. 鸡西煤田的煤化作用模式. 煤炭学报, 1995, 12: 561~565.
    [26] 聂逢君, 姜美珠, 等. 砂岩对热流体作用的响应及识别标记——以珠江口盆地西部为例. 地学前缘, 2005, 10: 581~591.
    [27] 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化. 南京大学学报(自然科学), 2002.
    [28] 戴金星, 宋岩, 张厚福, 等. 中国天然气的聚集区带[M]. 北京: 科学出版社, 1997: 182~218.
    [29] 顾娇杨. 黑龙江省煤种分布与煤变质特征. 2004, 9: 50~53.
    [30] 康仁华, 刘魁元, 钱铮. 罗家地区下第三系辉绿岩建造及成藏特征. 特种油气藏, 2000. 2(2): 8~16.
    [31] 王大锐, 张映红. 渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义. 石油勘探与开发. 2001, 28(2): 40~42.
    [32] 郑浚茂, 庞明. 碎屑储集岩的成岩作用研究. 武汉: 中国地质大学出版社, 1989.
    [33] 刘孟慧, 赵澄林. 碎屑岩储层成岩演化模式. 石油大学出版社, 1993.
    [34] 张映红, 顾家裕. 热液环流—侵入岩—外变质带储层发育的重要影响因素. 特种油气藏, 2003, 2: 86~90.
    [35] 鲍景新, 陈衍景, 等. 西天山阿希金矿浊沸石化与古地热成矿流体系统的初步研究. 北京大学学报(自然科学版), 2002, 3: 252~259.
    [36] 杨晓萍, 等. 四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义, 石油勘探与开发. 2005, 6: 37~44.
    [37] 张有瑜, 罗修泉. 油气储层自生伊利石K-Ar 同位素年代学研究现状与展望. 石油与天然气地质, 2004, 4: 231~236.
    [38] 张有瑜, 等. 油气储层中自生伊利石K/Ar同位素年代学研究若干问题的初步探讨[J]. 现代地质, 2002, 16(4): 403~407.
    [39] 车忱, 等. 沉积岩中成岩伊利石年龄测定研究进展. 地球科学进展, 2002, 10: 693~698.
    [40] 吴劲薇, 等. 成岩伊利石 K/Ar 年龄分析及其意义. 高校地质学报, 2001, 12: 444~448.
    [41] 任凤和, 杨晓平, 等. 黑龙江省东部鸡西群地层时代划分及地质意义, 中国地质, 2005, 2: 48~54.
    [42] 王建国, 王林凤. 鸡西含煤沉积盆地特征及早期油气勘探, 古地理学报, 1999, 11: 61~69.
    [43] 袁静, 赵澄林. 水介质的化学性质和流动方式对深部碎屑岩储层成岩作用的影响. 石油大学学报(自然科学版), 2000, 1: 60~64.
    [43] 王生维, 张明, 等. 安阳红岭矿区山西组 1 煤储层岩石物理性质研究—一个侵入接触变质煤储层的典型实例. 地球科学——中国地质大学学报, 1997, 7: 411~414.
    [44] 张键, 石耀霖. 沉积盆地岩浆侵入的热模拟. 地球物理学进展, 1997, 03: 55~64.
    [45] 李晓峰, 华仁民, 等. 江西银山多金属矿床伊利石的形成与流体成矿作用的初步研究, 地质科学, 2002, 37(1): 86~95.
    [46] 杨庆杰, 长春科技大学硕士学位论文. 1999.
    [47] 杨庆杰, 刘立, 迟元林, 王东坡. 盆地流体的基本类型及其驱动机制. 世界地质, 2000, 19(1): 15~19.
    [48] 叶加仁, 杨香华. 沉积盆地热流体活动及其成藏动力学研究. 沉积学报. 2001, 19(2): 214~218.
    [49] 郝芳, 孙永传, 李思田, 等. 活动热流体对有机质演化和油气生成作用的强化[J]. 地球科学, 1996, 21(1): 68~72.
    [50] 何家雄, 李明兴, 陈伟煌. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29~43.
    [51] 蔡春芳, 梅博文, 马亭, 等. 塔里木盆地不整合面附近成岩改造体系烃—水—岩相互作用[J]. 科学通报, 1995, 40(24): 1253~1256.
    [52] 康永尚, 郭黔杰. 论油气成藏流体动力系统. 地球科学——中国地质大学学报, 1998, 23(3): 281~283.
    [53] 何家雄, 陈刚. 莺歌海盆地CO2分布及初步预测研究[J]. 石油勘探与开发, 1998, 25(2): 20~26.
    [54] 赵孟为, 等. 鄂尔多斯志留—泥盆纪和侏罗纪热事件—伊利石 K/Ar 年龄证据. 地质学报, 1996, 2: 186~194.
    [55] 杨绍芳. 泛三江盆地成藏系统分析. 石油天然气学报(江汉石油学院学报), 2005, 8: 413~415.
    [56] 陈少楠. 张新煤矿次辉长玢岩特征及时代的探讨. 煤炭技术, 2004, 3.
    [57] 朱云华, 彭淑芹. 张新井田F49号断裂形成的初步探讨. 煤炭技术, 2005, 1.
    [58] 贾跃明. 地壳中的流体作用——当代地球科学前沿[M]. 武汉: 中国地质大学出版社, 1993: 54~65.
    [59] 邱楠生, 康永尚, 樊洪海, 等. 柴达木盆地西部地区第三系温度压力和油气分布相互关系探讨[J]. 地球物理学报, 1999, 42(6): 826~833.
    [60] 邱楠生, 金之钧. 油气成藏的脉动式探讨[J]. 地学前缘, 2000, 7(4): 561~567.
    [61] 中国石油地质志(卷二: 大庆油田)[M]. 北京: 石油工业出版社, 1993.
    [62] 唐振海, 孙亚英. 三江盆地绥滨坳陷石油地质特征及含油气层序预测. 石油地质研究报告集. 大庆: 内刊, 1993.
    [63] 尹微. 松辽盆地南部接触变质带石英结构的空间变化及其成因. 吉林大学学士学位论文, 2002.
    [64] 徐衍彬, 陈平, 徐永成. 海拉尔盆地碳钠铝石分布与油气的关系[J]. 油气与天然气地质, 1994, 15(4): 322~327.
    [65] 张吉光, 张宝玺, 陈萍. 海拉尔盆地苏仁诺尔成藏系统[J].石油勘探与开发, 1998, 2, 25(1): 121~123.
    [66] 杜韫华. 一种次生的片钠铝石[J]. 地质科学, 1992, (4): 434~436.
    [67] 郭栋, 邱隆伟, 等. 济阳坳陷火成岩发育特征及其与二氧化碳成藏的关系. 油气地质与采收率, 2004, 4: 22~24.
    [68] 陈庆春, 朱亚东, 等. 试论火山岩储层的类型及其成因特征. 地质论评, 2003, 5: 286~291.
    [69] 彭晓蕾, 高玉巧, 等. 含油气盆地中热流体活动的流体包裹体依据, 世界地质, 2005, 4: 350~356.
    [70] 陈志勇, 等. 丽水坳陷石油地质特征及勘探前景, 中国海上油气(地质), 2000, 6: 385~391.
    [71] 汪洋, 等. 云南楚雄盆地老第三纪热流体活动, 地学前缘, 2001, 8(3): 38.
    [72] 周自立. 山东滨南油田早第三纪玄武岩油藏的形成条件. 石油与天然气地质, 1988, 9(2): 133~139.
    [73] 张映红, 等. 侵入岩及其外变质带岩相与储集层模型, 石油勘探与开发, 2000, 4: 22~26.
    [74] 王琪, 等. 石油侵位对碎屑储集岩成岩作用序列的影响及其与孔隙演化的关系—以塔西南石炭系石英砂岩为例[J]. 沉积学报, 1998, 16(3): 97~101.
    [75] 李忠权, 等. 大庆探区外围盆地含油气性评价与优选. 成都理工大学科研报告, 2003.
    [76] 张兴洲, 等. 国家油气专项“大庆探区外围中、新生代盆地群演化与油气远景”中期汇报材料. 2006(未发表).
    [77] 张梅生, 等. 国家油气专项二级课题“中、新生代地层划分对比与分布规律”课题组中期汇报材料. 2006(未发表).
    [78] 许文良, 等. 国家油气专项二级课题“中、新生代地层划分对比与分布规律”火山岩专题汇报材料. 2006(未发表).
    [79] 马瑞, 等. 国家油气专项二级课题“相关盆地群资源潜力及油气分布规律”构造热事件专题汇报材料. 2006(未发表).
    [80] 周荔青, 等. 苏北盆地阜三段油气成藏规律. 石油实验地质, 2004, 26 (2): 187~193.
    [81] 张晓东, 等. 松辽盆地北部地区火山岩特征及分布规律. 大庆石油地质与开发, 2000, 8: 10~13.
    [82] 宋维海, 等. 松辽盆地中生代火山岩油气藏特征. 石油与天然气地质, 2003, 24(1): 12~17.
    [83] 蒙启安, 等. 松辽盆地中生界火山岩储层特征及对气藏的控制作用. 石油与天然气地质, 2002, 23(3): 285~292.
    [84] 崔勇, 等. 辽河油田欧利坨子地区火山岩储集成特征及有利储集层预测. 石油勘探与开发, 2000, 27(5): 47~49.
    [85] Aplin, E. D., Oxygen isotopic indications of the mechism of silica transpor and quartz cementation in deeply buried sandstones. Geology, 1994, 22: 847~850.
    [86] Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide see page recorded by dawsonite in the Bowen Gunnedah Sydney Basin,eastern Australia[J].Journal of Sedimentary Research,1995, 65(3): 522~530.
    [87] Cookenboo H O, Bustin R M. Pore water evolution sandstones of the Groundhog Coalfield, northern Bowser Basin, British Columbia. Sedimentary Geology. 1999, 123: 129~146.
    [88] Hower J, EsLinger E V et al. Mechanism of burial metamorphism argillaceous sediment: 1. Mineralogical and chemical evidence. Am.Geol.Soc.Bull. 1976, 97: 725~737.
    [89] Heald M T, Renton J J. Experimental study of sandstone cementation [J]. Journal of Sedimentary Petrology, 1966, 36(4): 977~991.
    [90] Summer N S, Verosub K L. Diagenesis and organic maturation of sedimentary rocks under volcanic strata, Oregon [J]. Am Assoc Pet Geol Bull, 1994, 76: 1190~1199.
    [91] Dow W G. Kerogen, Studies and geological interpretation. J. Geochem. Explor, 1997, 7(2): 79~99.
    [92] Simoneit BRT, Brenner S, Peters K E.Thermal alteration of cretaceous black shale by basaltic intrusions in the eastern Atlantic. Nature, 1978, 273 (5663): 501~504.
    [93] McBide E F. Quartz cement in sandstone, a review, Earth-Science Reviews, 1989, 26: 69~112.
    [94] Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of southwest of Texas: implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology, 1979, 49: 55~70.
    [95] Olaf Brockamp Norbert Clauer Michael Zuther Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Black Forest, Germany, Int J Earth Sci (Geol Rundsch) , 2003, 92: 843~851.
    [96] Pevear D R. iiilte age analysis, a new tool forbas in thermal story analysis [A] Kharaka & Maest, eds. water rock interact [J]. Balkema, Ortterdam. 1992.
    [97] Saigal G C, BjФrlykke K and Larter S. The effects of oil emplacement on diagenetic processes-Examples from the fulmar Reservoir sandstones, central North Sea. AAPG Bulletin, 1992, 76(7): 1024~1033.
    [98] Longstaffe F J. The role of meteoric water in diagenesis of shallow sandstones: stable isotope studies of the Milk River aquifer and Gas Pool, southern Albert, in McDonald, D. A. and Surdam, R. C. (eds), Clastic Diagenesis. AAPG, Memoirs. 1984, 37: 81~98.
    [99] Hamilton P J, Kelley S, Fallick A E. K/Ar dating of illite in hydro carbon reservoirs[J]. Clay Minerals, 1989, 24: 215~231.
    [100] Merino E, Gierre J P, May M T, et al. Diagenetive mineralogy, geochemistry, and dynamics of Mesozoi carkoses, Hart for drift basin, Connecticut, USA [J]. Journal of Sedimentary Petrology, 1997, 67(1): 212~224.
    [101] Girard J-P, Deynoux M, Nahon D. Diagenesis of the upper Proterozoic silici clastic sediments of the Taoudeni Basin (west Africa) and relation to diabase emplacemet [J]. Journal of Sedimentary Petrology, 1989, 59: 233~248.
    [102] Lee, M., Aronson, J.L., and Savin, S. M., K/Ar dating of gas emplacement in Rotliegendes sandstone, Netherlands, AAPG Bulletin, 1985, 69, (9): 1381~1385.
    [103] De Ros L F. Heterogeneous generation and evolution of diagenetic quartarenites in the Silurian-devonian Furnas Formation of the Parana basin, southern Brazil, Sedimentary Geology, 1998, 116: 99~128.
    [104] Wood J R. et al. Reservoir diagenesis and convective fluid flow. In MeCdonald D A , eds, Clasic diagenesis, AAPG, Memoir37, 1984, 99~110.
    [105] Summer N S, Ayalon A. Dike intrusion into unconsolidated sandstone and the development of quartzite contact zones [J]. Journal of Structural Geology, 1994, 17(7): 997~1010.
    [106] Bjrlykke K. Fluid flow processes and diagensis in sedimentary basins[A]: In: ParnellJ. Geofluids: Origin, Migration and Evo-lution of Fluids in Sedimentary Basins[C]. London: Geological Society Special Publication, 1994, 78: 127~140.
    [107] Macaulay C I. et al. Haszeldine, Quartz vins record vertical flow at a graben edge: Fulmar oil field, Central North Sea, AAPG Bulletin, 1997, 81,(12): 2024~2035.
    [108] Mord S and A.A., Aldahan, Diagenetic of chloritization of feldspar in sandstones, Sedimentary Geology, 1987, 51: 155~164.
    [109] Mord S and A. A., Aldahan, Diagenetic alteration of biotite in Proter0zoic sedimentary rocks from Sweden, Sedimentary Geology, 1986, 47: 95~107 .
    [110] Combarnous M H. and S.A. Bories, Hydrothermal convection in saturated porous media: Advancein Hydroscience. 1975, 10: 231~307.
    [111] pedersen. T., fluid flow in sedimentary basins: model of pore water flow in a vertical fracture, Basin Research, 1994, 6: 1~16.
    [112] Larence S R. et al. Basin geofluids, Basin Research, 1995, 7: 1~7.
    [113] Dutton, S. P., Timing of compaction and quartz cementation from integrated petrographic and burial history analyses, Lower Cretaceous Fall River Formation, Wyoming and South Dakota, Journal of Sedimentary Research, 67(1): 186~196.
    [114] Giday WoldeGabrie, Effects of shallow basaltic intrusion into pyroclastic deposits, Grants Ridge, New Mexico, USA. Journal of Volcanology and Geothermal Research, 1999, 92: 389~411.
    [115] Lovering T S. Theory of heat conduction applied to geological problems. GSA, 1935, 46(1): 69~93.
    [116] Cinzia Maineri, et al. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity, Mineralium Deposita, 2003, 38: 67~86.
    [117] Alan J. Kaufman, Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: an example from the Transvaal Basin, Precambrian Research, 1996, 79: 171~194.
    [118] Frederic Vitali, Gerard Blanc et al. Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin, Marine Geology, 1999, 157: 105~125.
    [119] Tonguc, Uysal, Miryam Glikson, The thermal history of the Bowen Basin, ueensland, Australia: vitrinite reflectance and clay mineralogy of Late Permian coal measures, Tectonophysics, 2000, 323: 105~129.
    [120] Rasmussen B. et al. Fluid evolution interpreted from diagenetic assemblages and salinity data in Permo-Triassic sandstone, northern Perth basin, Western Australia, Jouenao of Sedimentary research, 1996, 492~500.
    [121] Hooper E C D. Fluid migration along growth faults in compacting sediments. Journal of Petroleum Geology, 1991, 14(2): 161~180.
    [122] Giday wolde Gabriel et al. Mineralogy and K–Ar geochronology of mixed layered illite/smectite from The Geysers coring project, California, USA. Geothermics, 2001, 30: 193~210.
    [123] Wood J R, Hewett T A. Forced fluid and diagenesis inporous reservoirs: Controls on the spatial distribution Roles of Organic Matterin Sediment Diagenesis. SEPM, 1984, 73~83.
    [124] HuntJ M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bul-letin, 1990, 74(1): 1~12.
    [125] Macaulay, C.I, A.J., Boyce, A.E., Fallick, and R.S., Haszeldine, Quartzvins record vertical flow at a graben edge: Fulmar oil field, Central North Sea, AAPG Bulletin, 1997, 81(12): 2024~2035.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700