捣固装置及其电液激振技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捣固车是广泛应用于新建铁路和铁路大修中的养路机械。捣固装置是捣固车的核心部件,它是利用加压、冲击或振动的原理使得轨枕底部的道碴重新排列,紧固密实,并使枕下支撑力量均衡的一种专用机械装置。论文在综合分析了国内外捣固装置及其激振技术的研究现状与进展的基础上,结合工程实际,指出现存捣固装置的激振技术在频率和振幅的连续可调等方面存在的问题,提出了应用于捣固装置的电液激振技术。电液激振器在一定频率内能增大输出推力、实现高振幅以及解决液压缸振动时的偏置撞缸,其关键技术是通过步进电机带动阀芯旋转、液流高频换向使得液压缸运动换向,以实现激振频率和振幅的控制。研制出阀芯旋转式四通高速换向阀和自动限位的微行程双作用激振液压缸所组成的电液激振器,克服在高频换向难以实现大流量的缺陷,满足了捣固装置不同工况的需求。论文的主要研究工作如下:
     1.结合新捣固装置的工作原理,主要对激振部分和下捣固臂进行数学建模分析。根据现有捣固装置的技术参数,以及捣固臂机构受力分析,完成了机械结构建模和设计,确定了装置中主要结构尺寸及电液激振器工作性能参数。利用虚拟样机技术及仿真软件平台Pro/E,建立新型捣固装置的虚拟样机,并进行运动学仿真。
     2.通过分别建立电液激振器和转阀的数学模型,对电液激振器和转阀的特性进行了分析研究。针对捣固装置激振性能的要求,确定了电液激振器的结构原理及主要参数,并基于所需的振动波形进行了阀口分析求解。研究了不同参数(阀芯转速、阀口轴向面积导通宽度、阻尼和供油压力)对电液激振器动态性能的影响。
     3.通过对转阀阀芯的受力情况进行分析,研究了阀芯旋转式四通高速换向阀阀芯的液动力矩和粘性摩擦力矩的生成机理和计算方法。探讨了结构参数(阀芯外径,阀芯和阀套的径向间隙,阀口轴向长度,阻尼比和转动惯量)对阀芯旋转式四通高速换向阀工作特性的影响。基于不同矩形阀口的阀芯结构,在考虑阀口压降对阀口过流面积影响的基础上,进一步分别对无环形槽阀芯和有环形槽阀芯建立对应的阀口过流面积模型以及其负载平均流量模型,对应用于捣固装置电液激振器的振动波形进行了具体数值分析。
     4.研制出应用于捣固装置的电液激振试验系统,通过流量计、ICP加速度传感器和压力传感器测取激振缸在20-60Hz频率范围内的工作流量、运动参数值和激振力,对理论结果进行验证。
Tamping machine is a kind of special engineering equipment which is used for railway construction. Tamping device being used to compact ballast is the key part of tamping machine, with which two main tamping processes, clamping and vibrating, could be carried out Clamping squeezes the stones to flow under the sleeper and vibrating compresses ballast The development of tamping device is briefly introduced, and then the current status of tamping device and the exciting technology are discussed in detail. Combining with project practice, the problems concerning excitation technology of tamping device, control of electro-hydraulic vibration in high frequency and adjustable amplitude are analyzed, and the new electro-hydraulic excitation for tamping device is proposed. The novel electro-hydraulic exciter can increase the export force, realize high amplitude during certain frequency range and solve the problem of bias impact to the cylinder. Its key technology is realizing the control of excitation frequency and amplitude through the rotation valve spool which is driven by step motor and the hydraulic cylinder changing direction lead by the high frequent oil flow direction. This work developed a novel electro-hydraulic exciter comprising of high speed rotation valve with four-way commutation and auto-limitation micro-displacement double-rod cylinder. It can overcome the limitation of flow quantity under the condition of high frequent changing direction to meet the needs of different operating work of the tamping unit The main research works are as follows.
     1. Based on working principle of tamping device, mathematical models of the exciting part and tamping arm were built According to the technical parameters of the existing tamping unit and the mechanism analysis of tamping arm, the new tamping unit mechanical design and structure modeling were completed. Then, the size of the device's main structure and the work performance parameters of electro-hydraulic exciter were determined. Taking advantage of virtual prototyping technology and simulation software platform Pro/E, a virtual prototype of the new tamping unit was created and kinematics simulation was carried out
     2. The mathematical model of the electro-hydraulic exciter and rotary valve were built in order to study the characteristics of electro-hydraulic exciter and rotary valve respectively. According to the exciting performance requirements of tamping unit, the main structure principles and parameters of the electro-hydraulic exciter were determined, the valve port based on the required vibration waveform was solved. The different parameters (spool speed, the width of the valve port in axial direction, damping and oil pressure) working on the dynamic performance of the electro-hydraulic exciter were studied.
     3. Through stress analysis of the rotary valve spool, the formation mechanism and calculation methods of hydrodynamic torque and viscous friction torque were studied. The impact of structural parameters (the Spool diameter, spool and radial sleeve clearance, the axial length of the valve port, damping ratio and rotational inertia) on the operating characteristics of high speed rotation valve was discussed. Based on different types of rectangular valve port structures, and considering the valve port flow area change caused by the pressure drop, the corresponding valve port flow area model and the average load flow model to spool with ring groove and without ring groove were built separately. Numerical calculation and analysis for vibration waveform of the new electro-hydraulic exciter were conducted.
     4. Electro-hydraulic vibration test system used in tamping unit was established. The work flow, motion parameter values and exciting force of vibration cylinder within the range of20to60Hz are measured through flow meter, ICP acceleration and pressure sensors to verify the theoretical research.
引文
[1]寇长青,周海浪.铁道工程施工机械[M].北京:机械工业出版社,2001:124-250.
    [2]程文明.回眸中国铁路养路机械设备的发展[J].现代管理,2006,10(4):181-182.
    [3]韩志青.捣固装置的振动分析[J.工程机械,1997,(9):19-21.
    [4]应立军,周书武,亓琳,等.08-32捣固车作业电气救援系统的研制[J].铁道学报,2004,26(6):33-36.
    [5]Mark Rand.Effect of vibration on ballast[J]. Magazine of British Geography,1981 (9):43-49.
    [6]李毅松,翁敏红.D09-32型捣固装置的结构、功能及运动分析[J].机车车辆工艺,2003(2):4-7.
    [7]高兵,王有虹.CD08-475型捣固装置的结构原理分析[J].机车车辆工艺,2005(4):27-29.
    [8]应立军,李云召.新型捣稳一体化捣固装置的研究[J].工程机械,2008,39(6):20-23.
    [9]李云召.新型捣稳一体化技术的研究[D].长沙:中南大学,2008.
    [10]赵明华,曾广冼,刘江波.填石料的振动压实变形特性及压实机理试验研究[J].铁道科学与工程学报,2006,3(4):41-45.
    [11]李夕兵,古德生,陈寿如.应力波作用下散体岩料的密实与能量耗损[J].中南矿冶学院学报,1994,25(5):570-574.
    [12]李跃光,姬战国.国内高频疲劳试验机的技术现状及其发展[J].试验技术与试验机,2006,23(5):43-48.
    [13]王长陶.基于可拓控制策略的材料试验机电液比例控制系统的研究[D].杭州:浙江大学,2002.
    [14]孙义忠.数控往复式摩擦磨损试验机及其测试系统的研究[D].哈尔滨:哈尔滨工业大学,2005.
    [15]郭正红.新型疲劳试验机控制系统研究[D].北京:北京航空航天大学,2002.
    [16]朱光华.同步带疲劳寿命试验机的开发与研究[D].长春:长春理工大学,2004.
    [17]奚德昌.振动台及振动试验[M].北京:机械工业出版社,1985.
    [18]张玮昌.激振设备及其应用[J].电动工具.2003(4):7-12.
    [19]Tamura Y,Kawada T, Sasazawa Y. Effect of ship noise on sleep[J]. Journal of Sound and Vibration,1997,205(4):417-425.
    [20]Morgan J M, Milligan W W. A 1kHz Servohydraulic Fatigue Testing System[C]. Proceedings of the Conference High Cycle Fatigue of Structural Materials,1997,305-312.
    [21]Iphar, M. ANN and ANFIS performance prediction models for hydraulic impact hammers[J]. Tunnelling and Underground Space Technology.2012,27(1):23-29.
    [22]邵长金,罗荣章.利用物理场提高原油产量的基础研究[J].石油学报,1997,(3):63-70.
    [23]孙福印,王振德,李玉堂.偏心式激振器在稳态瑞利波勘探中的应用[1].物探与化探.2008,32(3).
    [24]Lang, G F. Electro-dynamic shaker fundamentals[J]. Sound and Vibration.1997,24(2):14-23.
    [25]Yamashita I, Oro K, Seikai S. A study of mechanical vibration signal transmission using position modulated optical pulses [J]. IEEE Transactions on Electronics Information and Systems,2007, 127(11):1951-1952.
    [26]刘小勇,施仁.一种新型电动机械振动台测控系统[J].仪器仪表学报,2003,24(3):281-294.
    [27]安正信.机械振动台无强迫导向双向振动机理[J.现代电子技术,2008,31(22):70-73.
    [28]Lang G F, Snyder D. Understanding the physics of electrodynamics shaker performance[J]. Sound and Vibration,2001(10):324-335.
    [29]Chen T H, Liaw C M. Vibration acceleration control of an inverter-fed electrodynamic shaker[J]. IEEE/ASME Transactions on Mechatronics,1999,4(1):60-67.
    [30]黄浩华,杨学山,程建伟,董玲等.小型伺服式电动振动台[J].世界地震工程,2002,18(3):69-72.
    [31]李晓蕾,樊尚春.低频电动振动台的关键技术[J].航空计测技术,2003,23(5):1-4.
    [32]胡小弟,朱伟繁.涉及电动振动台选型的结构与技术的评价和分析[J].环境技术,2002(5):1-4.
    [33]Underwood M A, Keller T. Recent system developments for multi-actuator vibration control[J]. Sound andVibration,2001,35(10):16-23.
    [34]Underwood M A, Keller T. Applying coordinate transformations to multi-DOF shaker control[J]. Sound and Vibration,2006,40(1):14-27.
    [35]陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价.岩土工程学报,2011,33(12)1887-1894.
    [36]何清华.液压冲击机构研究与设计[M].长沙:中南大学出版社,2009.
    [37]杜芳,曹文清.振动台试验中提高地震波模拟精度的补偿原理和方法[J].世界地震工程,2002,18(1):129-132.
    [38]胡继云,廉振红,邵洪涛.单自由度简谐振动机械弹性支承刚度和激振力的设计[J].河南工业大学学报(自然科学版),2006,27(4):11-14.
    [39]韩俊伟,于丽明,赵慧.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999,31(3):21-23,28.
    [40]尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域[].液压与气动,2001(6):5-10.
    [41]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学,2007.
    [42]GRASTY L. New electro-magnetic shaker technology [J]. Sound and Vibration,2002, (3):68-78.
    [43]BREHL D E, DOW T A. Review of vibration-assisted machining[J], Precision Engineering,2008,(32), 153-172.
    [44]MA Chunxiang, SHAMOTO E, MORIWAKI T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J].International Journal of Machine Tools & Manufacture,2004,(44), 1305-1310.
    [45]王考.气动式振动台振动激励能谱优化研究[D].长沙:国防科学技术大学,2009.
    [46]王考,陶俊勇,陈循,等.气动式振动台理想激励信号的特性[J].机械工程学报,2009,45(8):142-147.
    [47]http://news.thomasnet.com/fullstory/464683
    [48]http://www.hanseenv.com/contentlcategory/6/71/49/
    [49]http://www.hanseenv.com/content/category/6/77/70/
    [50]http://www.HanseEnv.com
    [51]http://www.hanseenv.com/index.php?option=eontent&task=view&id=44
    [52]http://www.hanseenv.com/index.php?option=eontent&task=view&id=34
    [53]http://www.manufacturingtalk.com/news/hcp/hcp100.html
    [54]http://www.qualmark.com/pdfs/huntingtonpresentation.pdf
    [55]JOSEF T. Ballast tamping machine and method for tamping a railway Track:(AT)EP,1403433A3 [P].2004-05-26.
    [56]JOSEF T. Tamping machine:(AT)EP,1387003A2 [P].2004-02-04.
    [57]YVO C S,YVAN D. Railway track tamping device:(CH)EP,0050889A1[P].1982-05-05.
    [58]GANZ J.Railwayballast tamping machine:(CH) EP,0424322A1[P].1991-04-24.
    [59]SANDSTED C A.MOORE R J,DELUCIA A P,et al. Split tool mechanical vibrator:US,5584248[P]. 1996-12-17.
    [60]JOHN M,PETER Y. Single shaft tamper with reciprocating rotational output:US,6386114[P].2002-05-14.
    [61]MIN Chaoqing, GONG Guofang, LIU Yi. Design and Simulation Research on New Tamper Based on ADAMS.2010 International Conference on Digital Manufacture and Automation, Hunan,2011,1(1): 494-498.
    [62]RUAN Jian, BURTON R T. An electrohydraulic vibration exciter using a two-dimensional valve[J].Journal of Systems and Control Engineering,2009,223(2):135-141.
    [63]任燕,阮健.典型波形作用下电液激振器输出波形研究[].中国机械工程,2009,20(24):2963-2968.
    [64]SU D H, CUI X, WU X H. Analysis and simulation of dynamic properties of high frequency hydraulic vibration[C]//7th International Conference On Progress of Machining Technology,Nanjing,2004: 918-922.
    [65]徐洋,华宏星,韩俊伟.结构主动控制中液压振动台的控制器设计[J].机械工程学报,2008,44(12):314-318.
    [66]NASCUTIU L. Voice coil actuator for hydraulic servo valves with high transient performances[C]//Proceedings of IEEE International Conference on Automation, Quality and Testing,Robotics,Cluj-Napoca. Romania:IEEE.2006:185-190.
    [67]李其朋.直动式电液伺服阀关键技术的研究[D].杭州:浙江大学,2005.
    [68]廉红珍,寇子明.振动机械液压激振方式的特点分析和发展综述[J].煤矿机械,2007,27(11):12-14.
    [69]郝建功,张耀成.新型电液激振装置的性能研究[J].太原理工大学学报,2003,(6):706-709.
    [70]任燕.高频电液激振器的特性研究[D].杭州:浙江工业大学,2011.
    [71]贾文昂.2D阀控制电液激振器及在疲劳试验系统中的应用研究[D].杭州:浙江工业大学,2010.
    [72]阮健,李胜,裴翔,等.2D阀控电液激振器[J].机械工程学报,2009,45(11):125-132.
    [73]阮健,裴翔,李胜.2D电液数字换向阀[J].机械工程学报,2000(3):86-89.
    [74]阮健,李胜,裴翔,等.数字阀的分级控制及非线性[J].机械工程学报,2005(11):91-97.
    [75]唱一丹.双向旋转比例电磁铁及旋转伺服阀的研究[D].杭州:浙江大学.1997.
    [76]张光琼,唱一丹.双向极化式比例电磁铁及其静、动态特性研充.防爆电器.1989(4):28-32,36.
    [77]CUI Jian, DING Fan, LI Yong, et al. A novel eddy current angle sensor for electrohydraulic valves. Measurement Science and Technology, vol.19,015205,2008.
    [78]CUI Jian,DING Fan,LI Qipeng. Novel bidirectional rotary proportional actuator for electrohydraulic rotary valves. IEEE Transactions on Magnetics, vol.43, no.7, pp.3254-3258, July 2007.
    [79]崔剑,丁凡,李其朋.耐高压双向旋转比例电磁铁的静态力矩特性.浙江大学学报(工学版).2007,41(9):1578-1581.
    [80]丁凡,崔剑,翁振涛.耐高压永磁双向旋转比例电磁铁.专利号:ZL200610049209.2.
    [81]丁凡,崔剑,翁振涛等.电涡流角度传感器.申请号:200710069744.9.
    [82]David Griffin, Ed Walls, Chris Williamson. A rotary disc valve. UK patent:GB 2,398,856 A.2004.
    [88]Marcus B L. Rotary servo valve. US patent:5,954,093.1999.
    [89]Nomura Takao, Inada Shigeyoshi, Katsumata Takuji. Rotary valve, method of manufacturing the same, and rotary valve device. PCT:WO2005100830.2005.
    [90]李惠春译.道碴的功能与道床的捣固[J].铁道建筑,1995(10):6.
    [91]曾树谷.铁路散粒体道床[M].北京:中国铁道出版社,1997.50-60.
    [92]Hardin. Crushing of soil particles[J]. Journal of Geotechnical Engineering, American Society of Civil Engineers,1985,111(10):1177-1192.
    [93]王平,万复光.铁路碎石道床弹性特性研究初探[J].铁道学报,1997,19(4):108-114.
    [94]赵明华,曾广冼,刘江波.填石料的振动压实变形特性及压实机理试验研究[].铁道科学与工程学报,2006(4):41-45.
    [95]刘汉龙,秦红玉,高玉峰等.堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005(26):562-566.
    [96]Marsal R J. Mechanical Properties of Rock Fill Embankment Dam Engineering[M]. Casagrande Volume, New York:Wiley,1973.109-200.
    [97]Carrascal I A, Casado J A, Polanco J A, et al. Dynamic Behaviour of Railway Fastening Setting Pads[J]. Engineering Failure Analysis,2007(3):364-373.
    [98]Kaewunruen S, Remennikov A M. Effect of Improper Ballast Packing Tamping on Dynamic Behaviors of On-track Railway Concrete Sleeper[J]. International Journal of Structural Stability and Dynamics,2007,7(1):167-177.
    [99]Kumaran G, Menon D, Nair K K. Dynamic Studies of Railtrack Sleepers in a Track Structure System[J]. Journal of Sound and Vibration,2003(268):485-501.
    [100]Barylski A, Koc W, Wilk A. Longitudinal Forces in Railway Track and Tamping Machine Shifting Sets[J].NDT&E International,1999,32(8):445.455.
    [101]唐正光,王苏达,吴培关等.碎石的可压实性及压实对渗透性能的影响[J].昆明理工大学学报(理工版),2006(5):61-64.
    [102]刘卫星,王午生.铁路碎石道床动刚度与阻尼的试验研究[J].铁道学报,2002,24(6):99-104.
    [103]泮健,刘剑,施光林.基于Pro/Mechanism虚拟仿真的六自由度平台实时运动控制[J].上海交通大学报2009,43(6):940-943.
    [104]雪茗斋电脑教育研究室.Pro/ENGINEER野火版3.0机构仿真运动实例精讲[M].北京:人民邮电出版社,2008.
    [105]葛正浩,杨芙莲.Pro/E机构设计与运动仿真实例教程[M].北京:化学工业出版社,2007.
    [106]二代龙震工作室Pro/Mechanism Wildfire3.o/4.0机构、运动分析[M].北京:电子工业出版社,2008.
    [107]李雷,黄恺,高奇Pro/E产品装配与机构仿真[M].北京:化学工业出版社,2009.
    [108]高秀华等.机械三维动态设计仿真技术[M].北京:化学工业出版社,2003.
    [109]郭卫东.虚拟样机技术及ADAMS应用实例教程[M].北京:北京航空航天大学出版社,2008.
    [110]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [111]REN Yan, RUAN Jian, LI Sheng,et al. The excited waveform analysis of the electro-hydraulic vibration exciter under sinusoidal and triangular waveform input[C]//Institute of Mechatronic Control Engineering, Zhejiang University. Proceedings of the Seventh International Conference on Fluid Power Transmission and Control. Hang Zhou:World Publishing Corporation,2009:189-192.
    [儿2]任燕,阮健,贾文昂.2D阀控电液激振器低频振动波形分析[J].农业机械学报,2010,41(9):187·193.
    [113]闵超庆.新型捣固装置设计及其电液激振器特性研究[D].杭州:浙江大学,2012.
    [114]张静.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007.
    [115]王传礼,丁凡,李其朋.对称四通阀控非对称液压缸伺服系统动态特性研究[J].中国机械工程2004,15(6):471-474.
    [116]肖晟,强宝民.基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真[l].机床与液压2009,6:49-53.
    [117]卓金武.MATLAB在数学建模中的应用[M].北京:北京航空航天大学出版社,2011.
    [118]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用(第2版)[M].北京:清华大学出版社,2011.
    [119]孔祥东,王益群.控制工程基础[M].北京:机械工业出版社,2008.
    [120]董景新,赵长德,熊沈蜀.控制工程基础[M].2版.北京:清华大学出版社,2003.
    [121]刘宝廷,程树康.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [122]曾高荣,高杨,胡莉.细分驱动在步进电机控制中的应用[J].兵工自动化,2004,23(2):52-53.
    [123]林海波.步进电机恒力矩均匀细分驱动器的设计与实现[J].自动化技术与应用,2003,22(2):51-54.
    [124]宋苏,任红格,于建均,等.基于谐振跟踪的液压振动台的DSP实现[1].计算机测量与控制,2007,15(8):1020-1022.
    [125]http://econgroup.cn.china.cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700