利用EMS诱变构建甘蓝型油菜突变体库的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突变体在农作物品种改良、功能基因研究等方面具有十分重要的意义。本研究采用4种浓度EMS处理甘蓝型油菜NJ7982种子,选取其中诱变效果好的处理(0.4%EMS)所衍生的群体,作本研究的对象。通过对诱变后代的苗期、开花期、成熟期的表型观察,对表型性状突变体进行筛选和鉴定;还对突变处理群体进行了种子脂肪酸含量筛选和除草剂筛选。主要结果如下:
     1.表型突变性状:对M2群体内各植株的形态学观察,获得了包含叶、花器、株型、角果、种皮的表型性状的突变体,共8789株,总的突变表型频率达18.51%。子叶性状突变体包括3子叶、子叶黄化等,占群体的0.22%;叶片性状突变体包括有黄化叶、白化叶、紫色叶、上卷叶、下卷叶等,占群体0.74%;花器性状突变体包括紫色花蕾、死蕾、3花瓣、6花瓣、白色瓣、黄白双色镶嵌花瓣、花瓣皱缩、完全不育、微粉株等,占群体9.38%;株型性状突变体包括矮杆、粗茎、多分枝、紧凑型、丛生、褐茎、紫茎、早衰等,占群体4.98%;角果性状突变体包括粗角、长角、弯角、紫角等,占2.79%;另外,在收获群体内筛选获得了50份黄籽材料,占收获群体0.40%。这些多样性的表型突变材料,为甘蓝型油菜功能基因研究及种质创新提供基础性材料。
     2.高油酸种质:通过种子脂肪酸含量测定,从M2群体内筛选获得了7份油酸含量大于73%的种质,平均油酸含量达75.18%±1.69%,与野生型的(66.65%)相比较提高了8.53个百分点。这些高油酸材料在油菜脂肪酸改良中将具有十分重要的应用价值。
     3.抗草甘膦变异株:对M2代105 263株幼苗进行草甘膦喷雾,处理后仅5株幼苗成活下来,幼苗成活率达到0.004%,并认为此5株幼苗为抗除草剂材料。M3代,重复性鉴定的结果表明,变异材料对致死浓度的草甘膦仍具有忍耐力,这为抗除草剂油菜品种的培育提供新材料。
Mutants have been playing important role in crop genetic improvement and functional genomics researches.The present research constructed a mutant library derived from an EMS treatment which had the best inducement effect in 4 EMS concetrations(0%,0.2%, 0.4%,0.6%) treatment of canola line NJ7982 (Brassica napus L) from Nanjing Agricultural University. Through morphorlogical observation, seed quality determination and herbicide resistance evaluation in mutation progenies, phenotype mutants have been recorded and collected, high oleic acid content mutants and herbicide-resistant plants have also been obtained. Main results are as follows.
     1. Various phenotypic mutants have been obtained. In M2 population,8789 plants with phenotypic mutative traits which were devided into classes such as leaf, flower, plant type, silique and seed coat trait mutants, were observed, accounting for 18.51% of the M2 plants. Cotyledon trait mutants covered tricotyledon. yellowish cotyledon, etc. accounting 0.22% in the M2 population. Leaf trait mutants such as yellowish leaf, albino leaf, purple leaf, up-curly leaf, down-curly leaf, etc, were observed with mutation frequency of 0.74%. Flower trait mutants manifested as purple buds, bud-deads, three petals, six petals, white petal, white-mosaic petal, wrinkled-petal, complete male sterility, few powder, etc, were of 9.38% in the M2 population. Plant type trait mutants included dwarf plant, thick stem, excessive branches, tight type, tufty branches, brown stem, purple stem, premature, etc, accounting for 4.98%. Silique trait mutants accounting for 2.79% included thick-walled silique, long silique. curly silique, purple silique, etc. Fifty yellow-seeded mutants were also obtained, accounting 0.40% in harvested population. All these phenotypic mutation materials were saved in germplasm bank, will be used to benefit rapeseed functional genomics research and variety improvement.
     2. Germplasm with high oleic acid content was obtained. By determinating seed fatty acid content, screening results showed that seven germplasms with more than 73% oleic acid content in seed oil were obtained from M2 plants with average oleic acid content of 75.18%, higher than 66.65% of its wild type by 8.53%, will be very useful in fatty acid improvement of Brassica napus.
     3. Herbicide-resistant plants were obtained. By spraying glyphosate, five mutants were alive after treatment from 105 263 seedlings, and the survival rate of seeding reached 0.004% in the population. Evaluation of glyphosate with carious concentrations in M3 showed that the mutation materials were also resistant to herbicide, and provide new materials for herbicide-resistant variety breeding.
引文
1. James C. Global review of commercialized transgenic crops[J]. Special section:transgenic crops, 2001,24:303-309
    2.官春云.优质油菜[M].北京:中国三峡出版社,2005
    3.王汉中.我国油菜产需形势分析及产业发展对策[J].中国油料作物学报,2007,29(1):101-105
    4.栾维江,孙宗修.Ac/Ds标签系统与水稻功能基因组学[J].植物生理与分子生物学学报,2005,31(5):441-450
    5.张铭堂.诱变[J].科学农业,1996,44:37-52
    6.马惠平.赵永亮,杨光宇.诱变技术在作物育种中的应用[J].遗传,1998,20(4):48-50
    7. Maluszynski M. Application of in vivo and in vitro mutation techniques for crop improvement [J].Euphytica,1995, (85):303-315
    8.郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报.2006,1:11-30
    9. McCallum C M, Comai L, Greene E A, et al. Targeting screening for induced mutations [J]. Nature Biotechnol,2000a,18:455-457
    10. Suzuki T, eiguchi M, SatohH, et al. A modified TILLING system for rice mutant screening[J]. Rice Genet Newsl,2005,22:85-87
    11.刘录祥,程俊源.植物诱变育种新技术研究进展[J].核农学通报,1997,4:187-190
    12. Kamiguchi Y, Tateno H. Radiation and chemical-induced structural chromosome aberrations in human spermatozoa [J]. Mutat Res,2002,504:183-191
    13.胡延吉.植物育种学[M].北京:高等教育出版社,2003
    14.夏英武.作物诱变育种[M].北京:中国农业出版社.1997
    15. Greene E A,Codomo C A,Taylor N E,et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis thaliana[J].Genetics.2003,164:731-740
    16. Lebkowski J S, Miller J H, Calos M P. Determination of DNA sequence changes induced by ethyl methane sulfonate in human cells [J].Trends Plant Sci,1996,178-184
    17. McCallum C M, Comai L, Greene E A, et al. Targeting induced local lessions in genomes (TILLING) for plant functional genomics[J] Plant Physiol,2000,123:439-442
    18.任少雄,王丹.植物理化复合诱变育种技术研究进展[J].安徽农业科学,2009,37(20):9345-9349.
    19. Li Y H, Q Qian, M Yan L, et al. Which encodes a COBRA-like protein affects the mechanical properties of rice plants [J]. Plant Cell.2003b,15:2020-2031
    20. Haga K, Takano M, Neumann R, et al. The rice COLEOPTILE PHOTOT ROPISMI gene encoding an orthodox of Arabidopsis NPH3 required for phototropism of coleoptiles and lateral translocation of auxin [J]. Plant Cell,2005.17:103-115
    21.贾林贵,辜义芳,李达祥,等.γ辐照与赤霉素复合处理育成小麦新品种西辐九号[J].核农学报,1999,13(2):65-69
    22. Bhattacharjee R, Saxena M, Tyagib R. Mutagenic effectiveness and efficiency of gamma-rays, ethylmethane-sulphonate and nitroso-meth-ylurea in periwinkle Catharanthus roseus [J]. Journal of Nuclear Agriculture and Biolo,1998,27(1):61-64
    23. Tiland B. The integration of T-DNA into plant genomes[J]. Trends Plant Sci,1996,178-184
    24. Brunaud V. Balzergue S. Dubreucq B. et al. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Reports,2002,3(12):1152-1157
    25. Szabados L, Kovacs I, Oberschall A, et al. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome [J]. Plant J,2002,32:233-242
    26. Hiei Y. Kumashiro T. Efficient transcrion on of rice (Oryza sativa. L.) mediated by Agrobacrerium and sequence ananalysis of the boundaries of the T-DNA [J]. Plant Journal,1994,6:271-282
    27.孟凡,张卫国,陈庆山.插入突变在功能基因组学研究中的应用[J].生物信息学,2005,3:38-40
    28. Hsing Y I, Chern C G, Fan M J, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics [J]. Plant Mol Biol,2007.63:351-364
    29. Sha Y, Li S, Pei Z, et al. Generation and flanking sequence analysis of a rice T-DNA tagged population [J]. Theor Appl Genet,2004,108:306-314
    30. Young J C, Krysan P J, Sussman M R. Efficient screening of Arabidopsis T-DNA insertion lines using degenerate primers [J]. Plant Physiol,2001,125:513-518
    31. Azpiroz-Leehan R, Feldmann K A. T-DNA insertion mutagensis in Arabidopsis:going back and forth[J].Trends Genet 1997,13:152-156
    32. Blcells L, Swinburne J, Couplant G. Transposon as tool for the isolation of plant gene[J]. Trends Biotechnol,1991,9:31-37
    33. Enoki H. Izawa T, Kawahara M, et al. A casa tool for functional genomics of rice[J]. Plant J,1999, 30(3):605-613
    34. Stam M. Mol J N. Kooter J M. The silence of genes in transgenic plants[J]. Annals of Botany,1997. 79(1):32-12
    35. Bull J J. Jacobson A, Badgett M R. et al. Viral escape from antisense RNA [J]. Mol Microbiol,1998. 28:835-846
    36. Han M J, Jung K. H, Yi G, et al. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development[J]. Plant Cell Physiol,2006,47:1457-1472
    37. Moliruer J. Ramos C. Fritsch O, et al. Modulates homologous recombination and nucleotide excision repair in Arabidopsis [J]. Plant Cell,2004,16:1633-1643
    38. Parrish S, Fire A. Distinct roles for RDE-l and RDE-4 during RNA interference in Caenorhabditis elegans [J]. Rna,2001,7:1397-1402
    39. Filleur S, Dorbe M F, Cerezo M, et al. An Arabidopsis T-DNA affected in Nrt2 genes is impaired in nitrate uptake [J]. FEBS Lett,2001,489:220-224
    40. Zamore P D. RNA interference:listening to the sound of silence [J]. Nature Structural Biol,2001, 8:746-752
    41. Marathe R, Anandalakshmi R. Smith T H. et al. RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing[J]. Plant Mol Biol,2000,43:295-306
    42. Xun Gu. Evolution of duplicate genes versus genetic robustness against null mutations [J] Trends Genetics,2003,19(7):2-8
    43. Fraser A G, Kamath R S, Zipperlen P. et al. Functional genomics analysis of C.elegans chromosome I by systematic RNA interference [J]. Nature,2000,408:325-330
    44.涂金星,傅廷栋.甘蓝型油菜几个苗期形态标记的遗传[J].华中农业大学学报.2001,20(4):318-320
    45.李万渠,莫鉴国,余勤.用于甘蓝型油菜标记杂种选育的标记研究和筛选[J].西南农业学报,1997,10(2):110-114
    46. Zhang Ziyi, Chen Xuexiu, Ren Peng. Analytical technology of near infrared spectroscopy [M].Beijing:China Agricultural Press,1992
    47. Ciurczak E W. Use of near infrared spectroscopy in cereal products [J]. Food Testing and Analysis, 1995.5:35-39
    48.吴建国,石春海.近红外反射光谱分析技术在植物育种与种质资源研究中的应用[J].植物遗传资源学报,2003,4(1):68-72
    49.张建华,陈火英,庄天明.番茄耐盐体细胞变异体的离体筛选[J].西北植物学报.2002.22(2):257-262
    50.曾慧,游建华,刘红坚,等.甘蔗离体培养抗除草剂突变体的筛选研究简报[J].甘蔗糖业,2003,(1):16-18
    51.何智勇,魏松红,刘冰,等.应用诱变法筛选抗草甘膦水稻植株[J].江苏农业科学,2008,2:43-44
    52.魏松红,纪明山,王英姿,等.应用诱变法筛选抗草甘膦小麦植株初步研究[J].现代农药2006,5(3):42-46
    53.苏少泉.转基因抗除草剂作物评述[J].现代农药,2003,3(4):5-7
    54. Koornneef M, Jorna M L, Swan C, et al. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in nongerminating gibberellin sensitive lines of Arabidopsis thaliana L Heynh[J].Theor Appl Genet,1982.61:385-389
    55. Firn R D. Growth substance sensitivity, the need for clear ideas, precise terms and purposeful experiments[J]. Physical Plant,1986,87:267
    56.李玲,潘瑞炽.植物激素突变体研究[J].植物学通报,1994,11(2):26-31
    57. Buchanan B B, Gruissem W, Jones R L, et al. Biochemistry and Molecular Biology of Plants[M]. Rockville:American Society of Plant Physiologists,2000
    58. Perry J A, Wang T L, Welham T J, et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicas [J].Plant Physiology,2003,131:86-871
    59. Slade A J, Fuerstenberg S I, Loeffler D, et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING[J]. National Biotechnology,2005,23:75-81
    60. Gilchrist E J, Haughn G W, Ying C C, et al. Use of Eco tilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populust richocarpa[J]. Molecular Ecology,2006. 15:1367-1378
    61. Till B J, Reynolds S H, et al. Large-scale discovery of induced point mutations with high-throughput TILLING[J]. Genome Res,2003.13(3):524
    62. Colbert T, Till B J, et al. High-throughput screening for induced point mutation [J]. Plant Physiol, 2001,126:480-484
    63. Leung H, Wu C, Baraoidan M, et al. Deletion mutants functional genomies:progress in phenotyping. sequence assignment and database development,4th Iniemational rice Genetics Symposium [M]. IRRI PhiliPPines:Abstract Book,2000, P18
    64. Zhu Y, Zhao H F. Ren G D, et al. Characterization of a novel developmentally retarded mutant (drml) associated with the autonomous flowering pathway in Arabidopsis[J]. Cell Res,2005,15(2):133-140
    65. Gabrielson K M, Cancel J D, Morua L F, et al. Identification of dominant mutations that confer increased aluminium tolerance through mutagenesis of the Al-sensitive Arabidopsis mutant, als3-1[J]. Journal of Experimental Botany,2006,17:1-9
    66.朱旭东,陈红旗,罗达,等.水稻中花11辐射突变体的分离与鉴定[J].中国水稻科学2003,3:205-210
    67. Sallaud C, Gray C, Larmande P, et al. High throughout T-DNA insertion mutagenesis in rice:a first step towards in silico reverse genetics [J]. Plant J,2004,39:450-464
    68. Hirochika H. Contribution of the Tosl7 retrotransposon to rice functional genomics[J]. Current Opinion in Plant Biology,2001,4:118-122
    69. Shimamoto K, et al. Trans-activation and stable integration of the maize transposable element DS cotransfected with the AC transposable gene in transgenic rice plants[J]. Mol Gen Genet,1993, 239:354-360
    70.许耀奎,邬信康,张富琴,等.化学诱变剂EMS对春小麦诱变效应的研究[J].作物学报,1985.11(3):215-216
    71. Kuraparthy V, Sood S, Dhaliwal H S, et al. Identification and mapping of a tiller inhibition gene (tin3) in wheat[J]. Theor Appl Genet,2007,114(2):285-294
    72.许云峰,蒋方山,郭营,等.EMS诱导小麦品种烟农15突变体的鉴定和EST-SSR分析[J].核农学报,2008,22(4):410-414
    73.孙加焱,涂进东,范叔味,等.甘蓝型油菜理化诱变和突变体库的构建[J].遗传,2007,29(4):475-482
    74. Wang Nian, Wang Yajie, Meng Jinling, et al. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING[J]. New Phytologist,2008,180:751-765
    75.赵小英.唐冬英,黄星群,等.油菜突变体库构建与激素反应基因克隆分析[J].湖南大学学报,2009,36(9):67-72
    76.韩锁义,杨玛丽,陈远东,等.大豆“南农94216”突变体库的构建及部分性状分析[J].核农学报,2008,22(2):131-135
    77.喻树迅,范术丽,原日红,等.棉花航天诱变试验初报[J].中国棉花,1998,25(11):11-13
    78. Till B J, Reynolds S H, Weil C, et al. Discovery of induced point mutations in maize genes by TILLING[J]. BMC Plant Biology,2004,4:12-17
    79. Menda N, Semel Y, Peled D. et al. In silico screening of a saturated mutation library of tomato[J]. The Plant Journal,2004,38(5):861-872
    80. Caldwell D G, McCallum N, Shaw P, et al. A structured mutant population for forward and reverse genetics in barley [J]. The Plant Journal,2004,40(1):143-150
    81. Takagi S. Diaspididae of Taiwan based on material collected in connection with the Japan-U.S. cooperative science programme, (Homoptera:Coccoidea) Part Ⅱ. Ins. Matsumurana,1965, 33(1):140-146
    82.石淑稳,吴江生,刘后利.离体诱发甘蓝型油菜长角果和矮杆突变体[J].核农学报,1995,9(4):252-253
    83.李泽福,夏加发,唐光勇.植物雄性不育的类型与遗传机制[J].安徽农业学,2000,28(6):742-746
    84.刘秉华.作物显性雄性不育基因分类与起源的探讨[J].遗传,1993,15(6):32-34
    85.李树林,钱玉秀,周熙荣,等.甘蓝型油菜细胞核雄性不育的遗传验证[J].上海农业学报,1986,2(2):1-8
    86.傅廷栋.杂交油菜的育种与利用(第二版)[M].武汉:湖北科学技术出版社.2000
    87.胡琼,李云昌.梅德圣,等.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定[J].中国农业科学,2004,37:333-338
    88. Hu Q,Andersen S B. Dixelius C, et al. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool[J]. Plant Cell Rep,2002,21:147-152
    89.刘后利.油菜的遗传和育种[M].上海:上海科学技术出版社,1985
    90.李加纳,唐章,林堪利,等.温度对波里玛胞质不育系油菜育性变化时期和临界值的影响研究[J].西南农业大学学报.1995,17(5):391-395
    91.董遵,刘敬阳,牟建梅,等.离子束处理油菜干种子的剂量效应[J].安徽农业科学,2005,33(6):949-956
    92.王汉中,刘贵华,郑元本,等.油菜多目标性状重组的设计及重组产物的鉴定方法[P].中国:A01H 1/02,2007-01-03
    93. Bechyne M. Z, Kondra P. Effect of seed-pod position on the fatty acid composition of seed oil from rapeseed(Brassica napus and campestris)[J]. Can J Plant Sci,1970,50:151-154
    94. Rakow G, McGregor D I, Opportunities and problems inmodification of levels of rapeseed C18 unsaturated fatty acids [J]. J Am Oil Chem Soc,1973.50:400-403
    95.瞿凤林.作物品质育种[M].北京:农业出版社.1991
    96. Kott L S. Production of mutants using the rapeseed doubled aploid system. Induced Mutation and Molecular Techniques for Crop Improvement.IAEA/FAO Proceedings of an International Symposium on the use of Induced Mutations and Molecular Techniques for Crop Improvement. Vienne,Austria,1996.505-515
    97.官春云,李方球,陈社员.双低油菜湘油15号对菌核病抗性研究简报[J].作物研究.2001,3:33
    98. Rucker B, Robbelen G. Development of high oleic acid rapeseed[C]. In:Published by GCIRC Proc 9th Int Rapeseed Congr.4-7 July 1995, Cambridge, UK, pp389-391
    99.官春云.油菜高油酸遗传育种研究进展[J].作物研究,2006.(1):1-8
    100. Mckhedov S. Lloruya O M, Ohlrogge J. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis[J].Plant Physiology,2000,122:389-401.
    101.赵云.王茂林,郑洪武,等.油菜细胞诱变及抗草酸突变体的筛选[J].中国油料作物学报.1996.18(4)10-14
    102. Ahamd L.Day J P, Macdonald M V, et al. Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and alternaria brassicicola[J]. Annals of Botany,1991.67:521-525
    103. Zhang F L, Takahata Y. Inheritance of microspore embryogenic ability in Brassica [J]. Theor Appl Genet,2001,103:254-256
    104.陈薇,李名扬,李宣源.离体茎尖诱变筛选油菜耐草酸变异体[J].西南农业学报,2001,14(2):31-33
    105.刘良宏,石淑稳,吴江生,等.油菜诱变和离体草酸筛选抗菌核病材料[J].中国油料作物学报,2003,5(1)5-13
    106.刘忠松,官春云,陈社员.抗除草剂油菜研究及其进展[J].CROP RESEARCH,2003,17(2):70-72
    107. Swanson E B, Herrgesell M J, et al. Microspore autogenesis and selection:canola plants with pield tolerance to the imidazolimones [J]. Theoretical and Applied Genetics,1989,98:525-530
    108.李莉,付岳峰,肖刚,等.油菜抗除草剂突变体的筛选及其鉴定[J].中国油料作物学报,2008,30(3):361-365
    109.涂金星,傅廷栋,郑用琏,等.甘蓝型油菜隐性核不育遗传标记的初步研究紫茎基因与可育基因连锁的分子证据[J].作物学报,1999.25(6):669-673
    110.王茂林,赵云.幼叶黄化性状标记的油菜双重不育系选育[J].四川大学学报.2003.40(5):978-981
    111.伍晓明,等.油菜种质资源描述规范和数据标准[M].北京:中国农业出版社,2007
    112.孙秀丽.油菜籽粒油份、硫苷近红外分析模型的建立及西藏油菜资源品质性状多样性研究[D].武汉:华中农业大学,2002
    113.朱保葛,路子显,耿玉轩,等.烷化剂EMS诱发花生性状变异的效果及高产突变系的选育[J].中国农业科学,1997,30(6):87-89
    114.伍新玲.利用诱变技术改良油菜脂肪酸组成及油酸含量遗传研究[M].北京:中国农业出版社,2004
    115.孙洁,崔海瑞.TILLING技术及其应用[J].细胞生物学杂志.2007.29(1):4146
    116. Till B J, Cooper J. Tai T H. et al. Discovery of chemically induced mutations in rice by TILLING[J]. Plant Biology,2007,7:19-31
    117. Sacristan M D. Resistance responses to rhoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus [J]. Theor Appl Genet,1982,61:193-200
    118.马志虎,颜素芳.罗秀龙,等.辣椒黄绿苗突变体对良种繁育及纯度鉴定作用[J].北方园艺,2001,138:13-14
    119. Zhao Y, Wang M L, Zhang Y Z. et al. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production [J]. Plant Breed,2000.119 (2):131-135
    120. Jarvis P, Chen L J, Li H M, et al. An Arabidopsis mutant defective in the plastid general protein import apparatus [J].Science,1998,282:100-103
    121.牛元,陈雅平,吴国江.叶卷曲突变体的研究进展[J].安徽农业科学,2010,38(7):3325-3330
    122.张洁夫.浦惠明,戚存扣,等.甘蓝型油菜花色性状的遗传研究[J].中国油料作物学报,2000,22(3):1-4
    123. Pandey B P. Brief description of a new type of flower color mutation in brown seed Sarson (Brassica campestris L var di-chotoma Watt)[J].Indian Journal of Agricultural Science,1971, 41(12):1115-1116
    124.于澄宇,胡胜武,张春红,等.一种花色突变雄性不育油菜的发现[J].遗传,2004,26(3):330-332
    125.刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].北京:中国农业出版社,2001:1-6
    126.蒋梁材,蒲晓斌.张启行,等.甘蓝型油菜细胞质雄性不育材料NEA的发现与遗传研究[J].中国农业科学,2002,35(1):72-78
    127.石淑稳,周永明,魏泽兰,等.甘蓝型油菜矮杆突变体Ds-1和Ds-2[J].作物品种资源,1997,3:15
    128.梅德圣,王汉中,李云昌,等.甘蓝型油菜矮杆突变材料99CDAM的发现及遗传分析[J].遗传,2006,28(7):851-857
    129.刘定富,刘后利.甘蓝型油菜脂肪酸成份的基因作用形式和效应[J].作物学报.1990,16(3):193-199
    130.危文亮.甘蓝型油菜长角果变异体的遗传研究[J].遗传.2000,22(2):93-95
    131. Tanhuanpaa P, Vikki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape(Brassica rapa ssp. Oleifera) [J]. Molecular Breeding, 1998,4:543-550.
    132.官春云,刘春林,陈社员,彭琦.李栒,官梅.辐射育种获得油菜高油酸材料[J].作物学报,2006.32(11):1625-1629
    133. Fuerst E B,Vaughn K C. Mechanism of paraquat resistance[J]. Weed Technol,1990,4:150-156
    134.朱玉.于中连.草甘膦生物抗性和生物降解及其转基因研究[J].分子植物育种,2003,1(4):435-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700