VEGF及BMP2基因修饰对血管化组织工程骨的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颌面部骨缺损常见于肿瘤切除、颌骨骨髓炎术后及颌面部外伤等疾患,近年来,我国由上述原因导致的骨缺损患者数量呈逐年上升趋势。揭示骨缺损修复的机制,寻找骨缺损良好修复的方法是骨缺损修复研究领域亟待解决的关键问题。早期的自体骨移植、异体骨移植等传统修复骨缺损的方法对机体损伤较大且效果不佳;之后人工合成的骨替代物因生物相容性差、体内降解慢及机械性能低等不足没有广泛推广;近些年骨组织工程骨的出现为颌骨缺损的修复带来新希望。骨组织工程技术改变了以往创伤性修复的模式,以少量组织细胞修复大面积组织缺损,并可根据需要进行塑形恢复缺损形态,为实现无创修复及良好的生物功能重建提供了理论基础为骨再生修复指明了新的方向。骨组织工程主要包括种子细胞、生长因子及载体支架三个要素。种子细胞是骨组织工程的首要环节和基本要素,其目的是使所构建的组织工程骨兼具骨传导性及骨诱导性,从而更好的修复骨缺损。所以选择最优的种子细胞成为骨组织工程首要解决的问题。骨髓基质干细胞(Bone marrow stromal cells, BMSCs)具有较强的多向分化能力,在一定条件下可分化为骨、软骨、脂肪等细胞,BMSCs也因此成为骨组织工程中应用最广泛的种子细胞。骨形成蛋白2(Bone morphogenetic protein2, BMP2)具有较强的诱导骨形成能力,将因子直接应用于体内由于弥散作用及其半衰期短的原因成骨效果不佳。研究发现采用基因修饰的方式可弥补因子直接应用的不足,所以将BMP2与BMSCs联合应用的方法可为骨组织工程提供新型种子细胞。
     以种子细胞复合生物材料的方法修复骨缺损虽然取得了一定的成功,但一些较大面积的骨缺损因植入物缺少充足的血供而发生坏死。因此,有效的血管化已与种子细胞、支架材料及生长因子共同列入骨组织工程的重要因素。预成血管植入是使骨替代物血管化最直接有效的方法,即将血管预先植入骨替代物中,利用显外科技术将其与宿主体内血管吻合。此种方法可建造独立的血管系统,为植入物提供丰富的血供,可达到良好的血管化效果。但是由于经历多次手术、损伤供血管区及治疗周期长等不足使此方法局限于小面积骨缺损及软组织创伤的修复;诱导血管生成的因子如血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)、成纤维细胞生长因子(Fibroblast growth factor, FGF)、血管紧张素(Angiopoietin, Ang)的使用可促进血管生成,但因半衰期短局部直接应用效果欠佳。目前将具有血管形成能力的细胞与成骨性细胞的联合应用是血管化组织工程骨最有前景的方法之一,尤为血管内皮前体细胞(Endothelial Progenitor Cells, EPCs)的出现,证明血管发生也存在于发育成熟后的机体组织打破了血管形成的传统理念,为缺血性疾病提供了新思路。EPCs是一种未成熟细胞,可分化为内皮细胞直接参与血管形成,在后肢缺血、心肌缺血及角膜损伤等动物模型的实验研究中取得了一定的成功。但EPCs的细胞数量有限,不足以用于大面积缺血缺损的修复。VEGF基因修饰EPCs可弥补其数量不足的缺点,因为VEGF不仅可以募集、趋化EPCs至缺损处,其本身也可直接诱导血管生成。因此,VEGF与EPCs联合应用应该能够达到事半功倍的效果。基于此,本实验选择具有血管形成能力的细胞与成骨性细胞联合应用的方法促进组织工程骨血管化,观察血管及骨形成情况,探讨VEGF-EPC与BMP2-BMSC联合应用对血管化及成骨作用的影响。
     主要实验方法及结果:
     1. BMSCs的分离及鉴定:将密度梯度离心法分离的大鼠骨髓单个核细胞通过塑料培养瓶培养、体外扩增传代进行分离纯化获得较高纯度的BMSCs。分别将BMSCs培养于成骨诱导液及成脂诱导液中,茜素红染色及油红O染色证明BMSCs可诱导分化为成骨细胞、成脂肪细胞,通过细胞功能检测鉴定培养的细胞为BMSCs。
     2. EPCs的分离及鉴定:采用密度梯度离心法分离大鼠骨髓的单个核细胞,通过特殊培养基诱导,贴壁培养、体外扩增纯化获取细胞,利用细胞形态学、细胞表型检测及细胞免疫双荧光、体外成管实验等细胞功能检测进行鉴定,结果证实此种方法分离诱导纯化的细胞为EPCs。同时将BMSCs及EPCs以不同比例混合培养,MTT法检测细胞的增殖能力,确定BMSCs:EPCs的最佳混合比例为1:1。
     3. Ad-BMP2及Ad-VEGF腺病毒载体的构建及有效性鉴定:体外构建Ad-BMP2及Ad-VEGF腺病毒载体,利用AdMax包装系统对其包装、纯化,鉴定重组病毒载体携带目的基因的正确性。
     3.1.测定Ad-BMP2的滴度为2.3×1011pfu/ml,Ad-VEGF滴度为3×1011pfu/ml;设置MOI梯度将Ad-BMP2、Ad-VEGF分别转染BMSCs、EPCs,通过对绿色荧光表达的观察确定病毒转染的最佳MOI值为40,并绘制细胞生长曲线证明在MOI=40时细胞的增殖能力没有受到影响;
     3.2.提取重组腺病毒转染组、空白病毒转染组及空白细胞组的RNA,实时定量PCR检测显示在RNA水平Ad-BMP2-BMSCs组BMP2及Ad-VEGF-EPCs组VEGF的表达显著高于各自对照组(p<0.05);分别收集各组细胞上清,Elisa检测BMP2、VEGF蛋白水平的表达,Ad-BMP2-BMSCs组BMP2及Ad-VEGF-EPCs(?)组VEGF的表达显著高于各自对照组(p<0.05);证明了Ad-BMP2及Ad-VEGF腺病毒载体构建的有效性。
     4. VEGF修饰的EPCs对BMP2-BMSC体外成骨分化的影响:将细胞分为BMSC+EPC、Ad-BMP2-BMSC+EPC、BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC四组,体外行成骨诱导培养,分别于7d、14d、21d及28d行成骨能力检测。
     4.1茜素红染色观察矿化结节:结果显示各组矿化结节数目随时间增加而增多,在第21d及28d,BMP2转染组Ad-BMP2-BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+EPC矿化结节数目显著高于其他组(p<0.05);两组的矿化结节数目在21、28天的变化不明显;
     4.2ALP活性检测:随时间增加每组细胞的ALP活性逐渐增强,诱导后第21天各组ALP活性均达最高值,且BMP2转染组Ad-BMP2-BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+EPC的ALP活性显著高于其他组(p<0.0J);但在第28天发现各组间的差异减小,且Ad-BMP2-BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+EPC的ALP活性较21d变化小;
     4.3实时定量PCR检测ALP、OC、ColI成骨基因表达:Ad-BMP2-BMSC+EPC、BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC组中ALP基因的表达在诱导后第21天达到高峰,其中Ad-BMP2-BMSC+EPC组和Ad-BMP2-BMSC+Ad-VEGF-EPC组ALP的表达显著高于其他各组(P<0.05),每组的OC表达随时间变化增长缓慢,组间没有显著差异;随时间变化各组的Col Ⅰ表达逐渐增多,21天时达到高点,且Ad-BMP2-BMSC+Ad-VEGF-EPC组Col Ⅰ表达水平高于其他各组(P<0.05)。
     5. VEGF修饰的EPCs对组织工程骨形成及血管化的影响:将BMSC+EPC、 Ad-BMP2-BMSC+EPC、BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC四组细胞分别与藻酸盐凝胶混合注入大鼠股骨外侧肌内,每组5只大鼠,分别于4w及6w将动物处死取出植入组织,免疫染色检测骨、Col Ⅰ及血管形成。
     5.1石蜡包埋后切片行HE染色检测新生组织中骨生成情况,结果显示混合物注入4周后组织切片HE染色可见藻酸盐凝胶材料数量减少,长圆形、梭形细胞围绕凝胶材料周围;第6周,HE染色仍可观察到材料的残余,能够见到细胞核深染的成骨细胞形成。实验中未见有炎症反应发生。定量分析骨形成面积:在第4周和第6周,Ad-BMP2-BMSC+EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC组新骨形成面积显著高于其他两组(P<0.05);第6周,Ad-BMP2-BMSC+EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC组组间有显著差异(P<0.05),但Ad-BMP2-BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+EPC组新骨形成面积相对第4周增长缓慢;
     5.2天狼猩红染色检测Col Ⅰ生成情况:可观察到新胶原组织产生,并间杂有不规则状的未成熟骨样基质。随时间增长,新生胶原组织数量增加。第4及第6周,Ad-BMP2-BMSC+EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC组新胶原形成面积显著高于其他两组(P<0.05);
     5.3血管内皮特殊标记物CD31检测新生物中血管的生成情况,第4及第6周,BMSC+Ad-VEGF-EPC及Ad-BMP2-BMSC+Ad-VEGF-EPC两组血管生成数目显著高于其他两组(P<0.05),且两组间存在显著差异Ad-BMP2-BMSC+Ad-VEGF-EPC组的血管生成数量显著高于BMSC+Ad-VEGF-EPC组(P<0.05)。
     6.BMP2及VEGF对Idl表达的影响:分别提取Ad-BMP2-BMSC组、Ad-VEGF-EPC组、空白病毒转染细胞组及空白细胞组的RNA,实时定量PCR检测Ad-BMP2-BMSC组及Ad-VEGF-EPC组Idl基因RNA水平的表达显著高于各自对照组(P<0.05)。
     结论:
     1.密度梯度离心法分离大鼠骨髓单个核细胞,通过不同的诱导方式对其进行分离、诱导及纯化可分别得到纯度较好的BMSCs及EPCs。
     2.通过细胞功能鉴定证明EPCs具有血管形成能力及BMSCs具有成骨分化能力。
     3.体外构建Ad-BMP2及Ad-VEGF重组腺病毒表达载体,滴度高转染效率好,可使BMSCs过表达BMP2及EPCs高表达VEGF,可有效促进BMSCs的成骨性能及EPCs的血管形成活性。
     4. VEGF修饰的EPCs与BMP2修饰的BMSCs联合应用,可通过细胞间因子交流有效促进血管的形成,VEGF修饰的EPCs为理想的促血管生成种子细胞。
     5.BMP2及VEGF诱导Idl的表达升高对成骨细胞终末分化的抑制作用可能会导致骨形成不佳,且Id1可通过募集趋化EPCs促进血管生成;由此推测Idl可能为成骨分化及血管形成的重要分子。Idl在骨形成及血管形成中的作用为骨组织工程的研究提供了新思路。
     创新性和意义:
     1.本研究的创新点是在国内外首次将BMP修饰的BMSCs与VEGF修饰的EPCs共同作为骨组织工程的种子细胞,利用VEGF-EPC的血管化作用以促进骨缺损的修复,为因血管化不足导致大面积骨组织缺损的修复不良提供解决方法和策略。
     2.本研究初步探讨了Idl基因在骨形成及血管形成中的作用,为骨组织工程的研究提供了新思路。
Bone regeneration is required to repair mandible defects arising from trauma, inflammation or tumor. Bone tissue engineering which based on seed cells, grow factors and scaffold material are currently being combined to assess their potential to develop effective concepts for the treatment of extensive loss of osseous tissue. Bone seed cells which share the collective goal of creating osteoconductive and osteoinductive bone graft substitutes is the primary and basic element of bone tissue engineering. Bone marrow stem cells (BMSCs) are pluripotent cells having the potential to differentiate into bone, cartilage, muscle, and ligament have been implicated in the enhancement of bone repair. Although bone morphogenetic protein2(BMP2) can produce orthotopic bone in the hindlimbs of animal model, the short half-life and dispersion limit their effection of directly application. However, the strategy of gene modification can efficiently solve the deficience of directly application and adenovirus vectors have been successfully used for transient gene expression avoiding side effect of gene overexpression. BMP2gene modification of BMSCs provides a new prospect for bone tissue engineering.
     Osteogenic stem cells with over-expressed osteogenic factors were less effective in treating large bone defects due to inefficient blood supply in the entire bone graft. The vascularization has been involved in bone tissue engineering with the seed cells, grow factors and scaffold. Implanting the tissue valve embedment with vessel pedicle or blood vessel bundle to reconstruct bone graft blood circulation is an efficient way to vascularization. This method can offer rich blood supply to the construction by an independent vascular system, but multiple surgeries, trauma of vascular area and long treatment cycle limit to a small area and the repair of soft tissue trauma. Administration of angiogenic factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and angiopoietin (Ang) together with biological materials to promote the vascularization. However, the angiogenic factors have short half life in vivo, which cannot reach the effective entration. Angiogenic cells combined with osteogenic cells are a more promising approach to vascularize tissue engineered bone. Endothelial Progenitor Cells (EPCs) with strong ability of promoting the angiogenesis after born updates the traditional concept of angiogenesis, and provides a new thought for ischemic disease. EPCs are a kind of immature cells, which can differentiate into endothelial cells and directly involved in angiogenesis. The treatment of animal model of hindlimb ischemia, myocardial ischemia and injuried cornea by EPCs has achieved some success. But the insufficient number of EPCs limits application in larger bone defect area, VEGF-modified EPCs can compensate for the insufficient number of shortcomings for VEGF can directly induce angiogenesis and induce EPCs recruitment. Thus in this experiment, we adopt the approach of angiogenic cells combined with osteogenic cells to promote vascularize bone graft. In vitro co-culture VEGF-EPC with BMP2-BMSC in osteogenic differentiation medium, then detected ALP activity, expression of osteogenic genes such as ALP, OC and Col I and alizarin red staining observed the number of mineralized nodules. Alginate gel mixed with cells was implanted into lateral femoral muscle, after implantation for4and6weeks immunohistochemistry stainning observed blood vessels and bone formation in order to detect the effction of angiogenesis and osteogenesis after combination of VEGF-EPC and BMP2-BMSC.
     The main experimental methods and results are as follows:
     1. Mononuclear cells from autogenous animal bone marrow had strong proliferative ability when cultured in plastic culture flask in vitro and would amplified in short period, which finally were induced to BMSCs with high purity and quantity. Under some specific conditions, BMSCs could differentiate into osteoblast and adipocyte. So BMSCs were ideal seed cells of bone tissue engineering.
     2. Mononuclear cells were separated and purified from the rat bone marrow by density gradient centrifugation. After amplification and culture under special inductive conditions, high purity EPCs could be obtained in vitro, which were identified by cell morphology, cell phenotype and cell function tests including cellular immune fluorescence and tube formation experiment. Mixed EPCs and BMSCs with different proportions and tested cell proliferation by MTT method, the result shows BMSCs:EPCs best mixing ratio of1:1.
     3. BMP2and VEGF gene were constructed into recombinant adenovirus expression vector by AdMax vector system (Ad-BMP2、Ad-VEGF). Purified recombinant adenovirus and determined for virus titer:BMSCs and EPCs were transfected by Ad-BMP2and Ad-VEGF in gradient MOI, according to the expression of green fluorescent observation to determine the best MOI viral transfection is40. Growth curve shown that cells proliferative capacity was not affected after adenovirus transfer at MOI=40. Extract RNA of recombinant adenovirus transfection group and blank virus transfection group and blank cell group, Real-TimePCR detected the BMP2and VEGF level. The expression of BMP2in Ad-BMP2-BMSC group and the expression of VEGF in Ad-VEGF-EPC was significantly higher than their respective control group (p<0.05). Cell supernatant of each groups were collected, Elisa detected the expression of BMP2and VEGF in protein level. The expression of BMP2in Ad-BMP2-BMSCs group and the expression of VEGF in Ad-VEGF-EPC was significantly higher than their respective control group (p<0.05). These results proved the effectiveness of Ad-of BMP2and Ad-VEGF.
     4. The co-cultured cells designated as four groups including BMSC+EPC, Ad-BMP2-BMSC+EPC, BMSC+Ad-VEGF-EPC, and Ad-BMP2-BMSC+Ad-VEGF-EPC groups and cultured in osteogenic differentiation medium. Osteoblastic gene expression of cultured cells in vitro was evaluated after transplantation for7,14,21, and28days. ALP gene in Ad-BMP2-BMSC+EPC, BMSC+Ad-VEGF-EPC, and Ad-BMP2-BMSC+Ad-VEGF-EPC groups reached a peak level at the21st day. However, Ad-BMP2-BMSC+EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups showed higher ALP expression than other groups (p<0.05). All groups showed slow increase in the expression of OC. Interestingly, the Col I expression of all groups increased time dependently, and the Ad-BMP2-BMSC+Ad-VEGF-EPC group had the highest Col I level at21st day (P<0.05).
     5. Four groups including BMSC+EPC, Ad-BMP2-BMSC+EPC, BMSC+Ad-VEGF-EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups were seeded on an alginate gel and then implanted in rat intramuscularly to evaluate the effects on angiogenesis and osteogenesis. After implantation for4weeks, decalcified sections stained with H&E and sirius red from all groups exhibited ectopic bone formation and Col I formation. The volume of the alginate gel became smaller and smaller due to the degradation and absorption by host tissues. Long-round or shuttle-like cells were observed along the alginate gel. Many neo-collagen tissues and irregular premature bone-like matrix were also observed on the interface between alginate gel and tissues. Newly formed bone began to cover the surface of scaffolds in all groups after4weeks. At week6, the alginate scaffold still remained in vivo, and more collagen tissues were observed. The quantitative analysis showed that Ad-BMP2-BMSC+EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups had higher bone area than others at week4and6, and there was significant difference between these two groups at week6(P<0.05). The amount of Col I formation in Ad-BMP2-BMSC+EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups was higher than that in the BMSCs+EPC and BMSC+Ad-VEGF-EPC groups at week4and6, but there was no significant difference between Ad-BMP2-BMSC+EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups (P<0.05). The occurrence of angiogenesis at4th and6th week was confirmed by the expression of CD31, a special marker of endothelial cells. The BMSC+Ad-VEGF-EPC and Ad-BMP2-BMSC+Ad-VEGF-EPC groups displayed the higher density of blood vessels than other groups at week4and6, and there was significant difference between these two groups at week6(P<0.05), which was also verified by the quantitative analysis for blood vessel density.
     6. The RealTime-PCR revealed that VEGF induced7-fold increases in the expression of Id1gene. The expression of Idl gene was found to be up-regulated more than5-fold in Ad-BMP2-BMSC group.
     Conclusions:
     1. Bone marrow mononuclear cells were separated by density gradient centrifugation which can be induced to BMSCs and EPCs under certain conditions. Angiogenic ability of EPCs and osteogenic differentiation capabilityof BMSCs can be identified by the cell function test, respectively. This method can obtain the high quality BMSCs and EPCs.
     2. BMSCs and EPCs could be infected with Ad-BMP2and Ad-VEGF efficiently in vitro. The BMP2was successfully produced in transfected BMSCs and the VEGF can be efficient secreted in EPCs. Then BMP2can enhance osteogenic differentiation of BMSCs and VEGF induce EPCs into the capillary-like structures in vitro.
     3. VEGF-modified EPCs co-cultured with BMP2-modified BMSCs can promote the vascularization of transplant tissues.
     4. Id1protein might promote proliferation of early osteoblast progenitor cells and. In this regard, we proposed the overexpression of Id1can be induced by BMP2and VEGF, which down-regulated the terminal differentiation of committed osteoblasts and promote angiogenesis. VEGF-modified EPCs co-cultured with BMP2-modified BMSCs can accelerate osteogenesis and bone formation through promoting the vascularization of transplant tissues. Although this approach did not exhibit perfect bone formation, the relationship between Idl gene and osteogenesis has the potential to provide a new vision for the engineered bone tissues.
     Originality
     1. We demonstrate, for the first time, that BMP modified BMSCs and VEGF-modified EPCs together as seed cells for bone tissue engineering. The vascularization of VEGF-EPC can promote the repair of bone defects and provide a solution and strategie to a large area of bone defect repair.
     2. This study was to explore the role of the Idl gene in osteogenesis and angiogenesis, provides a new idea for the study of bone tissue engineering.
引文
1 Ueda M. [Tissue engineering:overview].Tanpakushitsu Kakusan Koso.2000, 45(13 Suppl):2257-2259.
    2 Gronthos S, Akintoye SO, Wang CY, Shi S. Bone marrow stromal stem cells for tissue engineering.Periodontol 2000.2006,41188-195.
    3 Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering.Tissue Eng Part B Rev.2009,15(3):353-370.
    4 Werner N, Nickenig G. Clinical and therapeutical implications of EPC biology in atherosclerosis.J Cell Mol Med.2006,10(2):318-332.
    5 Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone:a novel cell-mediated gene therapy.J Gene Med.1999,1(2):121-133.
    6 Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery.Clin Orthop Relat Res.2000, (371):38-45.
    7 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update.Injury. 2005,36 Suppl 3S20-27.
    8 Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing:an update on a multi-component approach.Injury.2008,39 Suppl 2S9-20.
    9 Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue.Nat Biotechnol.2005,23(7):821-823.
    10 Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering.Trends Biotechnol.2008,26(8):434-441.
    11 Smith MK, Peters MC, Richardson TP, Garbern JC, Mooney DJ. Locally enhanced angiogenesis promotes transplanted cell survival.Tissue Eng.2004, 10(1-2):63-71.
    12 Villars F. Bordenave L, Bareille R, Amedee J. Effect of human endothelial cells on human bone marrow stromal cell phenotype:role of VEGF?J Cell Biochem.2000,79(4):672-685.
    13 Guillotin B, Bareille R, Bourget C, Bordenave L, Amedee J. Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function.Bone.2008, 42(6):1080-1091.
    14 Kaigler D, Krebsbach PH, Wang Z, West ER, Horger K, Mooney DJ. Transplanted endothelial cells enhance orthotopic bone regeneration.J Dent Res. 2006,85(7):633-637.
    15 Blom AW, Wylde V, Livesey C, Whitehouse MR, Eastaugh-Waring S, Bannister GC, Learmonth ID. Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute.Acta Orthop.2009,80(2):150-154.
    16 Riccio V, Della Ragione F, Marrone G, Palumbo R, Guida G, Oliva A. Cultures of human embryonic osteoblasts. A new in vitro model for biocompatibility studies.Clin Orthop Relat Res.1994, (308):73-78.
    17 Koshihara Y, Hirano M, Kawamura M, Oda H, Higaki S. Mineralization ability of cultured human osteoblast-like periosteal cells does not decline with aging.J Gerontol.1991,46(5):B201-206.
    18 Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue.Tissue Eng Part B Rev. 16(4):435-444.
    19 Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering.Biomed Mater.5(6):062001.
    20 Friedenstein AJ. Precursor cells of mechanocytes.Int Rev Cytol.1976, 47327-359.
    21 Titorencu I, Jinga VV, Constantinescu E, Gafencu AV, Ciohodaru C, Manolescu I, Zaharia C, Simionescu M. Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal cells.Cytotherapy. 2007,9(7):682-696.
    22 Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.J Clin Invest.2002, 109(10):1291-1302.
    23 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science.1997,276(5309):71-74.
    24 Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, Grassi F, Piacentini A, Facchini A. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure.Connect Tissue Res.2001,42(1):49-58.
    25 Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis:mechanisms of blood vessel formation and remodeling.J Cell Biochem.2007,102(4): 840-847.
    26 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis.Science.1997,275(5302):964-967.
    27 Assmus B, Schachinger V. Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F. Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI).Circulation.2002,106(24):3009-3017.
    28 Duong Van Huyen JP, Smadja DM, Bruneval P, Gaussem P, Dal-Cortivo L, Julia P, Fiessinger JN, Cavazzana-Calvo M, Aiach M, Emmerich J. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia.Mod Pathol.2008,21(7):837-846.
    29 Hristov M, Erl W, Weber PC. Endothelial progenitor cells:isolation and characterization.Trends Cardiovasc Med.2003,13(5):201-206.
    30 Mead LE, Prater D, Yoder MC, Ingram DA. Isolation and characterization of endothelial progenitor cells from human blood.Curr Protoc Stem Cell Biol.2008, Chapter 2Unit 2C 1.
    31 Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.Arterioscler Thromb Vase Biol. 2004,24(2):288-293.
    1 Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering.Tissue Eng Part A.2009,15(8):2259-2266.
    2 Ii M. Bone marrow-derived endothelial progenitor cells:isolation and characterization for myocardial repair.Methods Mol Biol.6609-27.
    3 Duong Van Huyen JP, Smadja DM, Bruneval P, Gaussem P, Dal-Cortivo L, Julia P, Fiessinger JN, Cavazzana-Calvo M, Aiach M, Emmerich J. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia.Mod Pathol.2008,21(7):837-846.
    4 Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration.Eur J Endocrinol.2000,142(1):9-21.
    5 Laurencin CT, Attawia MA, Lu LQ, Borden MD, Lu HH, Gorum WJ, Lieberman JR. Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells:a regional gene therapy approach to bone regeneration. Biomaterials.2001,22(11):1271-1277.
    6 Musgrave DS, Bosch P, Lee JY, Pelinkovic D, Ghivizzani SC, Whalen J, Niyibizi C, Huard J. Ex vivo gene therapy to produce bone using different cell types.Clin Orthop Relat Res.2000, (378):290-305.
    7 Xu XL, Lou J, Tang T, Ng KW, Zhang J, Yu C, Dai K. Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater.2005,75(2):289-303.
    8 Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.Circulation. 2002,105(6):732-738.
    9 Anderson WF. Human gene therapy.Nature.1998,392(6679 Suppl):25-30.
    10 Kay MA. Adenoviral vectors for hepatic gene transfer in animals.Chest.1997, 111(6 Suppl):138S-142S.
    11 Fortunel NO, Otu HH, Ng HH, Chen J, Mu X, Chevassut T, Li X, Joseph M, Bailey C, Hatzfeld JA, Hatzfeld A, Usta F, Vega VB, Long PM, Libermann TA, Lim B. Comment on "'Sternness':transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature".Science.2003,302(5644): 393; author reply 393.
    12 Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell.1998, 95(3):379-391.
    13 Vogel G. NIH sets rules for funding embryonic stem cell research.Science. 1999,286(5447):2050-2051.
    14 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells.Science.1999,284(5411):143-147.
    15 Strauer BE, Kornowski R. Stem cell therapy in perspective.Circulation.2003, 107(7):929-934.
    16 Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair.Tissue Eng.2007,13(6):1135-1150.
    17 Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med.2000,6(11):1229-1234.
    18 Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges.J Cell Biochem.2001,82(4):583-590.
    19 Li L, Xie T. Stem cell niche:structure and function.Annu Rev Cell Dev Biol. 2005.21605-631.
    20 Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Bone tissue engineering and repair by gene therapy.Front Biosci.2008,13833-841.
    21 Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion.Spine (Phila Pa 1976).2003,28(2):134-139.
    22 Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy:from monogenic recessive disorders to complex diseases such as cancer.Methods Mol Biol.2009,5425-54.
    23 Kim CK, Haider KH, Lim SJ. Gene medicine:a new field of molecular medicine.Arch Pharm Res.2001,24(1):1-15.
    24 Yang NS, Sun WH. Gene gun and other non-viral approaches for cancer gene therapy.Nat Med.1995,1(5):481-483.
    25 Gao X, Kim KS, Liu D. Nonviral gene delivery:what we know and what is next.AAPS J.2007,9(1):E92-104.
    26 Luo D, Saltzman WM. Synthetic DNA delivery systems.Nat Biotechnol. 2000,18(1):33-37.
    27 Rao NM, Gopal V. Cell biological and biophysical aspects of lipid-mediated gene delivery.Biosci Rep.2006,26(4):301-324.
    28 Schambach A, Baum C. Clinical application of lentiviral vectors-concepts and practice.Curr Gene Ther.2008,8(6):474-482.
    29 Schultz BR, Chamberlain JS. Recombinant adeno-associated virus transduction and integration.Mol Ther.2008,16(7):1189-1199.
    30 Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H. Retrovirus-mediated gene transfer and expression cloning:powerful tools in functional genomics.Exp Hematol.2003,31(11):1007-1014.
    31 Kovesdi I, Brough DE, Bruder JT, Wickham TJ. Adenoviral vectors for gene transfer.Curr Opin Biotechnol.1997,8(5):583-589.
    32 Wilmott RW, Amin RS, Perez CR, Wert SE, Keller G, Boivin GP, Hirsch R, De Inocencio J, Lu P, Reising SF, Yei S, Whitsett JA, Trapnell BC. Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates.Hum Gene Ther. 1996,7(3):301-318.
    33 Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review.Gene Ther.2000,7(20):1707-1714.
    34 Nadeau I, Kamen A. Production of adenovirus vector for gene therapy.Biotechnol Adv.2003,20(7-8):475-489.
    35 Imler JL. Adenovirus vectors as recombinant viral vaccines.Vaccine.1995, 13(13):1143-1151.
    36 Reddy PS, Idamakanti N, Hyun BH, Tikoo SK, Babiuk LA. Development of porcine adenovirus-3 as an expression vector.J Gen Virol.1999,80 (Pt 3)563-570.
    37 Ross PJ, Parks RJ. Construction and characterization of adenovirus vectors.Cold Spring Harb Protoc.2009,2009(5):pdb prot5011. 38 Vorburger SA, Hunt KK. Adenoviral gene therapy.Oncologist.2002,7(1): 46-59.
    39 Park MT, Lee MS, Kim SH, Jo EC, Lee GM. Influence of culture passages on growth kinetics and adenovirus vector production for gene therapy in monolayer and suspension cultures of HEK 293 cells.Appl Microbiol Biotechnol.2004, 65(5):553-558.
    1 Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone:a novel cell-mediated gene therapy.J Gene Med.1999,1(2):121-133.
    2 Gronthos S, Akintoye SO, Wang CY, Shi S. Bone marrow stromal stem cells for tissue engineering.Periodontol 2000.2006,41188-195.
    3 Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs.Biomaterials.2009,30(27):4522-4532.
    4 Chen G, Niemeyer F, Wehner T, Simon U, Schuetz MA, Pearcy MJ, Claes LE. Simulation of the nutrient supply in fracture healing.J Biomech.2009,42(15): 2575-2583.
    5 Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering.Tissue Eng Part B Rev.2009,15(3):353-370.
    6 Werner N, Nickenig G. Clinical and therapeutical implications of EPC biology in atherosclerosis.J Cell Mol Med.2006,10(2):318-332.
    7 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis.Science.1997,275(5302):964-967.
    8 Matsuo K, Irie N. Osteoclast-osteoblast communication.Arch Biochem Biophys.2008,473(2):201-209.
    9 Carano RA, Filvaroff EH. Angiogenesis and bone repair.Drug Discov Today. 2003,8(21):980-989.
    10 Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis:the potential for engineering bone.Eur Cell Mater.2008,15100-114.
    11 Kim HK, Bian H, Aya-ay J, Garces A, Morgan EF, Gilbert SR. Hypoxia and HIF-1alpha expression in the epiphyseal cartilage following ischemic injury to the immature femoral head.Bone.2009,45(2):280-288.
    12 Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology:a critical component of the stem cell niche.Cell Stem Cell.7(2): 150-161.
    13 Ma T, Grayson WL, Frohlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues.Biotechnol Prog.2009,25(1): 32-42.
    14 Potier E, Ferreira E, Andriamanalijaona R, Pujol JP, Oudina K, Logeart-Avramoglou D, Petite H. Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression.Bone.2007,40(4): 1078-1087.
    15 Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PA, Sherry E, Lutzen U, Wolfart S, Terheyden H. Man as living bioreactor:fate of an exogenously prepared customized tissue-engineered mandible.Biomaterials.2006, 27(17):3163-3167.
    16王永刚,裴国献.血管束植入在组织工程骨血管化构建中的作用[J].解放军医学杂志,2007,32(1):26-28.
    17 Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct.FASEB J.2007,21(2):511-522.
    18樊征夫,杨志明.组织工程化人工骨组织移植修复长骨干缺损移植物体内血管化及血管化与成骨关系实验研究[C].第二届全国组织工程学术大会论文汇编,2000:378-386.
    19 钟世镇.肢体血供规律与组织瓣关系[M].见:裴国献主编.显手外科学.济南:山东科学技术出版社,1999.37-39
    20 Hierner R, Stock W, Wood MB, Schweiberer L. [Vascularized fibula transfer. A review].Unfallchirurg.1992,95(3):152-159.
    21 Jansen RG, van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff JW. FGF-2-loaded collagen scaffolds attract cells and blood vessels in rat oral mucosa.J Oral Pathol Med.2009,38(8):630-638.
    22 Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.Biochem Biophys Res Commun.1992,189(2): 824-831.
    23 Koh GY, Kim I, Kwak HJ, Yun MJ, Leem JC. Biomedical significance of endothelial cell specific growth factor, angiopoietin.Exp Mol Med.2002,34(1): 1-11.
    24 Ramoshebi LN, Ripamonti U. Osteogenic protein-1, a bone morphogenetic protein, induces angiogenesis in the chick chorioallantoic membrane and synergizes with basic fibroblast growth factor and transforming growth factor-betal.Anat Rec.2000,259(1):97-107.
    25 Zhu C, Ying D, Zhou D, Mi J, Zhang W, Chang Q, Li L. Expression of TGF-betal in smooth muscle cells regulates endothelial progenitor cells migration and differentiation.J Surg Res.2005,125(2):151-156.
    26 Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis.Kidney Int.1999,56(3):794-814.
    27 Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3.Circulation.1996, 93(8):1493-1495.
    28 Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Plt1, two receptors for vascular endothelial growth factor.J Biol Chem.1994,269(43):26988-26995.
    29 Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis.Acta Haematol.2001,106(4):148-156.
    30 Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ. Endothelial cell modulation of bone marrow stromal cell osteogenic potential.FASEB J.2005,19(6):665-667.
    31 Grellier M, Granja PL, Fricain JC, Bidarra SJ, Renard M, Bareille R, Bourget C. Amedee J, Barbosa MA. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect.Biomaterials.2009,30(19):3271-3278.
    32 Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds.Biomaterials.2008,29(31):4217-4226.
    33 Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, Amedee J. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication.Am J Physiol Cell Physiol.2002,282(4): C775-785.
    34 Frerich B, Kurtz-Hoffmann J, Lindemann N, Muller S. [Tissue engineering of vascularized bone and soft tissue transplants].Mund Kiefer Gesichtschir.2000,4 Suppl 2S490-495.
    35 Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv Drug Deliv Rev.2007,59(4-5):207-233.
    36 Nair MB, Suresh Babu S, Varma HK, John A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application.Acta Biomater.2008, 4(1):173-181.
    37 Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.J Biomed Mater Res A.2007,82(2):373-382.
    38 Basle MF, Grizon F, Pascaretti C, Lesourd M, Chappard D. Shape and orientation of osteoblast-like cells (Saos-2) are influenced by collagen fibers in xenogenic bone biomaterial.J Biomed Mater Res.1998,40(3):350-357.
    39 Jeon O, Bouhadir KH, Mansour JM. Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties.Biomaterials.2009,30(14):2724-2734.
    40 Gloria A, De Santis R, Ambrosio L. Polymer-based composite scaffolds for tissue engineering.J Appl Biomater Biomech.8(2):57-67.
    41 Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering.Biomaterials.2003,24(24):4353-4364.
    42 Oliva A, Passaro I, Di Pasquale R, Di Feo A, Criscuolo M, Zappia V, Della Ragione F, D'Amato S, Annunziata M, Guida L. Ex vivo expansion of bone marrow stromal cells by platelet-rich plasma:a promising strategy in maxillo-facial surgery.Int J Immunopathol Pharmacol.2005,18(3 Suppl):47-53.
    43 Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI. Heparin binding nanostructures to promote growth of blood vessels.Nano Lett. 2006,6(9):2086-2090.
    44 Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells.Biomaterials.2003,24(22):4023-4029.
    45 Urist MR. Bone:formation by autoinduction.Science.1965,150(3698): 893-899.
    46 Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2:biology and applications.Clin Orthop Relat Res.1996, (324):39-46.
    47 Yamagiwa H, Endo N, Tokunaga K. Hayami T, Hatano H, Takahashi HE. In vivo bone-forming capacity of human bone marrow-derived stromal cells is stimulated by recombinant human bone morphogenetic protein-2.J Bone Miner Metab.2001,19(1):20-28.
    48 Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration.Eur J Endocrinol.2000,142(1):9-21.
    49 Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K, Sasaki K, Kobune M, Yamashita T, Hamada H. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector.Mol Ther.2003,7(3): 354-365.
    50 Mont MA, Jones LC, Einhorn TA, Hungerford DS, Reddi AH. Osteonecrosis of the femoral head. Potential treatment with growth and differentiation factors.Clin Orthop Relat Res.1998, (355 Suppl):S314-335.
    51 Smoljanovic T, Grgurevic L, Jelic M, Kreszinger M, Haspl M, Maticic D, Vukicevic S, Pecina M. Regeneration of the skeleton by recombinant human bone morphogenetic proteins.Coll Antropol.2007,31(3):923-932.
    52 Wang DS, Miura M, Demura H, Sato K. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells.Endocrinology.1997,138(7):2953-2962.
    53 Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells:autocrine and paracrine role on osteoblastic and endothelial differentiation.J Cell Biochem.2005,95(4):827-839.
    54 Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Gunther KP, Dehio C, Puhl W, Brenner RE. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone.2002,30(3):472-477.
    55 Grellier M, Bordenave L, Amedee J. Cell-to-cell communication between osteogenic and endothelial lineages:implications for tissue engineering.Trends Biotechnol.2009,27(10):562-571.
    56 Kreider BL, Benezra R, Rovera G, Kadesch T. Inhibition of myeloid differentiation by the helix-loop-helix protein Id.Science.1992,255(5052): 1700-1702.
    57 Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, Luu HH, Park JK, Li X, Luo J, Montag AG, Ilaydon RC, He TC. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells.J Biol Chem.2004,279(31): 32941-32949.
    58 Miyazono K, Miyazawa K. Id:a target of BMP signaling.Sci STKE.2002, 2002(151):pe40.
    59 Nishiyama K, Takaji K, Kataoka K, Kurihara Y, Yoshimura M, Kato A, Ogawa H, Kurihara H. Id1 gene transfer confers angiogenic property on fully differentiated endothelial cells and contributes to therapeutic angiogenesis.Circulation.2005,112(18):2840-2850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700