虚拟人运动规划与运动合成关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在基于虚拟现实的人机工程和维修工程等研究领域中,虚拟人运动控制技术是研究重点之一,它包含两个关键性的问题:运动规划问题和运动合成问题。本文以武器装备预先研究项目“基于虚拟现实的维修性XXX系统”、国家“863”课题“高品质重型商用车集成开发先进技术”,以及国家探月工程中的“月面巡视探测器导航与控制”为研究背景,从理论和应用两个层面围绕上述关键性问题开展研究,主要包括:基于快速扩展随机树(Rapidly-exploring Random Tree, RRT)的路径规划算法,RRT算法概率完备性的证明,虚拟人手臂及上躯干的操控规划方法,以及基于运动基元的虚拟人运动合成方法。本文的研究成果将提高虚拟人运动仿真的效率和逼真性,在人机工程、维修工程等领域具有重要理论意义和应用价值。
     本文的主要成果和创新点如下:
     1.提出了自适应多树RRT算法,通过改进“桥测试采样”算法准确标识配置空间中的狭窄通道,再利用增强学习中的随机组合优化算法构建自适应树选择策略,有效克服了路径规划中的“狭窄通道”问题,比传统RRT算法的规划效率有显著提高。本文路径规划算法解决了“基于虚拟现实的维修性XXX系统”项目中的虚拟人行走规划问题。典型实例表明本文算法可推广运用于月球车路径规划问题。
     2.在RRT算法的完备性理论研究中,首先证明了经典RRT算法和自适应多树RRT算法的概率完备性。然后,通过对随机优化组合算法εt-greedy性质的研究,证明了自适应多树RRT扩展过程的最优性。
     3.提出了基于RRT的虚拟人操控规划求解方法。建立了统一形式的可行配置空间数学模型,分别给出了基于RRT的手臂操控规划算法和上躯干操控规划算法。在上躯干操控规划中,利用RRT实现快速逆向运动学求解,通过“采样-投影”算法解决操控对象的运动约束问题。本文设计并实现了跨平台的虚拟人运动仿真软件EDMAN(Engineering Digital MAN),解决了“基于虚拟现实的维修性XXX系统”项目中的虚拟人维修作业仿真问题,研究结果表明操控规划算法的应用显著提高了虚拟维修仿真的效率。
     4.提出了基于HMM(Hidden Markov Model)运动基元的虚拟人运动合成框架。在运动基元建模过程中,首先采用加权PCA(Principal Component Analysis)降维算法和基于高斯混合模型(Gaussian Mixture Model, GMM)的聚类算法来分割运动片段,然后通过分层HMM聚类算法,实现运动基元的分类与建模。在运动检索与合成过程中,利用基于HMM相似性度量的动态规划算法,实现运动片段的检索和时序排列。本文的运动合成方法解决了“高品质重型商用车集成开发先进技术”项目中的虚拟人上下车运动仿真问题,为该项目的完成做出了贡献。
Motion control for virtual human is one of the most important aspects in such areas as VR (Virtual Reality) -based ergonomics and maintenance engineering. It has two key problems: motion planning and motion synthesis. Both the theoretic and the practical research on the above two problems are carried out in this thesis, funded by Weapon and Equipment Advanced Research project“VR-based Maintainability XXX System”, National“863”project“Advanced Integrated Developing Technology for High-quality Heavy Business Truck”, and National Lunar Exploring project“Navigation and Control for Lunar Rover Vehicle”. The main content include: the RRT (Rapidly-exploring Random Tree) based path planning algorithms, proof of probabilistic completeness of the RRT algorithms, the manipulation planning methods for the arm work and the upper-body work, as well as the motion synthesis methods based on motion primitives. The outcomes of the research will improve the efficiency and the realism of the virtual human motion simulation, which is of great importance to both the theoretic research and the application in the field of ergonomics and maintenance engineering.
     The main contributions and innovations are as following:
     1. An adaptive multi-RRTs algorithm has been proposed to effectively address the narrow passage problems, in which a Bridge-Test algorithm has been improved to accurately identify narrow passages in configuration space, and an adaptive tree selection strategy has been established by random combinatory optimization algorithm from reinforcement learning. The performance of the proposed algorithm is dramatically improved compared with that of the traditional RRT algorithms. The RRT-based path planning algorithm has been applied to address the path planning problem for the walk task of virtual human in the project“VR-based Maintainability XXX System”. Typical applications show that the proposed algorithm can be generalized to address the path planning problem of lunar rover vehicle.
     2. In the research of probabilistic completeness theory of RRT algorithm, traditional RRT algorithms and the adaptive multiple-RRT algorithm have been proved to be probabilistic complete firstly. Next, the expansion process of the adaptive multiple-RRT algorithm has been proved to be optimal based on the analysis of the property of the random combinatory optimization strategyεt-greedy.
     3. A uniform RRT based manipulation planning framework for virtual human has been proposed. The math model of a uniform feasible configuration space is described, based on which the RRT-based arm and upper-body manipulation planning algorithms have been proposed. Regarding the problem of upper-body manipulation planning, the RRT algorithm is applied to rapidly solve the inverse kinematics problem. Thereafter, a sample-project algorithm has been proposed to solve the problem of motion constraints of manipulated object. EDMAN (Engineering Digital MAN), a cross-platform virtual human motion simulation software has been designed and implemented to address the problem of the virtual human maintenance task simulation in the project“VR-based Maintainability XXX System”. The experimental results show that the application of the proposed algorithms has dramatically improved the efficiency of the virtual maintenance simulation.
     4. A virtual human motion synthesis framework has been proposed based on HMM motion primitives. In the process of the motion primitive modeling, firstly, a weighted PCA algorithm, as well as a clustering algorithm based on Gaussian Mixture Model (GMM), is adopted to segment the motion capture data into motion clips. Secondly, a hierarchical HMM clustering algorithm has been proposed to implement the classification and the modeling of the motion primitives. In the process of motion retrieval and synthesis, a dynamic programming algorithm based on HMM similarity measurement has been proposed to retrieve the motion clips and sort them according to the time sequence. The above motion synthesis method has been applied to address the problem of the truck ingress/egress motion simulation, which makes contributions to the accomplishment of the project“Advanced Integrated Developing Technology for High-quality Heavy Business Truck”.
引文
[1] Y. Hwang and N. Ahuja.“Gross motion planning– a survey,”ACM Computing Surveys, vol. 24, no. 3: pp. 219-291, 1992.
    [2] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
    [3] A. Stentz.“Optimal and efficient path planning for partially known environments,”In Proceedings of the International Conference on Robotics and Automation, pp. 3310-3317, 1994.
    [4] T. Lozano-Pérez.“Automatic planning of manipulator transfer movements,”IEEE Transactions on Systems Man and Cybernetics, vol. 11, no. 10: pp. 681-698, 1981.
    [5] T. Lozano-Pérez.“Spatial planning: A configuration space approach,”IEEE Transactions on Computers, vol. C-32, Issue 2: pp. 108-120, 1983.
    [6] N.J. Nilsson.“A mobile automaton: An application of artificial intelligence techniques,”In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 509-520, 1969.
    [7] J.T. Schwartz and M. Sharir.“On the piano movers’problem: II. General techniques for computing topological properties of algebraic manifolds,”Communications on Pure and Applied Mathematics, 36: pp. 345-398, 1983.
    [8] J.T. Schwartz and M. Sharir.“On the piano movers’problem: III. Coordinating the motion of several independent bodies,”International Journal of Robotics Research, vol. 2, no. 3: pp. 97-140, 1983.
    [9] J.F. Canny and J.H. Reif.“New lower bound techniques for robot motion planning problems,”In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pp. 49-60, 1987.
    [10] J.H. Reif.“Complexity of the mover’s problem and generalizations,”In Proceedings of the 20th IEEE Symposium on Foundations of Computer Science, pp. 421-427, 1979.
    [11] J.E. Hopcroft, D.A. Joseph and S.H. Whitesides.“Movement problems for 2-dimensional linkages,”SIAM Journal of Computing, vol. 13, no. 3: pp. 610-629, 1984.
    [12] J.H. Reif and M. Sharir.“Motion planning in the presence of moving obstacles,”In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, pp. 144-154, 1985.
    [13] J. Barraquand and J.-C. Latombe.“Robot motion planning: A distributed representation approach,”International Journal of Robotics Research, vol. 10, no. 6: pp. 628-649, 1991.
    [14] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
    [15] E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière.“The Ariadne’s clew algorithm,”In Proceedings International Conference of Society of Adaptive Behavior, pp. 182-188, Honolulu, 1992.
    [16] E. Mazer, J. M. Ahuactzin, and P. Bessière.“The Ariadne’s clew algorithm,”Journal of Artificial Intelligence Research, vol. 9: pp. 295-316, 1998.
    [17] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock.“Randomized kinodynamic motion planning with moving obstacles,”International Journal of Robotics Research, vol. 21, no. 3: pp. 233–255, 2002.
    [18] S. Carpin and G. Pillonetto.“Robot motion planning using adaptive random walks,”IEEE Transactions on Robotics and Automation, vol. 21, no. 1: pp. 129–136, 2005.
    [19] L.E. Kavraki, P. ?vestka, J.-C. Latombe, M.H. Overmars.“Probabilistic roadmaps for path planning in high-dimensional configuration spaces,”IEEE Transactions on Robotics and Automation, vol. 12, no. 4: pp. 566-580, 1996.
    [20] S M LaValle.“Rapidly-exploring random trees: A new tool for path planning,”TR 98-11: Computer Science Dept., Iowa State University, 1998.
    [21] S. M. LaValle and J. J. Kuffner.“Rapidly-exploring random trees: Progress and prospects,”In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions. A K Peters, Wellesley, MA: pp. 293–308, 2001.
    [22] J. Barraquand and J.-C. Latombe.“Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles,”Algorithmica, vol. 10: pp. 121-155, 1993.
    [23] J.A. Reeds and L.A. Shepp.“Optimal paths for a car that goes forwards and backwards,”Pacific Journal of Mathematics, vol. 145, no. 2: pp. 367–393, 1990.
    [24] J. Cortés and T. Siméon.“Sampling-based motion planning under kinematic loop-closure constraints,”In Proceedings of 6th International Workshop on Algorithmic Foundations of Robotics, Zeist, pp. 59–74, 2004.
    [25] L. Han and N. M. Amato.“A kinematics-based probabilistic roadmap method for closed chain systems,”In: Algorithmic and Computational Robotics: New Directions, A K Peters, Wellesley, MA: pp. 233–246, 2001.
    [26] J. Yakey, S. M. LaValle, and L. E. Kavraki.“Randomized path planning for linkages with closed kinematic chains,”IEEE Transactions on Robotics and Automation. vol. 17, no. 6: pp. 951–958, 2001.
    [27] P. Svestka and M. H. Overmars.“Coordinated motion planning for multiple car-like robots using probabilistic roadmaps,”Proceedings of IEEE International Conference on Robotics and Automation, pp. 1631–1636, 1995.
    [28] S. Sekhavat, P. Svestka, J.-P. Laumond, and M.H. Overmars.“Multilevel path planning for nonholonomic robots using semiholonomic subsystems,”International Journal of Robotics Research, vol. 17, no. 8: pp. 840–857, 1998.
    [29] L. Jaillet and T. Siméon.“A PRM-based motion planner for dynamically changing environments,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1606-1611, Sendai, Japan, 2004.
    [30] Y. Yang and O. Brock.“Elastic roadmaps: Globally task-consistent motion for autonomous mobile manipulation,”In Proceedings of Robotics: Science and Systems, 2006.
    [31] J.v.d. Berg, D. Ferguson, and J. Kufner.“Anytime path planning and replanning in dynamic environments,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 2366-2371, 2006.
    [32] B. Langlois, J. Barraquand, and J.-C. Latombe.“Numerical potential field techniques for robot path planning,”IEEE Transactions on System, Man, and Cybernetics, vol. 22, no. 2: pp. 224-241, 1992.
    [33] F. Lamiraux and J.-P. Laumond.“On the expected complexity of random path planning,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 3014-3019, Minneapolis, USA, 1996.
    [34] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Raghavan.“A random sampling scheme for robot path planning,”In G. Giralt and G. Hirzinger, editors, Proceedings of International Symposium on Robotics Research, pp. 249–264, Springer-Verlag, New York, 1996.
    [35] L. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan.“Randomized query processing in robot path planning,”In Proceedings of 27th Annual ACM Symposium on Theory of Computing, Las Vegas, NV, USA, pp. 353-362, 1995.
    [36] L. Kavraki. Random Networks in Configuration Space for Fast Path Planning. Ph.D. thesis, Department of Computer Science, Stanford University, California, USA, 1995.
    [37] L. Kavraki, M.N. Kolountzakis, and J.-C. Latombe.“Analysis of probabilistic roadmaps for path planning,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 3020-3026, Minneapolis, MN, USA, 1996.
    [38] D. Hsu, J.-C. Latombe, and R. Motwani.“Path planning in expansive configuration spaces,”International Journal of Computational Geometry and Applications, vol. 9, no. 4/5: pp. 495–512, 1999.
    [39] D. Hsu. Randomized Single-query Motion Planning in Expansive Spaces. Ph.D. Thesis, Department of Computer Science, Stanford University, California, USA, 2000.
    [40] D. Hsu, J.-C. Latombe, and H. Kurniawati.“On the Probabilistic Foundations of Probabilistic Roadmap Planning,”International Journal of Robotics Research, vol. 25, no. 7: pp. 627-643, 2006.
    [41] P. ?vestka.“On probabilistic completeness and expected complexity forprobabilistic path planning,”Technical Report UU-CS-1996-08, Utrecht University, Utrecht, the Netherlands, 1996.
    [42] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.“OBPRM: An obstacle-based PRM for 3D workspaces,”In Proceedings of Workshop on Algorithmic Foundations of Robotics, pp. 155-168, 1998.
    [43] V. Boor, M.H. Overmars, and A.F. van der Stappen.“The Gaussian sampling strategy for probabilistic roadmap planners,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1018-1023, 1999.
    [44] D. Hsu, T. Jiang, J. Reif, and Z. Sun.“The bridge test for sampling narrow passages with probabilistic roadmap planners,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 4420-4426, 2003.
    [45] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif.“Narrow passage sampling for probabilistic roadmap planning,”IEEE Transactions on Robotics and Automation, vol. 21, no. 6: pp. 1105–1115, 2005.
    [46] R. Bohlin and L. Kavraki.“Path planning using lazy PRM,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 521-528, 2000.
    [47] B. Burns and O. Brock.“Sampling-based motion planning using predictive models,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 3120-3125, Spain, 2005.
    [48] S.A. Wilmarth, N.M. Amato, P. F. Stiller.“MAPRM: A Probabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1024-1031, 1999.
    [49] C. Holleman and L.E. Kavraki.“A framework for using the workspace medial axis in PRM planners,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1408-1413, 2000.
    [50] J.-M. Lien, S.L. Thomas, and N.M. Amato.“A general framework for sampling on the medial axis of the free space,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 4439-4444, 2003.
    [51] H. Kurniawati, D. Hsu.“Workspace Importance Sampling for Probabilistic Roadmap Planning,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1618-1623, 2004.
    [52] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato.“A machine learning approach for feature-sensitive motion planning,”In Proceedings of International Workshop on Algorithmic Foundations of Robotics, pp 361-376, 2004.
    [53] S. Rodriguez, S. Thomas, R. Pearce, and N.M. Amato.“RESAMPL: A region-sensitive adaptive motion planner,”In Proceedings of International Workshop on Algorithmic Foundations of Robotics, pp. 285-300, 2008.
    [54] H. Kurniawati and D. Hsu.“Workspace-based connectivity oracle, An adaptive sampling strategy for PRM planning,”In Proceedings of International Workshop on Algorithmic Foundations of Robotics, pp. 35-51, 2008.
    [55] K.I. Tsianos, I.A. ?ucan, and L.E. Kavraki.“Sampling-based robot motion planning: Towards realistic applications,”Computer Science Review, vol. 1, no. 1: pp. 2-11, 2007.
    [56] Y. Koga, K. Kondo, J.J. Kuffner, and J.-C. Latombe.“Planning motions with intentions,”In Proceedings of SIGGRAPH 94’, pp. 395-408, 1994.
    [57] J.J. Kuffner. Autonomous Agents for Real-time Animation. Ph.D. Thesis, Department of Computer Science, Stanford University, California, USA, 1999.
    [58] K. Yamane, J.J. Kuffner, and J.K. Hodgins.“Synthesizing animations of human manipulation tasks,”ACM Transactions on Graphics, vol. 23, no. 3: pp. 532-539, 2004.
    [59] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann.“Planning collision-free reaching motions for interactive object manipulation and grasping,”Eurographics 03’, pp. 313-322, 2003.
    [60] S. Bandi, D. Thalmann.“Space discretization for efficient human navigation,”Computer Graphics Forum, vol. 17, no. 3: pp. 195-206, 1998.
    [61] M.G. Choi, J. Lee, S.Y. Shin.“A probabilistic approach to planning biped locomotion with prescribed motions,”CS/TR-2001-162, Department of Computer Science, KAIST, Korea, 2001.
    [62] M.G. Choi, J. Lee, S.Y. Shin.“Planning biped locomotion using motion capture data and probabilistic roadmaps,”ACM Transactions on Graphics, vol. 22, no. 2: pp. 182–203, 2003.
    [63] K. Hirai.“Current and future perspective of Honda humanoid robot,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 500-508, 1997.
    [64] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi.“Development of a bipedal humanoid robot having antagonistic driven joints and three dof trunk,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 96-101, 1998.
    [65] K. Nagasaka, M. Inaba, and H. Inoue.“Dynamic Walking pattern generation for a humanoid robot based on optimal gradient method,”In Proceedings of IEEE International Conference on System, man and Cybernetics, pp. 908-913, 1999.
    [66] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.“Dynamically stable motion planning for humanoid robots,”Autonomous Robots, vol. 12, no. 1: pp. 105-118, 2002.
    [67] J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue.“Motion planning for humanoid robots,”In Proceedings of 11th International Symposium ofRobotics Research, pp. 365-374, 2003.
    [68] D. Bertram, J.J. Kuffner, R. Dillmann and T. Asfour.“An integrated approach to inverse kinematics and path planning for redundant manipulators,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1874-1879, 2006.
    [69] M.K. Weghe, D. Ferguson, and S.S. Srinivasa.“Randomized path planning for redundant manipulators without inverse kinematics,”In Proceedings of IEEE International Conference on Humanoid Robots, pp. 477-482, 2007.
    [70] M. Stilman,“Task constrained motion planning in robot joint space,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3074-3081, 2007.
    [71] D. Berenson, S.S. Srinivasa, D. Ferguson, and J.J. Kuffner.“Manipulation planning on constraint manifolds,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 625-632, 2009.
    [72] D. Berenson and S.S. Srinivasa.“Probabilistically Complete Planning with End-Effector Pose Constraints,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 2724-2730, 2010.
    [73] B. Robertson.“Bad to the bone,”Computer Graphics World, vol. 22, no. 5: pp. 34, 1999.
    [74] M.H. Raibert and J.K. Hodgins.“Animation of dynamic legged locomotion,”Computer Graphics, vol. 25, no. 4: pp. 349-358, 1991.
    [75] M. Van de Panne. R. Kim, and E. Fiume.“Virtual wind-up toys for animation,”Graphics Interface: pp. 208-215, 1994.
    [76] J.K. Hodgins, W.L. Wooten, D.C. Brogan, and J.F. O’Brien.“Animating human athletics,”In Proceedings of SIGGRAPH 95’, pp. 71–78, 1995.
    [77] J. Laszlo, M. Van de Panne E. Fiume.“Interactive control for physically-based animation,”In Proceedings of SIGGRAPH 00’, pp. 201-208, 2000.
    [78] J. Popovi?, S.M. Seitz, M. Erdmann, Z. Popovi?, and A.P. Witkin.“Interactive manipulation of rigid body simulations,”In Proceedings of SIGGRAPH 00’, pp. 209-218, 2000.
    [79] P. Faloutsos, M. Van de Panne, and D. Terzopoulos.“Composable Controllers for physics-based character animation,”In Proceedings of SIGGRAPH 01’, pp. 251-160, 2001.
    [80] R. Grzeszczuk, D. Terzopoulos.“Automated Learning of Muscle-Actuated Locomotion Through Control Abstraction,”In Proceedings of SIGGRAPH 95’, pp. 63-70, 1995.
    [81] J. Funge, X. Tu, D. Terzopoulos.“Cognitive modeling: knowledge, reasoning and planning for intelligent characters,”In: Proceedings of SIGGRAPH 99’, pp. 29-38, 1999.
    [82] C.K. Liu and Z. Popovi?.“Synthesis of complex dynamic character motion from simple animations,”In Proceedings of SIGGRAPH 02’, vol. 21, no. 3: pp. 408-416, 2002.
    [83] K. Perlin.“Real time responsive animation with personality,”IEEE Transactions on Visualization and Computer Graphics, pp. 5-15, 1995.
    [84] A. Menache. Understanding Motion Capture for Computer Animation and Video Games. Morgan Kaufman Publishers, 2000.
    [85] C. Morales.“Development of an XML web based motion capture data warehousing and translation system for collaborative animation projects,”In Proceedings of WSCG, 2001.
    [86] A. Witkin and Z. Popovi?.“Motion warping,”In Proceedings of SIGGRAPH 95’, pp. 105-108, 1995.
    [87] J. Lee and S.Y. Shin.“A hierarchical approach to interactive motion editing for human-like figures,”In Proceedings of SIGGRAPH 99’, pp. 39-48, 1999.
    [88] M. Gleicher.“Motion editing with spacetime constraints,”In Michael Cohen and David Zeltzer, editors, International Symposium on Interactive 3D Graphics, pp. 139–148, 1997.
    [89] M. Gleicher and P. Litwinowicz.“Constraint-based motion adaptation,”The Journal of Visualization and Computer Animation, vol. 9, no. 2: pp. 65-94, 1998.
    [90] A. Bruderlin and L. Williams.“Motion signal processing,”In Proceedings of SIGGRAPH 95’, pp. 97-104, 1995.
    [91] M. Umuma, K. Anjyo, and R. Takeuchi.“Fourier principles for emotion-based human figure animation,”In Proceedings of SIGGRAPH 95’, pp. 91-96, 1995.
    [92] K. Pullen and C. Bregler.“Motion capture assisted animation: Texturing and synthesis,”ACM Transactions on Graphics, vol. 21, no. 3: pp. 501-508, 2002.
    [93] L. Kovar, M. Gleicher, F. Pighin.“Motion graphs,”In Proceedings of SIGGRAPH 02’, pp. 473-482, 2002.
    [94] O. Arikan and D.A. Forsyth.“Interactive motion generation from examples,”ACM Transactions on Graphics, vol. 21, no. 3: pp. 483-490, 2002.
    [95] J. Lee, J. Chai, P.S.A. Reitsma, J.K. Hodgins, and N.S. Pollard.“Interactive control of avatars animated with human motion data,”ACM Transactions on Graphics, vol. 21, no. 3: pp. 491-500, 2002.
    [96] M. Gleicher, H.J. Shin, L. Kovar, and A. Jepsen.“Snap-together motion: Assembling run-time animation,”ACM Transactions on Graphics, vol. 22, no. 3, pp. 702-702, 2003.
    [97] K.H. Lee, M.G. Choi, and J. Lee.“Motion patches: building blocks for virtual environments annotated with motion data,”ACM Transactions on Graphics, vol. 25, no. 3, pp. 898-906, 2006.
    [98] T. Kwon and S.Y. Shin.“Motion modeling for on-line locomotion synthesis,”InProceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 29-38, 2005.
    [99] A. Safonova and J.K. Hodgins.“Construction and optimal search of interpolated motion graphs,”ACM Transactions on Graphics, vol. 26, no. 3: pp. 106-1 ~ 106-11, 2007.
    [100] O. Arikan, D.A. Forsyth, J.F. O’Brien.“Motion synthesis from annotations,”ACM Transactions on Graphics, vol. 22, no. 3: pp. 402-408, 2003.
    [101] J. Barbic, A. Safonova, J.Y. Pan, C. Faloutsos, J.K. Hodgins, N.S. Pollard.“Segmenting motion capture data into distinct behaviors,”In Proceedings of Graphics interface, pp. 185-194, 2004.
    [102] K. Forbes and E. Fiume.“An efficient search algorithm for motion data using weighted PCA,”In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67-76, 2005.
    [103] M. Müller, T. R?der, M. Clausen.“Efficient content-based retrieval of motion capture data,”ACM Transactions on Graphics, vol. 24, no. 3: pp. 677-685, 2005.
    [104] M. Müller, A. Baak, H.-P. Seidel.“Efficient and robust annotation of motion capture data,”In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17-26, 2009.
    [105] L. Kovar, M. Gleicher.“Automated extraction and parameterization of motions in large data sets,”ACM Transactions on Graphics, vol. 23, no. 3: pp. 559-568, 2004.
    [106] V.B. Zordan, A. Majkowska, B. Chiu, and M. Fast.“Dynamic response for motion capture animation,”ACM Transactions on Graphics, vol. 24, no. 3: pp. 697-701, 2005.
    [107] A. Safonova, J.K. Hodgins, and N.S. Pollard.“Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces,”ACM Transactions on Graphics vol. 23, no. 3: pp. 514-521, 2004.
    [108] C. K. Liu, A. Hertzmann, and Z. Popovi?.“Learning physics-based motion style with nonlinear inverse optimization,”ACM Transactions on Graphics, vol. 24, no. 3: pp. 1071-1081, 2005.
    [109] K. Yin, K. Loken, and M. Van de Panne.“Simbicon: Simple biped locomotion control,”ACM Transactions on Graphics, vol. 26, no. 3: pp. 105-1 ~ 105-10, 2007.
    [110] K.W. Sok, M. Kim, and J. Lee.“Simulating biped behaviors from human motion data,”ACM Transactions on Graphics, vol. 26, no. 3: pp. 107-1 ~ 107-9, 2007.
    [111] A. Treuille, Y. Lee, Z. Popovi?.“Near-optimal character animation with continuous control,”ACM Transactions on Graphics, vol. 26, no. 3: pp. 7-1 ~ 7-7, 2007.
    [112] M.D. Silva, Y. Abe, and J. Popovi?.“Simulation of human motion data usingshort-horizon model-predictive control,”Computer Graphics Forum (EUROGRAPHICS) vol. 27, no. 2: pp. 371-380, 2008.
    [113] R. Bowden.“Learning statistical models of human motion,”In Proceedings of IEEE Workshop on Human Modeling, Analysis and Synthesis, pp. 10-17, 2000.
    [114] L.M. Tanco and A. Hilton.“Realistic synthesis of novel human movements from a database of motion capture examples,”In Proceedings of IEEE Workshop on Human Motion, pp. 137-142, 2000.
    [115] Y. Li, T. Wang and H.-Y. Shum.“Motion texture: A two-level statistical model for character motion synthesis,”ACM Transactions on Graphics, vol. 21, no. 3: pp. 465-472, 2002.
    [116]王兆其,高文.基于虚拟人合成技术的中国手语合成方法.软件学报, 2002, 13(10): 2051-2056.
    [117]徐文彬,毛天露,王兆其.基于环约束的虚拟人动态LOD技术.计算机辅助设计与图形学学报. 2006, 18(12): 1918-1923.
    [118]罗忠祥.视频流中的人体运动提取与运动合成.浙江大学博士论文, 2002.
    [119]沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧.计算机辅助设计与图形学学报, 2004, 16(5): 719-723.
    [120]肖俊,智能人体动画若干关键技术研究,浙江大学,博士学位论文, 2007.
    [121]纪庆革,潘志庚等.团体操虚拟编排和演练原型系统.计算机辅助设计与图形学学报. 2004, 16(9): 1185-1190.
    [122]刘涛,孙守迁,潘云鹤.面向艺术与设计的虚拟人技术研究.计算机辅助设计与图形学学报. 2004, 16(11): 1475-1484.
    [123]胡晓雁,梁晓辉,赵沁平.自动匹配虚拟人模型与运动数据.软件学报. 2006, 17(10): 2181-2191.
    [124]吴威,王焱等.分布式虚拟人预测显示技术.北京航空航天大学学报. 2001, 27(4): 490-494.`
    [125]杨跃东,王莉莉,郝爱民,运动串:一种用于行为分割的运动捕获数据表示方法,计算机研究与发展, 2008, 45(3): 527-534.
    [126]王天树.三维人体运动分析和合成的统计方法.西安交通大学博士论文, 2002.
    [127] S. Kagami, J.J. Kuffner, K. Nishiwaki, K. Okada, M. Inaba, and H. Inoue.“Humanoid arm motion planning using stereo vision and RRT search,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, pp. 2167-2172, 2003.
    [128] S.M. LaValle and J.J. Kuffner.“Randomized kinodynamic planning,”International Journal of Robotics Research, vol. 20, no. 5: pp. 378–400, 2001.
    [129] E. Frazzoli, M.A. Dahleh, and E. Feron.“Real-time motion planning for agileautonomous vehicles,”AIAA Journal of Guidance and Control, vol. 25, no. 1: pp. 116-129, 2002.
    [130] F. Lamiraux, E. Ferre, and E. Vallee.“Kinodynamic motion planning: connecting exploration trees using trajectory optimization methods,”In Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, pp. 3987-3992, 2004.
    [131] J. Bruce and M. Veloso.“Real-time multi-robot motion planning with safe dynamics,”Multi-Robot Systems: From Swarms to Intelligent Automata, Volume III: pp. 159-170, 2006.
    [132] D. Ferguson, N. Kalra, and A. Stentz,“Replanning with RRTs,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1243-1248, 2006.
    [133] D. Ferguson and A. Stentz.“Anytime dynamic planning in high-dimensional search spaces,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 1310-1315, 2007.
    [134] J.J. Kuffner and S.M. LaValle.“RRT-connect: An efficient approach to single-query path planning,”In Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, pp. 995-1001, 2000.
    [135] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle.“Dynamic domain RRTs: Efficient exploration by controlling the sampling domain,”In Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, pp. 3856-3861, 2005.
    [136] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon.“Adaptive tuning of the sampling domain for dynamic-domain RRTs,”In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2851-2856, 2005.
    [137] B. Burns and O. Brock,“Single-query motion planning with utility guided random trees,”In Proceedings of IEEE International Conference on Robotics and Automation, Rome, pp. 3307-3312, 2007.
    [138] T.Y. Li and Y.C. Shie.“An incremental learning approach to motion planning with roadmap management,”In Proceedings of IEEE International Conference on Robotics and Automation, Washington D.C., pp. 3411-3416, 2002.
    [139] M. Morales, S. Rodriguez, and N. Amato.“Improving the connectivity of PRM roadmaps,”In Proceedings of IEEE International Conference on Robotics and Automation, pp. 4427-4432, 2003.
    [140] M. Strandberg.“Augmenting RRT-planners with local trees,”In Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, pp. 3258–3262, 2004.
    [141] E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, and L.E Kavraki.“Sampling based roadmap of trees for parallel motion planning,”IEEE Transactions on Robotics,vol. 21, no. 4: pp. 597-608, 2005.
    [142] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998.
    [143] P. Auer, N.C. Bianchi, and P. Fischer.“Finite-time analysis of the multi-armed bandit problem,”Machine Learning, vol. 47, no. 2-3: pp. 235-256, 2002.
    [144] P. Auer, N.C. Bianchi, Y. Freund, and R. E. Schapire.“The nonstochastic multi-armed bandit problem,”SIAM Journal of Computing, vol. 32, no. 1: pp. 48-77, 2002.
    [145] Motion Strategy Library: http://msl.cs.uiuc.edu/msl/
    [146] S. Gottschalk, M.C. Lin and D. Manocha.“OBBTree: A hierarchical structure for rapid interference detection,”In Proceedings of SIGGRAPH 96’, pp. 171-180, 1996.
    [147] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz.“Global path planning on board the mars exploration rovers,”In Proceedings of IEEE Aerospace Conference, Big Sky, MT, pp. 1-11, 2007.
    [148] S.B. Goldberg,M.W. Maimone, and L. Matthies.“Stereo vision and rover navigation software for planetary exploration,”In Proceedings of IEEE Aerospace Conference, Big Sky, USA, vol. 5: pp. 2025-2036, March, 2002.
    [149] Y. Nakamura. Advanced Robotics: Redundancy and Optimization. Addison-Wesley, 1991.
    [150] J. Zhao and N. Badler.“Inverse kinematics positioning using nonlinear programming for highly articulated figures,”ACM Transactions on Computer Graphics, vol. 13, no. 4: pp. 313-336, 1994.
    [151] D. Tolani and N. Badler.“Real-time inverse kinematics of the human arm,”Presence, vol. 5, no. 4: pp. 393-401, 1996.
    [152] A. Yershova and S.M. LaValle.“Planning for closed chains without inverse kinematics,”available at: http://msl.cs.uiuc.edu/~yershova/icra2007/paper.pdf
    [153] OpenSceneGraph: http://www.openscenegraph.org/
    [154] A.H. Barr.“Global and local deformation of solid primitives,”ACM Transactions on Computer Graphics, vol. 18, No. 3: pp21-34, 1984.
    [155] T. W. Sederberg, and S. R. Parry.“Free-Form Deformation of Solid Geometric Models,”ACM Transactions on Computer Graphics, vol. 20, no. 4: pp. 151-160, 1986.
    [156] H.J. Lamousin and W.N. Waggenspack.“NURBS-Based Free-Form Deformations,”IEEE Transactions on Computer Graphics and Applications, vol. 14, no. 6: pp.59-65, 1994.
    [157] IKAN: http://hms.upenn.edu/software/ik/ik.html
    [158] PQP: http://www.cs.unc.edu/~geom/SSV/
    [159] S. Roweis.“EM algorithms for PCA and SPCA,”In Proceedings of Neural Information Processing Systems, pp. 626-632, 1997.
    [160] G. Schwarz.“Estimating the dimension of a model,”Annals of Statistics, vol. 6, no. 2: pp. 461-464, 1978.
    [161] CMU Motion Capture Library: http://mocap.cs.cmu.edu/
    [162] L.R. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice Hall Signal Processing Series, 1993.
    [163] L.R. Rabiner.“A tutorial on hidden markov models and selected applications in speech recognition,”Proceedings of IEEE, vol. 77, no. 2: pp. 257-285, 1989.
    [164] http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html
    [165] http://www.cs.man.ac.uk/neill-bin/software/downloadForm.cgi?toolbox=mocap

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700