用户名: 密码: 验证码:
改善活体光学成像的光透明皮窗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学成像技术以极高的时空分辨率在皮肤微循环监测、皮下肿瘤血管的生成与发展、以及活体动物荧光分子探测等方面发挥重要作用,但成像深度和成像对比度往往受限于皮肤的高散射。基于外科手术的皮窗为光学成像的应用提供了一个有效的观测窗口,但术后副反应使其无法用于及时的观测。近年发展起来的组织光透明技术能有效降低组织散射、提高光在组织中的穿透深度,但现有研究多集中在离体水平。该方法能否用于活体皮肤,能否为活体光学成像提供一个可重复观测的视窗——皮窗,还有待进一步研究。
     本文的工作正是针对活体成像中存在的这一问题,围绕如何建立高效、安全的光透明皮窗,改善皮下血管、血流及细胞的成像质量而展开的。主要研究内容如下:
     1)理论模拟与模型实验验证光透明方法能改善光学成像深度及对比度:利用蒙特卡罗方法对皮肤光透明过程中的光分布变化进行模拟,发现组织散射的降低会增加光子到达深层组织的概率,提高光在组织中的穿透深度;通过类组织血流模型实验,证实降低组织散射能显著提高激光散斑衬比成像技术用于混浊介质中流速测量的图像对比度、成像深度和速度灵敏度。
     2)高效皮肤光透明剂选型的理论与实验研究:利用分子动力学模拟对甘油、木糖醇、山梨醇、葡萄糖和果糖的胶原解离能力进行研究,发现果糖和山梨醇对胶原水化层的破坏能力更强;离体皮肤光透明实验的结果与理论模拟结果一致。为克服皮肤角质层对光透明剂的阻挡作用,比较多种化学促渗剂对在体皮肤光透明的增强作用,发现噻酮的增强效果最好。
     3)可开合大鼠脊背光透明皮窗的建立:光透明剂作用于大鼠脊背皮肤表面能使皮肤在数分钟内透明,利用激光散斑衬比成像技术能够实现对皮下血管结构和血流的高分辨成像,生理盐水涂抹即可使皮肤迅速恢复至初始的混浊状态;用光透明剂局部重复处理皮肤,可实现皮下血管与血流的重复成像,且不会对皮下血管和血流造成影响,证明了基于光透明方法的大鼠脊背皮窗具有可开合的特点。
     4)可开合的小鼠足垫光透明皮窗提高活体光学成像质量:针对足垫皮肤的独特结构,发展了高效的足垫皮肤光透明剂,将该光透明剂和生理盐水分别涂抹于在体小鼠足垫皮肤,能够建立一扇可开合的足垫皮窗。该皮窗不仅能够显著提高足垫皮下血管和血流的激光散斑衬比成像的对比度,也能够显著改善荧光成像的荧光信号强度和成像深度,且不会影响皮下血管和血流。
     5)光透明鼠耳皮窗提高活体光学成像质量:发展了适用于鼠耳皮肤的高效光透明剂,将其局部涂抹于在体鼠耳皮肤后,能够显著提高鼠耳的光透过率,增强皮下血管结构和血流的激光散斑衬比成像的对比度;此外,光透明鼠耳皮窗还能够显著提高活体流式细胞仪对循环血细胞荧光信号的探测深度。
     6)光透明剂的安全性研究:依据皮肤局部给药的安全性评价方法,证实本研究中所用光透明剂均对皮肤无刺激性、无过敏性、无光毒性,并且不会影响皮肤微结构,对器官和机体无代谢毒性。从而证明这些光透明剂对皮肤和机体是安全的。
     本课题所建立的光透明皮窗(脊背皮窗、足垫皮窗和鼠耳皮窗),为活体光学成像提供了一个安全、有效的可重复观测的窗口,这对基于活体小动物光学成像的基础研究及光诊断研究至关重要,因而具有重要的科学意义与应用前景。
Optical imaging techniques have played important roles in monitoring of cutaneous microcirculation, tracking of tumor angiogenesis and detection of fluorescence cells, but the imaging depth and contrast is limited by the strong scattering of skin. Current skin windows provide available models, but the surgical operation always bring some side effects. The tissue optical clearing technique developed in recent years can reduce the skin scattering and enhance the light penetration depth effectively. However, relative studies were mostly based on in vitro skin. Whether this method can be applied to in vivo skin and provides a transparent window for in vivo optical imaging need to be further investigated. In this work, to image the dermal blood vessels, blood flow and cells with high resolution non-invasively, various in vivo skin optical clearing methods were developed to establish effective and safe transparent skin windows:
     1) Monte Carlo (MC) modeling and tissue phantom experiments for proving the improvement in optical imaging depth and contrast with optical clearing. By simulating the light distribution in tissue during skin optical clearing process with MC, we found that decrease in tissue scattering could significantly enhance the probability of photons arriving at deep tissue and improve the light penetration depth. The tissue phantom experiments verified that reduction in tissue scattering can improve the image contrast, imaging depth and sensitivity to flow velocity of Laser Speckle Contrast Imaging (LSCI) technique.
     2) Selection of high-efficiency skin optical clearing agents (OCAs). The collagen dissociation ability of glycerol, xylitol, sorbitol, glucose and fructose were studied with Molecular Dynamics simulation, and found that fructose and sorbitol could disrupt the hydration shell better. The results of in vitro experiments were in accordance with the results of simulation. To overcome the barrier function of stratum corneum, the enhancing effect of various penetration enhancers were investigated, and it was found that thiazone had the best enhancing effect for in vivo skin.
     3) Establishment of transparent dorsal skin window. Topical application of OCAs on dorsal skin could make the skin transparent within minutes, which permitted the dermal blood vessels and flow be imaged by LSCI technique with high resolution, and treatment of saline could make the skin recover to initial state quickly. Repeated application of OCAs or saline can make the transparent skin window open or close repeatedly, and the dermal blood vessels and flow were not affected.
     4) Footpad skin window for improving in vivo optical imaging quality. Considering the unique structure of footpad skin, high-efficiency footpad skin OCA was developed. Repeated application of the OCA or saline on footpad skin could open or close the footpad skin window repeatedly, which permitted the dermal blood vessels and flow to be monitored by LSCI technique with higher contrast and the cells be imaged by confocal microscopy with higher fluorescence intensity and imaging depth.
     5) Ear skin window for improving in vivo optical clearing quality. High-efficiency ear skin OCA was developed. Application of the OCA on ear skin could enhance the imaging contrast of LSCI technique greatly, and the circulating blood cells could be detected by in vivo flow cytometry with higher imaging depth.
     6) Safety assessment of OCAs. According to the safety evaluation method of skin topical administration, it is verified that the OCAs were non-irritant, non-allergic and non-phototoxic to skin, and they also had no toxic to organs and body. That is, these OCAs are safe to skin and body.
     In conclusion, transparent dorsal skin window, footpad skin window and ear skin window were established with optical clearing method in this work, which provide a safe and effective window for repeatedly imaging. These windows will be very significant for basic research and optical diagnosis, which has great scientific significance and application prospects.
引文
[1]Balas C., Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol.,2009, 20:1-12
    [2]Vakoc B. J., Lanning R. R., Tyrrell J. A., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging, Nat. Med.,2009,15(10):1219-1223
    [3]Kerr J. N., Denk W., Imaging in vivo:watching the brain in action. Nat. Rev. Neurosci.,2008,9(3):195-205
    [4]Hillman E. M., Optical brain imaging in vivo:techniques and applications from animal to man. J. Biomed. Opt.,2007,12(5):051402
    [5]Koehl G E., Gaumann A., Geissler E. K., Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber:mechanistic insights and preclinical testing of therapeutic strategies. Clin. Exp. Metastasis,2009,26(4): 329-344
    [6]Jain R. K., Munn L. L., Fukumura D., Tumor models in cancer research.2nd edition, New York:Humana Press,2011:641-79
    [7]Tuchin V. V., Maksimova I. L., Zimnyakov D. A., et al., Light propagation in tissues with controlled optical properties. J. Biomed. Opt.,1997,2(4):401-17
    [8]Tuchin V. V, Optical Clearing of Tissues and Blood. Bellingham:SPIE Press,2005: 1-129
    [9]Tuchin V. V, Optical clearing of tissues and blood using the immersion method. J. Phys. D Appl. Phys.,2005,38(15):2497-2518
    [10]Genina E. A., Bashkatov A. N., Tuchin V. V., Tissue optical immersion clearing. Expert Rev. Med. Devic.,2010,7(6):825-842
    [11]Zhu D., Larin K. V., Luo Q., Recent progress in tissue optical clearing. Laser Photonics Rev.,2013:1-26
    [12]Huang D., Zhang W., Zhong H., et al., Optical clearing of porcine skin tissue in vitro studied by Raman microspectroscopy. J. Biomed. Opt.,2012,17(1):015004
    [13]He R., Wei H. Gu H., et al., Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography:a pilot study. J. Biomed. Opt.,2012,17(10):101513
    [14]Tanaka Y., Shi D., Kubota A., et al., Irreversible optical clearing of rabbit dermis for autogenic corneal stroma transplantation. Biomaterials,2011,32:6764-6772
    [15]Matsui A., Lomnes S. J., Frangioni J. V., Optical clearing of the skin for near-infrared fluorescence image-guided surgery. J. Biomed. Opt.,2009,14(2): 024019
    [16]Moulton K., Lovell F., Williams E., et al., Use of glycerol as an optical clearing agent for enhancing photonic transference and detection of Salmonella typhimurium through porcine skin. J. Biomed. Opt.,2006,11(5):054027
    [17]Choi B., Tsu L., Chen E., et al., Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg. Med.,2005,36(2):72-75
    [18]Wang R. K., Xu X., Tuchin V. V., Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents. J. Opt. Soc. Am. B,2001,18(7):948-953
    [19]Proskurin S. G, Meglinski I. V., Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Phys. Lett.,2007,4(11): 824-826
    [20]Xu X., Zhu Q., Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography. IEEE J. Sel. Top. Quant. 2008,14(1):56-61
    [21]Cicchi R., Pavone F. S., Massi D., et al., Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express,2005,13(7):2337-2344
    [22]Jansen E. D., Pickett P. M., Mackanos M. A., et al., Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging. J. Biomed. Opt., 2006,11(4):041119
    [23]Zaidi Z., Lanigan S. W., Dermatology in Clinical Practice. London:Springer-Verlag Press,2010:1-15
    [24]Leal A. C., Why does your skin age. Dartmouth Undergradute Journal of Science, 2013
    [25]吴志华,皮肤性病学,第4版,广东科技出版社,2003
    [26]Vo-Dinh T., Biomedical photonics handbook., CRC Press,2003
    [27]Wang L. V., Wu H., Biomedical Optics:Principles and Imaging. Wiley-Interscience, 2007
    [28]Leahy M. J., Enfield J. G., Clancy N. T., et al., Biophotonic methods in microcirculation imaging. Med. Laser Appl.,2007,22:105-126
    [29]Wang L. V., Prospects of photoacoustic tomography. Med. Phys.,2008,35(12): 5758-67
    [30]Zhu D., Lu W., Weng Y., et al., Monitoring thermal induced changes in tumor blood flow and micro-vessels with laser speckle contrast imaging, Appl. Opt.,2007,46: 1911-1917
    [31]Intaglietta M., Tompkins W. R., Richardson D. R., Velocity measurements in the microvasculature of the cat omentum by online method. Microvasc. Res.,1970,2: 462-473
    [32]Matheny E. S., Hanna N. M., Jung W. G., Optical coherence tomography of malignancy in hamster cheek pouches. J. Biomed. Opt.,2004,9(5):978-81
    [33]von Andrian U. H., Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation,1996,3:287-300
    [34]Wylie S., MacDonald I. C., Varghese H. J., et al., The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin. Exp. Metastasis,1999,17:111-117
    [35]Xue C., Wyckoff J., Liang F., et al., Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res.,2006,66:192-197
    [36]Zhu D., Zhang J., Cui H., et al., Short-term and long-term effects of optical clearing agents on blood vessels in chick chorioallantoic membrane, J. Biomed. Opt.,2008, 13(2):021106
    [37]Sandison J. C., The transparent chamber of the rabbit's ear giving a complete description of improved techniques of construction and introduction and general account of growth and behavior of living cells and tissues as seen with the microscope, Am. J. Anat.,1928,41:447-472
    [38]de Visscher S. A. H. J., Kascakova S., de Bruijn H. S., et al., Fluorescence localization and kinetics of mTHPC and liposomal formulations of mTHPC in the window-chamber tumor model. Lasers Surg. Med.,2011,43:528-536
    [39]Moy A. J., White S. M., Indrawan E. S., et al., Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber. Microvasc. Res.,2011,82:199-209
    [40]Machado M. J. C., Watson M. G., Devlin A. H., et al., Dynamics of angiogenesis during wound healing:a coupled in vivo and in silico study. Microcirculation 2011, 18:183-197
    [41]Jia W., Sun V., Tran N., et al., Long-term blood vessel removal with combined laser and topical rapamycin antiangiogenic therapy:implications for effective port wine stain treatment. Lasers Surg. Med.,2010,42:105-112
    [42]Redisch W., Messina E. J., Hughes G, et al., Capillaroscopic observations in rheumatic diseases. Ann. rheum. Dis.,1970,29:244-253
    [43]Lin H. H., Lai J. S., Chin A. L., A map of olfactory representation in the Drosophila mushroom body. Cell,2007,128(6):1205-1217
    [44]Wu C. L., Xia S., Fu T. F., et al., Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. Neurosci., 2007,10(12):1578-86
    [45]Hama H., Kurokawa H., Kawano H., et al., Scale:chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci., 2011,14(11):1481-1488
    [46]Erturk A., Mauch C. P., Hellal F., et al., Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responsesafter injury. Nat. Med.,2011,18(1):166-171
    [47]Wang J., Zhang Y., Xu T., et al., An innovative transparent cranial window based on skull optical clearing. Laser Phys. Lett.,2012,9(6):469-473
    [48]Genina E. A., Bashkatov A. N., Tuchin V. V., Optical clearing of cranial bone, Adv. Opt. Technol.,2008,2008:267867
    [49]Chiu Y.-C., Hua T.-E., Fu Y.-Y., et al.,3-D imaging and illustration of the perfusive mouse islet sympathetic innervation and its remodelling in injury. Diabetologia, 2012,55(12):3252-3261
    [50]Fu Y. Y, Lu C. H., Lin C. W., et al., Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt.,2010,15(4):046018
    [51]Fu Y. Y, Tang S. C., Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition. Microvasc. Res.,2010,80:512-521
    [52]Liu Y. A., Chen Y, Chiang A. S., et al., Optical clearing improves the imaging depth and signal-to-noise ratio for digital analysis and three-dimensional projection of the human enteric nervous system. Neurogastroenterol. Motil.,2011,23:e446-e457
    [53]Fu Y. Y, Lin C. W., Enikolopov G, et al., Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology,2009,137(2):453-465
    [54]Zaman R. T, Rajaram N., Nichols B. S., et al., Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent. J. Biomed. Opt., 2011,16(7):077008
    [55]Oliverira L., Lage A., Clemente M. P., et al., Rat muscle opacity decrease due to the osmosis of a simple mixture. J. Biomed. Opt.,2010,15(5):055004
    [56]Nadiarnykh O., Campagnola P. J., Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt. Express,2009,17(7): 5794-5806
    [57]Larina I. V, Carbajal E. F., Tuchin V. V., et al., Enhanced OCT imaging of embryonic tissue with optical clearing. Laser Phys. Lett.,2008,5(6):476-479
    [58]Xu X., Wang R. K., Synergistic effect of hyperosmotic agents of dimethyl sulfoxide and glycerol on optical clearing of gastric tissue studied with near infrared spectroscopy. Phys. Med. Biol.,2004,49(3):457-468
    [59]He Y, Wang R. K., Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography. J. Biomed. Opt.,2004,9(1):200-206
    [60]Wang R. K., Xu X., He Y, et al., Investigation of optical clearing of gastric tissue immersed with hyperosmotic agents. IEEE J. Sel. Top. Quant.,2003,9(2):234-242
    [61]Xu X., Wang R., Elder J. B., Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy. J. Phys. D-Appl. Phys.,2003,36(14):1736-1746
    [62]Zhu Z., Wu G, Wei H., et al., Investigation of the permeability and optical clearing ability of different analytes in human normal and cancerous breast tissues by spectral domain OCT. J. Biophotonics,2012,5(7):536-543
    [63]Guo X., Wu G, Wei H., et al., Quantification of glucose diffusion in human lung tissues by using fourier domain optical coherence tomography. Photochem. Photobiol.,2012,88:311-316
    [64]Young P. A., Clendenon S. G., Byars J. M., et al., The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. J. Microsc.,2011,242:148-156
    [65]Wenner M., The most transparent research. Nat. Med.,2009,15(10):1106-1109
    [66]Xu X., Wang R. K., The role of water desorption on optical clearing of biotissue: Studied with near infrared reflectance spectroscopy. Med. Phys.,2003,30(6): 1246-1253
    [67]Rylander C. G., Stumpp O. F., Milner T. E., et al., Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt.,2006,11(4):041117
    [68]Yu T., Wen X., Tuchin V. V, et al., Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. J. Biomed. Opt.,2011,16(9): 095002
    [69]Yeh A. T., Choi B., Nelson J. S., et al., Reversible dissociation of collagen in tissues. J. Invest. Dermatol.,2003,121(6):1332-1335
    [70]Yeh A. T., Hirshburg J., Molecular interactions of exogenous chemical agents with collagen-implications for tissue optical clearing. J. Biomed. Opt.,2006,11(1): 014003
    [71]Hirshburg J., Choi B., Nelson J. S., et al., Collagen solubility correlates with skin optical clearing. J. Biomed. Opt.,2006,11(4):040501
    [72]Hirshburg J., Choi B., Nelson J. S., et al., Correlation between collagen solubility and skin optical clearing using sugars. Lasers Surg. Med.,2007,39(2):140-144
    [73]Hirshburg J. M., Ravikumar K. M., Hwang W., et al., Molecular basis for optical clearing of collagenous tissues. J. Biomed. Opt.,2010,15(5):055002
    [74]Mao Z., Zhu D., Hu Y., et al., Influence of alcohols on the optical clearing effect of skin in vitro. J. Biomed. Opt.,2008,13(2):021104
    [75]Xu X., Wang R. K., Elder J. B., et al., Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood. Phys. Med. Biol.,2003,48(9):1205-1221
    [76]Bui A. K., McClure R. A., Chang J., et al., Revisiting optical clearing with dimethyl sulfoxide (DMSO). Lasers Surg. Med.,2009,41(2):142-148
    [77]Tuchin V. V., Bashkatov A. N., Genina E. A., et al., In vivo investigation of the immersion-liquid-induced human skin clearing dynamics. Tech. Phys. Lett.,2001, 27(6):489-490
    [78]Galanzha E. I., Tuchin V. V, Solovieva A. V., et al., Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D Appl. Phys.,2003,36(14):1739-1746
    [79]Mao Z., Wen X., Wang J., et al., The biocompatibility of the dermal injection of glycerol in vivo to achieve optical clearing. Proc. SPIE,7519:75191N
    [80]Stumpp O. F., Welch A. J., Milner T. E., et al., Enhancement of transepidermal skin clearing agent delivery using a 980 nm diode laser. Lasers Surg. Med.,2005,37(4): 278-285
    [81]Liu C, Zhi Z., Tuchin V. V., et al., enhancement of skin optical clearing efficacy using photo-irradiation. Lasers Surg. Med.,2010,42(2):132-140
    [82]Stumpp O., Chen B., Welch A. J., Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery. J. Biomed. Opt.,2006,11(4):041118
    [83]Tuchin V. V, Altshuler G B., Gavrilova A. A., et al., Optical clearing of skin using flashlamp-induced enhancement of epidermal permeability. Lasers Surg. Med., 2006,38(9):824-836
    [84]Genina E. A., Bashkatov A. N., Korobko A. A., et al., Optical clearing of human skin:comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt.,2008,13(2):021102
    [85]Xu X., Zhu Q., Sun C., Assessment of the effects of ultrasound-mediated alcohols on skin optical clearing. J. Biomed. Opt.,2009,14(3):034042
    [86]Zhong H., Guo Z., Wei H., et al., Reflectance spectroscopy study of low-frequency ultrasound and glycerol on skin optical clearing. Spectroscopy and Spectral Analysis,2009,29(12):3190-3194
    [87]Zhong H., Guo Z., Wei H., et al., In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography. J. Biomed. Opt.,2010,15(3):036012
    [88]Yoon J., Son T., Choi E., et al., Enhancement of optical skin clearing efficacy using a microneedle roller. J. Biomed. Opt.,2008,13(2):021103
    [89]Fox M. A., Diven D. G., Sra K., et al., Dermal scatter reduction in human skin:a method using controlled application of glycerol. Lasers Surg. Med.,2009,41(4): 251-255
    [90]Yoon J., Park D., Son T., et al., a physical method to enhance transdermal delivery of a tissue optical clearing agent:combination of microneedling and sonophoresis. Lasers Surg. Med.,2010,42(5):412-417
    [91]Jiang J., Wang R. K., How different molarities of oleic acid as enhancer exert its effect on optical clearing of skin tissue in vitro. J. X-ray Sci. Technol.,2005,13(3): 149-159
    [92]Xu X., Zhu Q., Evaluation of skin optical clearing enhancement with Azone as a penetration enhancer. Opt. Commun.,2007,279(1):223-228
    [93]Zhi Z., Han Z., Luo Q., et al., Improve optical clearing of skin in vitro with propylene glycol as a penetration enhancer. J. Innovat. Opt. Health Sci.,2009,2(3): 269-278
    [94]Xu X., Zhu Q., Feasibility of sonophoretic delivery for effective skin optical clearing. IEEE T. Biomed. Eng.,2008,55(4):1432-1437
    [95]Wang J., Liang Y., Zhang S., et al., Evaluation of optical clearing with the combined liquid paraffin and glycerol mixture. Biomed. Opt. Express,2011,2(8):2329-2338
    [96]Zhong H., Guo Z., Wei H., et al., Synergistic effect of ultrasound and thiazone-peg 400 on human skin optical clearing in vivo. Photochem. Photobiol.,2010, 86(3):732-737
    [97]Xu X., Zhu Q., Sun C., Combined effect of ultrasound-SLS on skin optical clearing. IEEE Photonic. Tech. L.,2008,20(21-24):2117-2119
    [98]Vargas G., Readinger A., Dozier S. S., et al., Morphological changes in blood vessels produced by hyperosmotic agents and measured by optical coherence tomography. Photochem. Photobiol.,2003,77(5):541-549
    [99]Cheng H., Luo Q., Zeng S., et al., Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle. Appl. Optics,2004,43(31): 5772-5777
    [100]Wang L., Jacques S. L., Zheng L., MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine,1995, 47(2):131-146
    [101]Bashkatov A. N., Genina E. A., Tuchin V. V, Monte Carlo study of skin optical clearing to enhance light penetration in the tissue:implications for photodynamic therapy of acne vulgaris. Proc. SPIE,2008,7022:702209
    [102]Savchenko E. P., Tuchin V. V., Monte-Carlo simulation of light propagation in multi-layered tissue with cleared inclusions. Proc. SPIE,2001,4432(2001): 247-252
    [103]D. A. Boas, Dunn A. K., Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt.,2010,15(1):011109
    [104]Briers J. D., Webster S., Laser speckle contrast analysis (LASCA):a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt.,1996,1(2): 174-179
    [105]van Staveren H. J., Moes C. J. M., van Marie J., et al., Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl. Opt.,1991,30: 4507-4514
    [106]Wen X., Tuchin V. V., Luo Q., et al., Controling the scattering of Intralipid by using optical clearing agents. Phys. Med. Biol.,2009,54:6917-6930
    [107]Prahl S. A., Van Gemert M. J. C., Welch A. J., Determining the optical properties of turbid media by using the adding-doubling method. Appl. Optics,1993,32(4): 559-568
    [108]Li P., Ni S., Zhang L., et al., Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Lett.,2006,31:1824-1826
    [109]Dunn A. K., Bolay H., Moskowitz M. A., et al., Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab.,2001,21:195-201
    [110]Parthasarathy A. B., Tom W. J., Gopal A., et al., Robust flow measurement with multi-exposure speckle imaging. Opt. Express,2008,16(3):1975-1989
    [111]Dunn J. F., Forrester K. R., Martin L., et al., A transmissive laser speckle imaging technique for measuring deep tissue blood flow:an example application in finger joints. Lasers Surg. Med.,2011,43(1):21-28
    [112]He H., Tang Y., Zhou F., et al., Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Opt. Lett.,2012,37(18):3774-3776
    [113]Anderson D., Collagen self-assembly:a complementary experimen-tal and theoretical perspective[Ph.D. thesis]. University of Toronto,2005
    [114]http://www.ch.embnet.org/MD_tutorial/
    [115]Izquierdo-Roman A., Vogt W. C., Hyacinth L., et al., Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin. Lasers Surg. Med.,2011,43(8):814-823
    [116]Dayan N., Pathways for skin penetration. Cosmetics & Toiletries magazine,2005, 120(6):67-76
    [117]Williams A. C., Barry B. W., Penetration enhancers. Adv. Drug Deliver. Rev.,2004, 56:603-618
    [118]Jungbauer F. H. W., Coenraads P. J., Kardaun S. H., Toxic hygroscopic contact reaction to N-methyl-2-pyrrolidone. Contact Dermatitis,2001,45:303-304
    [119]熊丽曾,孔兆祥,王学斌,N-正烷基苯丙异噻唑酮作为促渗剂的应用,2000,CN00107448.2
    [120]熊丽曾,新型促渗剂噻酮,精细与专用化学品,2004,12(21):9-11
    [121]朱丹,骆清铭,闻翔,基于反射光谱测量的皮肤生理参数与光学特性参数测量方法,2010,CN201010525672.6
    [122]Oudshoorn M. H., Rissmann R., van der Coelen D., et al., Development of a murine model to evaluate the effect of vernix caseosa on skin barrier recovery. Exp. Dermatol.,2009,18(2):178-184
    [123]Choi Y. S., Hong S. R.. Lee Y. M., et al., Studies on Gelatin-Containing Artificial Skin:II. Preparation and Characterization of Cross-Linked Gelatin-Hyaluronate Sponge. J. Biomed. Mater. Res.,1999,48(5):631-639
    [124]Boateng J. S., Matthews K. H., Stevens H. N. E., et al., Wound healing dressings and drug delivery systems:a review. J. Pharm. Sci.,2008:97(8):2892-2923
    [125]Murari K., Li N., Rege A., et al., Contrast-enhanced imaging of cerebral vasculature with laser speckle. Appl. Optics,2007,46(22):5340-5346
    [126]张延坤,金京顺,一种功能性化妆品原料:透明质酸。日用化学工业,2004,34(2):111-114
    [127]Liu F., Zhang L., Hoffman R. M., et al, Vessel destruction by tumor-targeting Salmonella typhimurium Al-R is enhanced by high tumor vascularity. Cell Cycle, 2010,9(22):4518-4524
    [128]Zinselmeyer B. H., Lynch J. N., Zhang X., et al., Video-rate two-photon imaging of mouse footpad-a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res.,2008,57(3):93-96
    [129]Mempel T. R., Scimone M. L., Mora J. R., et al., In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol.,2004,16(4):409-417
    [130]Pourtier-Manzanedo A., Vercamer C., Van Belle E., et al., Expression of an Ets-1 dominantnegative mutant perturbs normal and tumor angiogenesis in a mouse ear model. Oncogene,2003,22(12):1795-806
    [131]Galanzha E. I., Kokoska M. S., Shashkov E. V, et al., In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J. Biophotonics,2009,2(8-9):528-539
    [132]Tuchin V. V., Tarnok A., Zharov V. P., In vivo flow cytometry:a horizon of opportunities. Cytometry A.,2011,79(10):737-745
    [133]Fan Z., Wei X., In vivo flow cytometry:A powerful optical technology to detect circulating tumor cells and diagnose cancer metastasis in vivo. Photon. Lasers Med., 2013,2(1):27-35
    [134]李捷玮,刘吉祥,常用药物辅料手册。第二军医大学出版社,2000
    [135]中华人民共和国卫生部药政局,新药(西药)临床前研究指导原则汇编。1993
    [136]徐薇,蒋中仁,金伟等,皮肤光毒性试验方法研究。预防医学情报杂志,2010,26(11):925-927
    [137]Zhang L., Mu X., Fu J., et al., In vitro cytotoxicity assay with selected chemicals using human cells to predict target-organ toxicity of liver and kidney. Toxicol. In Vitro,2007,21:734-740
    [138]黄雅卿,张文昌,李煌元,镉对雌性大鼠体重变化和卵巢脏器系数的影响。职业与健康,2003,19(7):7-9
    [139]向丽华,陈燕萍,张智等,24味有毒重要长期毒性实验对大鼠脏器指数的影响。中国中医基础医学杂志,2006,12(1):35-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700