基于物质波干涉效应的新型低温超流体陀螺关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4He超流体的交流约瑟夫森效应和物质波干涉技术是低温凝聚态物理学领域取得的前沿研究成果,基于此技术实现超流体陀螺仪是当前世界上新概念陀螺技术研究的一个重要方向,其中,从物理效应研究到形成超流体陀螺仪理论还面临若干关键的问题。本文针对这些问题开展了研究,主要工作包括:
     开展了超流体物质波干涉仪模型研究与实现超流体陀螺技术的分析。对4He超流体物质波干涉仪的典型基本结构和数学模型进行研究,分析了超流体物质波干涉(Sagnac环路)模块、驱动模块和振动信号输出模块的机理。开展超流体量子干涉仪敏感角速度机理的仿真,通过仿真结果分析了线性、非线性、大动态、小动态情况下输入角速度的影响特点。根据理论和仿真结果总结分析了超流体量子干涉仪实现成为陀螺的四个关键问题:角速度解算、角速度检测范围、稳定驱动和超流体干涉特性的陀螺误差性能分析等。
     在超流体陀螺角速度检测技术方面,论文研究了两种有效的技术方案:时域分析的薄膜位移增量法;频域分析角速度解算方法。并通过解算效果的对比,优选得出时域分析的薄膜位移增量法能够直接而准确地解算得到角速度值。针对此方法产生的偏值和跳变误差,研究给出了相应的抑制误差处理,使误差水平得到了显著抑制,降低了一个数量级。该角速度检测技术解决了目前超流体干涉陀螺在有角加速度情况下角速度信息提取的问题。
     论文研究了扩展超流体陀螺量程的问题。首先对超流体干涉仪的角速度检测范围进行了原理研究和仿真分析,总结了量程限制以及影响因素。采用加热补偿方式设计了两种工作点控制方案:幅值锁定法和历程监测法,两种方案均能有效达到扩展角速度检测范围的目的。通过仿真对比了两种方案,结果显示历程监测法综合效果更好。研究进一步提出了避免加热补偿超过超流体上限的限制补偿技术。为扩展监测灵敏度,提出了一种新型的多层多超流回路干涉盘结构,在使用同等面积的情况下,能将超流体陀螺的灵敏度和分辨率提高2~3个数量级,进一步增强了超流体陀螺在这些方面的优势。
     对于超流体陀螺的稳定驱动和动态相差补偿,论文开展了超流体热动力学问题分析。以超流体双分量模型及其理论为基础,通过数值模拟超流管路中的非定常热扩散和势差驱动非定常对流,得到了热扩散和势差驱动对流在超流体管路中演变到稳定所需的时间(即响应滞后时间)。分析指出了势差驱动对流是动态响应的主导机理,并根据数值计算结果总结了超流体势差波传播特征和响应滞后时间与音速和管路长度的关系。首次给出了超流体陀螺干涉环路中对动态输入的响应滞后特性,并在分析掌握了热驱动和压差驱动各自优缺点的基础上,设计了一个兼顾两者优势的组合驱动补偿方案。
     最后,研究建立了一套具有稳定热驱动、相位动态补偿、角速度位移增量提取、滞后校正模块等环节的超流体陀螺性能仿真模型。以该模型为基础开展了陀螺特性的仿真分析,分析了超流体陀螺的误差特性。结果显示,本课题新提出的新型超流体物质波干涉陀螺,在变输入角速度输入情况下的物质波Sagnac干涉信号检测方法、兼顾高灵敏度和大工作范围的超流体陀螺仪方案、超流体陀螺稳定驱动和补偿技术、动态响应滞后及校正等方面的技术方案是有效的。
     本文基于发展新型超流体陀螺理论研究的需求,对4He超流体物质波干涉陀螺理论和方案进行了深入和系统的研究,为后续超流体陀螺的研究和工程实现提供理论基础和参考。
A new superfluid Sagnac effect, which can be obtained by interference of matter-waves in a4Hesuperfluid loop, was presented innovatively by recent advanced progress of the low temperaturecondensed matter physics, such as: AC Josephson effect waves, etc. Then, it is became a veryimportant direction to develop the superfluid gyro-scope based on the new superfluid Sagnac effect,because the superfluid gyro-scope has a very high potential precision. There are several key problemsin developing superfluid gyroscopes theory based on the current research results in superfluidphysical effects. This paper focused on those key problems, and the main works and results of thisdissertation are following:
     At first, the modeling of superfluid matter wave interferometer and the technology frame analysisof superfluid gyroscope was studied.4He superfluid matter wave interferometer typical configurationwas presented and mathematical model was explored. Then superfluid matter wave Sagnacinterference mechanism in a loop was presented, drive module and the vibration signal output modulewere analyzed. The simulation of the superfluid quantum interference device shows how themeasurements of angular velocity is affected by virous rotation conditions, such as linear or nonlinearchanged rotation speed, large or small angular acceleration velocity. The theory analysis andsimulation results show that the following four problems must be solved to develop a superfluidquantum interference device to a gyro:1) calculating of the variable angular velocity,2) enlarging therange of angular velocity detection,3) steadily driving superfluid,4) the performance and erroranalysis of superfluid interference gyro.
     In second stage, to develop angular velocity detection technology of superfluid gyroscope, twomethods were studied, one was based on time domain analysis of thin film displacement incrementand the other was based on frequency domain analysis. The comparison between the results of suchtwo methods indicated that the method of time-domain analysis of thin film displacement increment isbetter. By using it the angular velocity value can be solved directly and accurately. There are the biaserrors and fluctuation errors emerging in calculating results, so the corresponding research in handlingthis error was carried out and the error level was significantly suppressd by one order of magnitude.This work obtained an effective method to solve the variable angular velocity.
     Moreover, the method of extending measurement range of superfluid gyroscopes was investigated.First, the range of angular velocity detection of the superfluid interferometer was analyzed inprinciple and simulation, and the factors affecting the measurement range were summarized. Then two methods based on heating compensation were proposed to control the work point of superfluidgyro: amplitude locking method and history monitoring method. Both of the two methods caneffectively extend the range of measurement. Comparison between the two methods throughsimulation. The results showed that the history monitoring method is better. To avoid heatingcompensation larger than the upper limit of the superfluid without quantum noise,a limitcompensation method was studied. Further more, in order to increase the sensitivity of superfluid gyro,a new type of superfluid interference disk with multi-layer and multi-loop configuration was proposedand researched. With same sense aeras, the new superfluid interference disk can be more sensitivewith two to three orders of magnitude than single loop design, and the sensitivity advantages insuperfluid gyroscope was further improvedd.
     To develop the technology of stable driving superfluid and dynamic compensation of phasedifference, the numerical computation and analysis of superfluid thermo-dynamics was carried out inthis dissertation. Based on superfluid two-component model, unsteady convection and transient heatdiffusion driven by the potential difference in superfluid tube were numerical simulated. Respondingtimes of superfluid in straight tube and circus tube, in which the thermo-dynamic motion reachssteady status, were obtained by numerical simulations. Analysis showed that the potentialdifference-driven convection is the dominant mechanism of the dynamic response of superfluid. Therelationship between responding time and the characteristics of potential difference wave propagationincluding the speed of superfluid sound and the length of tube was explored and presented. The valuesof responding times of the superfluid gyroscope under dynamic input were obtained for the first time,which is a key characteristic parameter to analyse the dynamic performance of gyroscope.
     At last, a set of superfluid gyro-scope performance model, including stable thermodynamic drivingmodule, dynamic phase compensation system, angular velocity detection technology, lag correctionmodule was established. The simulation analysis of a superfluid gyro performance was carried out.The results showed that the newly proposed superfluid matter wave interference gyroscope designwas effective and feasiblewith, which is based on above research works in calculating of the variableangular velocity, enlarging the range of angular velocity detection, steadily heat driving andcompensation, and handling the response time lag..
     Closely linked to the demand of developing the new superfluid gyroscope theory, a thorough andsystematic research on4He superfluid matter-waves interference gyroscope has carried out in thisdissertation. Achievements of the study will be valuable reference to form the new superfluidgyroscope theory and promote the superfluid gyroscope technique.
引文
[1]刘建业,曾庆化,赵伟,熊智.导航系统理论与应用.西安:西北工业大学出版社,2009
    [2]张炎华,王立端等,惯性导航技术的新进展及发展趋势,中国造船,2008,49(183):134-144.
    [3] Xu Qiang, The Current Status and Development Trends of Inertial Technology in China,2010InternationalSymposium on Inertial Technology and Navigation, Nanjing.
    [4]秦永元,国际惯性器件发展现状和趋势,航空制造技术,2008,(09).
    [5]祝彬,郑娟,美国惯性导航与制导技术的新发展,中国航天,2008,(01):43-45.
    [6]刘俊,石云波,李杰,微惯性技术,电子工业出版社,2005
    [7] Andrei M. Shkel,Type I and Type II Micromachined Vibratory Gyroscopes,IEEE,2006,586~593
    [8]刘建业,谢证,冯铭瑜等,超流体陀螺仪的发展概况与研究进展,航空学报,2012,33(1):1-10
    [9]谢证,刘建业,赖际舟,基于低温物理效应的新型超高精度陀螺仪研究综述.中国惯性技术学报,2007,15(5):606~611.
    [10]曾庆化,刘建业,赖际舟,熊智.环形激光陀螺的最新发展,传感器技术,2004,23(11):1-4
    [11] V. Vali, R. W. Shorthill. Fiber ring interferometer. Applied Optics,1976,15:1099-1100
    [12] C. H. Rowe, U. K. Schreiber, et al. Design and Operation of a Very Large Ring Laser Gyroscope. Applied Optics,1999,38(12):2516-2523.
    [13] Sanders, Glen A, et al. Fiber optic gyros for space, marine, and aviation applications. Fiber Optic Gyros:20thAnniversary Conference:61-71.
    [14] Sabat S;LGiribabu N;Nayak J, Characterization of Fiber, Optics Gyro and Noise Compensation Using DiscreteWavelet Transform,2009
    [15]谭健荣,刘永智,黄琳,光纤陀螺的发展现状,激光技术,2006,30(5):544-547
    [16] S.J. Sanders, L.K. Strandjord, et al. Fiber Optic Gyro Technology Trends-a Honeywell perspective,Optical FiberSensors Conference Technical Digest,2002,15:5-8.
    [17]崔峰,陈文元,苏宇锋等,悬浮转子式微机械陀螺仪的研究进展,压电与声光,2005,27(3):243-253
    [18]秦奎,张卫平,陈文元,MEMS流体陀螺的研究进展,现代电子技术,2010,10:172-174
    [19] Richard Packard. Principles of Superfluid-helium gyroscops. Physical Review B,1992,46(6):3540-3549.
    [20]祝彬,郑娟,美国惯性导航与制导技术的新发展,中国航天,2008,(01):43-45.
    [21] Clauser J.F., Ultra high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry,Physica,1988,151:262-272.
    [22]谢征,刘建业,赖际舟,基于低温物理效应的新型超高精度陀螺仪研究综述.中国惯性技术学报,2007,15(5):606-611.
    [23]曾谨言,量子力学,北京:科学出版社,2000.
    [24] Journal papers: J. C. Davis and R. E. Packard, Superfluid3He Josephson weak links, Reviews of Modern Physics,July2002,74(3):741–773.
    [25]F. E. Zimmer,M. Fleischhauer,Quantum sensitivity limit of a Sagnac hybrid interferometer based on slow-lightpropagation in ultracold gases,Physical Review,vol.063609,2006,1-11
    [26]Anderson M.H.,Observation of Bose-Einstein condensation in a dilute atomic vapor,sience,Vol.269,1995,198-201
    [27]B. Dubetsky, M. A. Kasevich,Atom interferometer as a selective sensor of rotation or gravity,Physical ReviewLetters,Vol.74,2006,023615.1-023615.17
    [28] T. L. Gustavson, A. Landragin, M. A. Kasevich. Rotation Sensing with a Dual Atom Interferometer SagnacGyroscope. Class. Quantum Gravity,2000,17:2385-2398.
    [29] Suda, M, et al. New intensity and visibility aspects of a double-loop neutron interferometer. Journal of Optics B,2004,6(7):345-350
    [30] F. Hasselbach, M. Nicklaus. Phys. Rev. A,1993,48:143.
    [31] Richard Packard. Principles of Superfluid-helium gyroscops. Physical Review B,1992,46(6):3540-3549.
    [32] Kishore T. Kapale, Leo D. Didomenico2, Hwang Lee, et al., quantum interferometric sesors, Concepts of Physics,2005,2:225-240
    [33] F. Leduc, B. Canuel, D. Hnlleville, J. Fils,et al,First inertial measurements with a cold atom gyroscope,QuantumElectronics Conference,2004.(IQEC):1134-1135.
    [34] Clauser J.F.,Ultra high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry,Physica,Vol.151,1988,262-272.
    [35] T L Gustavson, A Landragin, M. A. Kasevich,Rotation sensing with a dual atom-interferometer Sagnac gyroscope,Class. Quantum Grav., Vol.17,2000,2385-2398
    [36] Hoskinson E., Packard R.E., Haard T.M., Quantum whistling in superfluid helium-4. Nature,2005,443(7024):376.
    [37]Hoskinson Emile, Sato Yuki, Packard Richard. Superfluid4He interferometer operating near2K. Physical ReviewB,2006,74(10):100509.1-100509.8.
    [38] Yuki Sato. Fiske-amplified superfluid interferometry. Physical review B,2010,81(17):172502.1-172502.4
    [39] Yuki Sato, Experiments using4He weak links [Ph.D thesis]. Berkeley: Univ. of California,2007.
    [40] Clauser J. F. Ultra high sensitivity accelerometers and gyroscopes using neutral atom matter wave interferometry.Physica B,1988,151:262.
    [41]C. Jentsch, T. Muller, E. M. Rasel, and W. Ertmer,HYPER: A Satellite Mission in Fundamental Physics Based onHigh Precision Atom Interferometry,General Relativity and Gravitation,2004,Vol.36(No.10),2197-2221
    [42]秦永元,游金川,赵长山.利用原子干涉仪实现高精度惯性测量.中国惯性技术学报,2008,16(2):244-248
    [43] Nan Yu, Kohel J M, Kellogg J R, et al. Development of an atom-interferometer gravity gradiometer for gravitymeasurementfrom space. Appl. Phys. B,2006,84:647-652.
    [44]Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry[J]. Phys. Rev. Lett,2006,97(1):010402
    [45] K. W. Murch, et al. Dispersion management using betatron resonances in an ultracold-atom storage ring. Phys.Rev. Lett.2006,96:013202
    [46] Wu S, Su E, Prentiss M. Demonstration of an area-enclosing guided-atom interferometer for rotation sensing.Phys. Rev. Lett.2007,99:173201
    [47] FANG Jian-cheng, QIN Jie, The Recent Progresses on Atomic Gyroscope, International Symposium on InertialTechnology and Navigation,2010:36-47.
    [48] T. Kovachy. J. M. Hogan, D. M. S. Johnson, et al.," Optical Lattices as Waveguides and Beam Splitters for AtomInterferometry: An Analytical Treatment and Proposal of Applications",2010, arXiv:0910.3435v2,
    [49] Saijun Wu, E. Su, M. Prentiss,“Demonstration of an Area-Enclosing Guided-Atom Interferometer for RotationSensing”,Phys. Rev. Lett,2007,99:173201
    [50] S. Narayana, Y. Sato. Superfluid Quantum Interference in Multiple-Turn Reciprocal Geometry, Physical ReviewLetters,2011,106(6):255301-1~255301-4.
    [51] Yuki Sato. Fiske-amplified superfluid interferometry. Physical review B,2010,81(17):172502.1-172502.4
    [52] Talso Chui and Konstantin Penanen, Frequency-dependent hydrodynamic inductance and the determination of thethermal and quantum noise of a superfluid gyroscope,PHYSICAL REVIEW B,2005,71(13):1325091-4.
    [53]萧如珀,杨信男,1938年1月:超流体的发现(译自APS News,2006年1月).现代物理知识,2007,19(1):59-60.
    [54]陈煜,He II传输参数特性与HeII获取研究[Ph.D thesis],上海交通大学,2007.
    [55] S. Stringari. Superfluid Gyroscope with Cold Atomic Gases. Physics Review Letters,2001,86(21):4725-4728.
    [56] Davis J.C., Packard R.E.,Superfluid He-3Josephson weak links,Rev. Of. Mod. Phys.,2002,74:741-773.
    [57] E.Hoskinson, Y.Sato, R. E. Packard et al. Transition from phase slips to the Josephson effect in a superfluid4Heweak link[J]. Nature Physics,2006,2(1):23~26.
    [58]张敏,王如竹,空间低温技术的新进展,低温工程,2000,114(2),1-6
    [59]李式模,黄忠平,空间低温技术的进展,真空与低温,1998,4(4):231-238
    [60]刘立强,低温技术在大型超导磁体中的应用,低温工程,2002,129(5),45-48
    [61]张闯,粒子加速器的回顾与展望,核科学与工程,2001,21(1),39-4
    [62]李家才,高能加速器中的低温超导技术,现代物理知识,1998,1,26
    [63]何景棠,高能加速器近期的几个大工程,现代物理知识,2001,13(6),23-25
    [64]张闯,科研上国际合作的典型-欧洲核子研究中心简介,科学中国人,1996,12,26-28
    [65]陈煜,郑青榕,汪荣顺等,几种获取1.8K超流氦方案的对比分析,上海交通大学学报,2005,39(2)::234-237
    [66]张鹏,王如竹,村上正秀,超流氦浴中的热波传热研究,物理学报,2002,15(6):1350-1354
    [67]杜宏鹏,百瓦量级2K超流氦制冷系统的动态仿真和实验研究[Ph.D thesis],哈尔滨工业大学,2008.
    [68]杜宏鹏,王莉,杨光达,超流氦制冷系统2K冷却级热力分析,低温技术,2006,34(4),271-275
    [69]林理和,关于超流氦传热研究的几个问题,低温与超导,1984,3:1-12
    [70]黄永华,氦_3状态方程及热物理性质研究[Ph.D thesis],浙江大学,2006.
    [71]沈漪,蒋宁,余建平,超临界氦的储存及排放,低温工程,2001,122(4),48-53
    [72]成安义,张启勇,夏根海,超流氦低温系统发展及涡轮冷压缩机的应用,低温工程,2011,182(4),37-40
    [73] J. C. Davis and R. E. Packard, The Superfluid Helium Gyroscope: An Emerging Technology for Earth RotationStudies, Proc. of the AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change,1991,137:49
    [74] A. Amar, Y. Sasaki, J. C. Davis and R.E. Packard, Quantized Phase Slips in Superfluid4He, Phys. Rev. Letters,1992,68(17):2624-2627
    [75] E. Hodby, S. A. Hopkins, G. Hechenblaikner et al. Experimental Observation of a Superfluid Gyroscope in aDilute Bose-Einstein Condensate. Physics Review Letters,2003,91(9):090303.1-090303.4.
    [76] David W Hallwood, Keith Burnett, Jacob Dunningham, Macroscopic superpositions of superfluid flows, NewJournal of Physics,2006,8(180):1-8.
    [77] O. Avenel, Josephson Effect and Quantum Phase Slippage in Superfluids, Physical Review Letters,1998,60(5):416-419.
    [78] O. Avenel, Yu. Mukharsky, and E. Varoquaux, Superfluid Gyrometers, Journal of Low Temperature Physics,2004,135(5):745-722.
    [79] Bruckner N., Packard R. J. Of Appl. Phys.2003,93(3):1798-1805
    [80] N. Bruckner, Richard Packard, Detection of absolute rotation using superfluid4He. Low Temp. Phys.,1998,24(2):102-104.
    [81] Richard Packard, The role of the Josephson-Anderson equation in superfluid helium.Reviews of Modern Physics,1998,70(2):641-651.
    [82] Niels Brucknera, Richard Packard, Large area multiturn superfluid phase slip gyroscope. Journal of AppliedPhysics,2003,93(3):1798-1805.
    [83] Y. Sato, A. Joshi, and R. Packard, Direct Measurement of Quantum Phase Gradients in Superfluid4He Flow,Physical Review Letters,2007,98:195302.1-195302.3.
    [84] Simmonds R.W., Marchenkov A., Hoskinson E., et al, NATURE,2001,412(6842):55-58
    [85] Y Sato and R E Packard, Superfluid helium quantum interference devices: physics and applications. REPORTSON PROGRESS IN PHYSICS,75:016401.1-016401.27
    [86] Talso Chui,Warren Holmes, and Konstantin Penanen, D Fluctuations of the Phase Difference across an Array ofJosephson Junctions in Superfluid4He near the Lambda Transition, Physical Review Letters,2003,90(8):085301.1-085301.4.
    [87] A. I. Golovashkin, et al. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: Therole of quantum fluctuations, Journal of Experimental and Theoretical Physics,2010,111(2):332-339.
    [88] A. I. Golovashkin, et al. Scheme of laboratory measurements of gravimagnetic effects with SHeQUID equippedwith a rotation flux transformer, Gravitation and Comology,2010,16(1):78-84.
    [89] Richard Packard, Berkeley Experiments on Superfluid Macroscopic Quantum Effects, AIP Conf. Proc.2006,850(3):3-17
    [90](美)物理学评述委员会,90年代物理学_凝聚态物理学,北京:科学出版社,1994
    [91]冯端,金国钧著,凝聚态物理学(上卷),北京:高等教育出版社,2003
    [92] Cornell E.A., Wleman C. E., Bose-Einstein Condensation, Science,1998,6:l-6.
    [93]成传明,龚利,乔安钦,玻色-爱因斯坦凝聚(BEC)探讨,大众科技,2008,101:158-166.
    [94] Emile Michael Hoskinson, Superfluid4He weak links [Ph.D thesis]. Berkeley: Univ. of California,2005.
    [95] D. R. Tilley and J. Tilley. Superfluidity and Superconductivity. Institute of Physics B,2010,81(17):172502-1~172502-4
    [96] K. Schwab, N. Brukner and R. Packard, Detection of absolute rotation using superfluid4He,Low Temp. Phys.,1998,24(2):102-104.
    [97](意)巴罗尼(Barone,A.),(意)帕特诺(Paterno,G.)著,约瑟夫森效应原理和应用,北京:中国计量出版社,1988.
    [98] Bruckner N, Packard R, An aperture array oscillator in superfluid He-4,Physica B,2000,284,81-82.
    [99] Bruckner N and R. Packard, Studies of a diaphragm-aperture array oscillator in superfluid4He, Proceedings of the22d International Conference on Low Temperature Physics, LT22, August1999.
    [100] Y. Mukharsky, O. Avenel, and E. Varoquaux. Rotation measurements with a superfluid3He gyrometer, Physica B,2000:287–288.
    [101] R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis, and R. E. Packard.Quantum interference ofsuperfluid3He, Nature,(2001),412:55–58.
    [102] P. W. Anderson. Considerations on the flow of superfluid helium. Rev. Mod. Phys.,1966,38:298.
    [103] R.E.Packard, Phase Slips and Josephson Weak Links in Superfluid Helium, Journal of Low TemperaturePhysics,2004,135:5-6
    [104] E. Hoskinson, Y. Sato, I. Hahn and R. E. Packard, Transition from phase slips to the Josephson effect in asuperfluid4He weak link,Nature Physics,2006,2(1):23-26
    [105] K. Schwab, N. Bruckner and R.E. Packard, The superfluid4He analog of the rf-SQUID,J. Of Low Temp. Phys.,1998,110:1043-1104
    [106] Y. Sato, R. Packard, On detecting absolute quantum mechanical phase differences with superfluidinterferometers,Physica E,2011,43(3):702-706.
    [107] Y. Sato and R. Packard, DC-SQUID based neodymium magnet displacement sensor for superfluid experiments,Review of Scientific Instruments,2009,80:055102-1~055102-5.
    [108] Y. Sato, E. Hoskinson, and R. E. Packard. Transition from synchronous to asynchronous superfluid phaseslippage in an aperture array, Phys. Rev. B,2006,74:144502
    [109] E. Hoskinson and R. E. Packard, A Chemical Potential “Battery” for Superfluid4He Weak Links, AIP Conf.Proc.2006,850:117-118.
    [110]E. Hoskinson, R. E. Packard, Thermally Driven Josephson Oscillations in Superfluid4He, Physical ReviewLetters,2005,94:155303
    [111]宋宝璋,赵伟,谢征等.新型低温哨音超流体陀螺模型.应用科学学报,2009,3(27):321~325.
    [112] Rueeoll J,Donnelly,Carlo F.Barenghi,The Observed Properties of Liquid Helium at the Saturated VaporPressure,American Institute of Physics and American Chemical Socoety,1998,12:1217~1274
    [113]谢征,刘建业,赵伟等,双弱连接结构的高精度超流体陀螺的量程分析,中国惯性技术学报,2011,19(1):11–15.
    [114] Sato Y, Aditya J,Packard R.Flux locking a superfluid interferometer.Applied Physics Letters,2007,91(7):1~3.
    [115] Xie Zheng, Liu Jianye, Zhao Wei et al.,The Exploratory Research of a Novel Gyroscope Based on SuperfluidJosephson Effect, IEEE PLANS2010Conference, USA.
    [116] Yuki Sato, Aditya Joshi, and Richard Packard, Superfluid4He Quantum Interference Grating, PHYSICALREVIEW LETTERS,2008,101:085302.1-085302.4
    [117]R. De Luca, T. Di Matteo, A. Tuohimaa, J. Paasi,Quantum interference in parallel Josephson junction arrays: aperturbative analysis for finite inductances, Phys. Lett. A, vol.245, pp.301–306,1998
    [118]J. T. Jeng, K. H. Huang, C. H. Wu, et al, Characteristics of the Superconducting-Quantum-Interference-GratingMagnetometer Consisting of Grain-Boundary Josephson Junctions, IEEE TRANSACTIONS ON APPLIEDSUPERCONDUCTIVITY,2007,17(2):691-694
    [119]L. D. Landau and E. M. Lifshitz. Fluid Mechanics, vol.6(Pergamon Press2nd ed. July).1987
    [120]D. R. Tilley and J. Tilley. Superfluidity and Superconductivity,3rd ed.(IOP, New York).1990
    [121]张鹏,王如竹,村上正秀,超流氦浴中的热波传热研究,物理学报,2002,51(06):1350-1354
    [122]M. Dingus, F. Zhong, and H. Meyer, Thermal Transport Properties in Helium near the Superfluid Transition. I.4He in the Normal Phase, Journal of Low Temperature Physics,1986, Vol.65, No.3
    [123]W. Y. Tam and Guenter Ahlers, Thermal conductivity of He I from near Tl to3.6K and vapor pressure to30bars,PHYSICAL REVIEW B,1985, Vol.32, No.9
    [124]宗有泰,钱幼能,周鸿贵超,流HeII中的第一声、第二声和第四声声速的测量,物理学报,1980, Vol.29, No.11
    [125]Partial Differential Equation Toolbox User’s Guide (Version1), The MathWorks, Inc., July2002Online only
    [126]梁德旺,王可,AUSM+格式的改进,空气动力学学报,2004,Vol.22(04):404-409
    [127]金君,梁德旺,黄国平,雷雨冰,NAPA软件的并行化研究和效率分析,南京航空航天大学学报,2006,Vol.38(04):
    [128]P. B. Welander and I. Hahn, Miniature high-resolution thermometer for low-temperature applications, Rev. Sci.Instrum.,2001,72(9):3600–3604
    [129] Rueeoll J,Donnelly,Carlo F.Barenghi,The Observed Properties of Liquid Helium at the Saturated VaporPressure,American Institute of Physics and American Chemical Socoety,1998,12:1217~1274
    [130]刘迪吉.航空电机学.北京:航空工业出版社,1992:74-75.
    [131]胡寿松.自动控制原理.北京:科学出版社,2001:226-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700