用户名: 密码: 验证码:
箔条干扰的特性与雷达抗箔条技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
箔条是历史最为悠久的无源干扰物之一,在防空、反舰和反导等领域中均有着广泛应用。箔条干扰技术和战术的发展对雷达的作战性能提出了很大挑战,雷达要适应复杂战场电磁环境,迫切需要了解箔条干扰和待探测目标的特性,提出相应的抗箔条干扰的新机理、新方法和新技术。在此背景下,论文对箔条干扰的运动扩散特性和雷达回波特性进行了深入分析,并以地基防御雷达和反舰导弹雷达导引头为例,深入研究了雷达抗箔条干扰的新方法。
     本文的研究工作分为两个层次:第一层次为箔条云的特性研究,主要包括运动扩散特性和雷达回波特性两方面。在箔条云运动扩散特性方面,对稠密大气和稀薄大气中单根箔条的受力及运动形式、箔条云的扩散模型进行了研究,重点对稀薄气体中单根箔条的动力学特性进行了分析,提出了基于DSMC(直接仿真Monte-Carlo)的箔条云飞行扩散仿真模拟方法,给出了一系列的箔条云飞行扩散的仿真结果,导出了稀薄气体中箔条云质心的运动方程和箔条位置分布的表达式;在箔条云雷达回波特性方面,建立了在简单脉冲、窄带LFM信号、宽带LFM信号三种不同波形激励下箔条云的雷达回波模型,然后对箔条云雷达回波的一阶统计特性和二阶统计特性进行了研究。一阶统计特性方面,给出了不同空间取向箔条云的平均RCS,首次得到了箔条云的极化特性近似与长度无关的结论,给出了箔条云极化协方差矩阵的表达式。二阶统计特性方面,首次导出了螺旋下降箔条云全极化相关矩阵和功率谱矩阵的表达式。本部分研究为后续的抗箔条方法研究提供了理论支撑。
     第二个层次为雷达抗箔条技术方面。以地基导弹防御雷达和反舰导弹雷达导引头为例,分别研究了其抗箔条的新方法。对地基防御雷达,首先就中段整个飞行过程中箔条干扰回波的演化规律进行了分析,针对现有信号处理算法的不足,提出了适用于箔条云群目标的信号处理算法:根据结构特征将检测到的雷达目标分为杂波区和孤立强散射点,进行不同的后续处理,对杂波区,提出了杂波区的测量跟踪算法;就极化信息的利用,提出了一种基于线极化基变换最小极化比的目标识别方法,可以提高对箔条和旋转对称目标的识别性能。针对箔条云和雷达目标的距离—速度分布差异,提出了一种基于相参LFM脉冲串进行距离—多普勒分析的抗箔条干扰方法:提出了运动补偿的算法,克服了中段目标高速运动带来的距离走动;分析了两种不同抛撒方式形成的箔条云的距离—多普勒特性,对距离—多普勒域箔条和弹头可分辨和不可分辨情况下的抗箔条效果进行了仿真,仿真结果证明本方法能够提高雷达回波的信杂比,增强雷达的分辨能力。对反舰导弹雷达导引头,介绍了舰船防护中箔条干扰的作战使用方式,分析了箔条对反舰导弹的干扰效果。研究了箔条干扰和舰船目标的极化特性差异,首次推导出箔条云极化角的统计特性。在此基础上针对箔条干扰和舰船目标能够分辨开和不能分辨开的两种情况,分别提出了基于极化识别和基于极化对比增强的抗箔条干扰方法,利用仿真和外场试验数据对抗箔条干扰效果进行了验证,证明了两种方法的有效性。
Chaff is one of the most historical passive jammings, which is widely used in the fields of air-denfense, anti-ship and anti-missile. The battle performance of radar has been serously decreased by the development of chaff jamming technology and tactics. In order to adapt to complicated battle-field electromagnetic environment, radar urgently need to explore chaff jamming and radar targets’characteristics and propose new anti-chaff methods and technology. According to this, the motion and diffusion characteristics and radar scattering characteristics of chaff cloud are studied in this thesis. Based on the characteristics difference between chaff and target, new anti-chaff methods are proposed respectively for ground-based missile defense radar and radar seeker carried on anti-ship missile.
     The work of this thesis includes two levels:
     The first level is the study on characteristics of chaff jamming. Characteristics of chaff jamming include two aspects, which are the motion and diffusion characteristics and the radar scattering characteristics of chaff cloud. On the motion and diffusion characteristics of chaff cloud, the force and motion manner of single chaff and the diffusion of the whole chaff cloud are studied for dense atmosphere and rare atmosphere. The kinetic characteristics of single chaff in rare gas are derived with emphasis. The DSMC (direct simulation Monter-Carlo) method to simulate the flying of chaff cloud is proposed. Using this method a series of simulation results are gained and presented. The motion formulas of the chaff cloud’s mass center and the formulas of chaffs’position distribution in rare gas are derived. On the radar scattering characteristics of chaff cloud, the chaff cloud’s radar scattering models are built respectively for signals of simple pulse, narrow-band LFM signal form, wide-band LFM signal form. Then the first-order and second-order statistic characteristics of chaff cloud’s radar scattering are studied. In aspect of the first-order statistic characteristics, the accurate formula of chaff cloud’s average RCS is derived for uniform oriented chaff cloud, and the curves are presented for norm oriented chaff cloud, which describe chaff cloud’s average RCS varying with the elevation in different polarimetric channels. It is concluded for the first time that the chaff cloud’s polarimetric characteristics are independed on chaff’s length, and the formula of polarimetric coviance matrix is presented. At last the second-order statistic characteristics are investigated. The chaff cloud’s correlation matrix and power spectra matrix are derived based on the newest spiral descending model of chaff. The research results in this level provide the following level with theory basis, in which new anti-chaff methods are studied.
     In the second level, new anti-chaff methods for MD (missile defense) radar and radar seeker carried on anti-ship missile are studied. For the MD radar, the shortage of current signal process algorithm is pointed out. A new signal processing algorithm is proposed which is suitable for chaff cloud group targets. According to structure characteristcs, the detected radar targets are classified into isolated strong scattering point and continuous clutter area. Different following signal process is choosed according to target type. A measure and track algorithm is proposed for continuous clutter area. A recognization method based on the minimized polar ratio in linear polarization transform is proposed. The method can improve the recognization performance of rotation sysmetrial targets and chaff cloud. Then a new anti-chaff method using range-doppler analysis with coherent LFM pulse series is proposed. A moving compensation algorithm is proposed which can overcome the range ambulate. The range-doppler characteristics of two type chaff clouds formed in different ways are investigated. At last, it is proved through simulation that this method can improve SCR and enhance the resolve ability of radar. The detection performance of strong scattering point target in chaff cloud is improved through this method. For Radar seeker, the using manners of chaff in ship self-defense battle are introduced. The interference effect of chaff on anti-ship missile is analyzed. The polarimetric characteristics difference between chaff jamming and ship target is studied, and the statistics characteristics of chaff cloud’s polar angle is derived at first time. Based on the above, an anti-chaff algorithm based on polarization reorganization is proposed for situation that chaff cloud and ship can be solved, and an anti-chaff algorithm based on polarization contrast enhancement is proposed for situation that chaff cloud and ship can’t be solved. The anti-chaff performance of those algorithms is proved to be good by simulation and real data.
引文
[1]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社, 2003.
    [2]陈静.雷达箔条干扰原理[M].北京:国防工业出版社, 2007
    [3]付伟.箔条干扰原理及技术[J].火控雷达技术, 2002, 31(3): 5-9&22
    [4]候振宁.箔条干扰技术研究[J].舰船电子对抗, 2002, 25(4): 7-10
    [5]陈静.干扰走廊的功能与雷达体制无关[J].光电技术应用, 2005, 20(8): 38-42
    [6]卢景双,胡松,周瑞.箔条走廊对MTI雷达的干扰效能研究[J].舰船电子对抗. 2009, 32(4): 31-33
    [7]孙伟通,姜峰.无源干扰走廊研究[J].光电技术应用, 2005, 20 (6): 28-31.
    [8]胡松,卢景双,李彦志.箔条走廊掩护飞机编队突防作战效能评估[J].舰船电子对抗, 2008, 31(5): 20-23
    [9]才干,张科,李言俊.干扰走廊战术使用[J].火力与指挥控制, 2008, 33(7): 44-47
    [10]李敬.箔条弹干扰原理与形成机理[J].舰船电子对抗, 2003, 26(3): 15-19
    [11]贺珍,龙笔虎.反舰导弹末制导雷达与箔条干扰武器对抗技术的发展[J].舰船电子工程. 1999, 19(6): 47-50.
    [12]张土根.世界舰船电子战系统手册[M].北京:科学出版社, 2000.
    [13]潘光友,汤大荣.提高舰载箔条干扰效果的措施研究[J].舰船电子工程. 2005, 25(6): 136-139.
    [14]邢昌风,黄泽汉.冲淡干扰布设方法研究[J].舰船电子对抗. 2005, 28(4): 35-38.
    [15]韩伟,肖昌达.冲淡干扰使用方法[J].舰船电子对抗. 2008, 31(1): 47-49.
    [16]高东华,王澍初.箔条质心干扰发射机动决策仿真研究.舰船科学技术. 2003, 25(5): 63-65
    [17]陆伟宁主编.弹道导弹攻防对抗技术[M].北京:中国宇航出版社, 2007
    [18]黄培康,张志德.外层箔条云团再入时的雷达抗干扰分析.系统工程与电子技术, 1982, (4): 21-32
    [19]崔屹.国外机载电子对抗设备手册.北京:航空工业出版社, 1989
    [20] Kukainis J., Separation Characteristics of the ALE-38 Chaff Dispenser from the F-4C and F-4E Aircraft[J]. AD900189, June 1972.
    [21] Puskar R. J, Radar Reflector Studies[J]. Prod. of IEEE 1974 National Aerospace and Electronics Conference, May, 1974: 177-183.
    [22] Brunk J., D. Mihora, P. Jaffe, Chaff Aerodynamics[A]. Alpha Research, Inc., report AFAL-TR-75-81 for Air Force Avionics Laboratory, Nov. 1975.
    [23] Sherman W. Marcus. Electromagnetic Wave Propagation Through Chaff Clouds[J]. IEEE Trans on AES, 2007, 55(7): 2032-2042
    [24]陈静.毫米波箔条快速散开技术研究.电子对抗技术, 1992, (6): 41-47
    [25]杨学斌.箔条云团的扩散模型与回波功率.博士学位论文[D].北京:北京航空航天大学
    [26]干扰物智能投放技术总结报告,东北电子技术研究所, 2006.6
    [27] Wu Xianli, Qi Zizhong, Long Teng. Research on application of chaff[C]. IEEE the 8th International Conference of Signal Processing, 2006
    [28]才干.机载无源干扰战术应用研究[D].西北工业大学硕士学位论文, 2007.2
    [29]蔡万勇,李侠,万山虎,王中杰.大气环境下箔条运动轨迹及箔条幕扩散模型[J].系统工程与电子技术, 2009,31(3): 565-569
    [30]李志辉.箔条云跨流区飘落飞行模拟方法研究[J].气体物理-理论与应用, 2008, 3(2): 123-130
    [31]李志辉,王鹿受.箔条云整体运动性能建模研究[J].系统仿真学报, 2009, 21(4): 928-931&935
    [32] Bloch, F., M. Hamermesh, M. Phillops. Return Cross Sections from Random Oriented Resonant Half-Wave Length Chaff [A]. Harvard University, Radio Research Laboratory, Technical Memorandum, 411-TM-127, June 19, 1944.
    [33] Mack C. L, and B. Reiffen. RF Characteristics of Thin Dipoles [J], Proc. IEEE, Vol. 52, No.5: 533-542.
    [34] Borison S. L., Probability Density for the Radar Cross Section of One or More Randomly-Oriented Dipoles[A]. Group Report 1964-33, 22 June 1964, MIT Lincoln Laboratory.
    [35] Borison S. L., Statistics of the Radar Cross Section of a Volume of Chaff[A]. Group Report 1965-10, 10 February 1965, MIT Lincoln Laboratory.
    [36] R. G. Wickliff, Robert J. Garbacz, The Average Backscattering Cross Section of Clouds of Randomized Resonant Dipoles[J], IEEE Trans on AP, 1974, 22(5): 503-505.
    [37] Diggs J. F., Cross Section Studies of X-Band Chaff[A]. AD505385L, October 1960
    [38] Prskar R. J., Chaff Cloud RCS Studies and Measurements Using a High Resolution Radar[A]. ADB0072521, July, 1975.
    [39] [苏]C.A.瓦金,Л.H.舒斯托夫.无线电干扰和无线电技术侦察基础.北京:科学出版社, 1977.
    [40] Siegert A. J. F., On the Fluctuations in Signals Returned by Many Independently Moving Scatters[A]. MIT Radiation Laboratory Report 465, Nov. 12, 1943.
    [41] Childers D. G., I. S. Reed, A Model for the Power Spectrum of Returned Echoedfrom a Random Collection of Moving Scatterings[A]. University of Southern California School of Engineering Report 102, Dec. 1963.
    [42] Wong J. L., I. S. Reed, Z. A. Kaprielian, A Model for the Radar Echo from a Random Collection of Rotating Dipole Scatters[J]. IEEE Trans on AES, Vol. AES-3, No.2: 171-178.
    [43] Seltzer J. E., The Statistics of the Chaff Return to a Moving Pulse Radar Altimeter[A]. Harry Diamond Laboratory report R240-69-3, March 14, 1969.
    [44] Seltzer J. E., Response of Airborne-Short Pulse Radar to Chaff[A]. AD744776, April 1972.
    [45] Wilmot J. E., Robert H. F., Claud C. P., Spectral Characteristics of Radar Echoes From Aircraft Dispensed Chaff[J]. IEEE Trans. On AES, Vol. AES-21, No.7: 8-19.
    [46] Sherman W. Marcus. Dynamics and radar cross section density of chaff clouds[J]. IEEE Trans on AES, 2004, 40(1): 93-102
    [47]吴振森,张龚.非均匀分布的箔条云团的RCS[J].光电对抗与无源干扰, 1996(2): 38-44.
    [48]孙国祯.舰载箔条弹反导弹的雷达反射截面积极限值[J].光电对抗与无源干扰, 1996(3): 1-7.
    [49]谢俊好.任意收发极化的箔条云双基地雷达截面积[J].光电对抗与无源干扰, 1996(3): 8-11.
    [50]王雪松,周颖,张义荣等.偶极子云团的非相干极化散射特性研究[J].电波科学学报, 2000, 15(3): 289-293
    [51]王雪松,赫晓峰,周颖等.自由空间中偶极子云团极化散射特性研究:相干散射模型[J].电波科学学报.2001, 16 (1): 66-77.
    [52]李永祯,王雪松,肖顺平.自由空间中箔条云团极化散射统计特性的研究[J].电波科学学报. 2004(06): 649-653.
    [53]高烽.多普勒雷达导引头信号处理技术[M].北京:国防工业出版社, 2001.3
    [54]保铮,刑孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.4
    [55]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社, 1999.
    [56]尚炜,陈伯孝,蒋丽凤.基于频谱展宽效应的一种抗箔条方法[J].制导与引信. 2006, 27(3): 5-9.
    [57]刘世敏.箔条干扰的特征及其实测数据分析[D].硕士论文,西安:西安电子科技大学, 2009.1
    [58]李为民,石志广,付强.舰船目标与舷外干扰的电磁特征分析与鉴别方法研究[J].湖南科技大学学报(自然科学版), 2004, 19(4): 69-73
    [59]汤广富.末制导反舰雷达导引头抗无源干扰信号处理技术研究[D].博士学位论文.长沙:国防科学技术大学研究生院
    [60] Guangfu Tang, Ke Zhao, Hongzhong Zhao,et al. A novel discrimination method of ship and chaff based on sparseness for naval radar [J]. 2008 IEEE Radar Conference, 2008, Roma, Italy: 1-4
    [61]沈允春,谢俊好,刘庆普.识别箔条云新方案[J].系统工程与电子技术, 1995,17(4):60-63
    [62]刘庆普,沈允春.箔条云极化识别方案性能分析[J].系统工程与电子技术. 1996, 18(11):1-7
    [63] Xianhe Shao, Hai Du, Jinghong Xue. Theoretical analysis of polarization rec-ognition between chaff cloud and ship[C]//. IEEE International workshop onAnti-Counterfeiting, Security and Identification, 2007, Xiamen China: 125-129
    [64] Xianhe Shao, Hai Du, Jinghong Xue. A new method of ship and chaff pol-arization recognition under rain and snow cluster [C]//.IEEE International workshop on Anti-Counterfeiting, Security and Identification, 2007, Xiamen China: 142-147
    [65] Xianhe, Shao; Hai, Du; Jinghong, Xue. A target recognition method based on non-linear polarization transformation[C]//IEEE International workshop onAnti-Counterfeiting, Security and Identification, 2007, Xiamen China: 157-163
    [66] Xianhe, Shao; Hai, Du; Jinghong, Xue. A recognition method depended on enlarge the difference between target and chaff[C]// 2007 International Conference on Microwave and Millimeter Wave Technology, 2007, Guilin, China: 266-269
    [67]贾鑫,郭桂蓉.反舰导弹末制导雷达抗箔干扰的一种方法[J].舰船电子对抗, 1998, (3):21-23.
    [68]李伟,贾惠波,顾启泰.识别箔条干扰的一种实用方法[J].现代雷达, 2000, 22(3): 35-38&43
    [69]莫锦军,袁乃昌.箔条云频谱展宽对雷达MTI功能的影响[J].航天电子对抗, 2001,(6): 12-14
    [70] J. M. Madewell. Miligating the effects of chaff in ballistic missile defense. 2003, IEEE Proceeding, 19-23
    [71] Ilkka Ellonen, Arto Kaarna. Chaff clutter filtering from radar data with discrete wavelet transform. 2008 IEEE radar confenrence,Rome,Italy: 1-6
    [72]冯有前,张善文,宋国乡.箔条干扰下的一种雷达目标小波识别方法[J].西安电子科技大学学报, 2003, 30(3): 345-348
    [73]舒欣,沈福民.时频分析技术在抑制箔条干扰中的应用[J].西安电子科技大学学报, 2001, 28(5): 676-680
    [74] G. A. Ioannidis, D. E. Hammers. Optimum antenna polarizations for target discrimination in clutter[J]. IEEE trans. on antennas and propagaton, 1979, 27(3): 357-363
    [75]赵宜楠,金铭,乔晓林.利用极化单脉冲雷达抗质心干扰的研究[J],现代雷达, 2006, 28(12): 45-46&51
    [76] David R, Tanks. National missile defense: policy issues and technological capabilities.Washington,SvecConway Priting Inc, 2000
    [77]马骏声.目标识别与GBR地基成像雷达[J].航天电子对抗, 1996, 12(4): 32~35
    [78]马骏声. NMD-GBR雷达的测量能力及其性能参数[J].航天电子对抗, 2002, 18(5):1~8
    [79] Andrew M S, John M C., Bob Dietz, et al. Countermeasures-A technical evaluation of the operational effectiveness of the planned US national missile defense system. Union of Concerned Scientist, Cambridge MA, 2000
    [80] Mr.Thomas Foster. Application of pattern recognition techniques for early warning radar (EWR) discrimination.ADA298895,27 Jan 1995
    [81] James L.Rasmussen, Randy L.Haupt, Michacl L.Walker. RCS feature extraction from simple targets using time-frequency analysis,SPIE 2845
    [82] M. A. Hussian. HRR, length and velocity decision regions for rapid target identification.SPIE conference, 1999, 3810: 40~52
    [83] M. E. Clark.High range resolution techniques for ballistic missile targets.British Aerospace PIC, Cowes United Kingdom, 1999
    [84] B. D. Baker. TMR processing procddures for GSRS and attitude measurements. ADA074947, 1979
    [85] Tour Sato. Shape estimation of space debris using single-range doppler interferometry. IEEE Trans. Geoscience and Remote Sensing, 1999, 37(2): 1000~1005
    [86]黄培康.反导系统中的目标识别技术[J].战略防御. 1981(5): 1~14
    [87]黄培康,闫锦.弹道导弹(BM)对抗中的识别与反识别技术[J].航天电子对抗, 2005, 21(3): 1~3
    [88]许小剑,黄培康.利用RCS幅度信息进行雷达目标识别[J].系统工程与电子技术, 1992, 14(6): 1~9
    [89]王涛,王雪松.基于目标全极信息的弹头及诱饵识别方法研究.第九届全国雷达学术年会论文集,烟台, 2003
    [90]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].博士学位论文,长沙:国防科技大学研究生院, 2004.3
    [91]罗宏.动态雷达目标的建模与识别研究[D].博士学位论文.北京:航天科工集团公司第二研究院, 2000.4
    [92] [美]J. D. Kraus等著;章文勋译.天线(第三版) [M].北京:电子工业出版社, 2004.
    [93] A. Nagl, D. Ashrafi, H.überall. Radar cross section of thin wires[J]. IEEE Trans on Antennas Propagat., 1991, 39(1): 105-108
    [94]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [95] [美] H. L.范特里斯著,毛士艺,李明鸿,傅里澄译.检测、估计与调制理论,卷III雷达——声纳信号处理和噪声中的高斯信号[M].北京:国防工业出版社, 1991
    [96] P. Z . Peebles, Bistatic radar cross section of Horizontally Oriented chaff [J].IEEE. Trans on AES. November 1984, 20(6): 837-841
    [97] Yanping Guo, Herbertüberall. Bistatic radar scattering by a chaff cloud[J]. IEEE Trans on AP, 1992, 40(7): 837-841
    [98]唐毓燕.对抗箔条云的最佳收发极化方式[J].雷达与对抗, 2000, (2): 8-17
    [99]赵勋杰,陈静.随机取向偶极子云的频谱和极化特性[J].电子学报, 1991, 19(2): 113~116
    [100]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社, 1998
    [101]赵勋杰,陈静.箔条云电磁散射统计特性研究[J].电子对抗,1990,(3): 1~10
    [102]沈允春,谢俊好.箔条回波的统计特性[J].电波科学学报, 1997, 12(1): 108~111&122
    [103]张民,吴振森,郭立新.新型箔条云团双站电磁散射计算方法研究[J].电波科学学报, 2000, 15(3), 304-307
    [104]张民,吴振森,薛谦忠.大数量高密度圆形箔片云团双站电磁散射特性[J].电子学报, 2001, 29(3), 364-367
    [105] Zhang Min, Wu Zhensen, Liu Kexiang. Monte carle simulation of the EM bistatic scattering from a novel foil cloud. Proceeding ISAPE 2000, Beijing: 45-49
    [106] Suchard N S. Characteristic of foil cloud. Proceeding of SPIE, 1998
    [107] Hargur D S. Doppler effect of foil cloud and chaff cloud. Proceeding of SPIE, 1998
    [108]吴其芬,陈伟芳,黄琳.稀薄气体动力学[M].长沙:国防科技大学出版社, 2004.
    [109]瞿章华,刘伟,曾明.高超声速空气动力学[M].长沙:国防科技大学出版社, 2001.
    [110]都亨,叶宗海.低轨道航天器空间环境手册[M].北京:国防工业出版社, 1996.
    [111]张毅.弹道导弹弹道学[M].长沙:国防科技大学出版社, 1999.
    [112]王雪松,周颖,赫晓峰等.自由空间中偶极子云团的有效干扰截面[J].电波科学学报, 2001, 16(2): 261~265.
    [113] Xianhe Shao, Hai Du, Jinghong Xue. Theoretical analysis of polarizationrec-ognition between chaff cloud and ship[C]//. IEEE International workshoponAnti-Counterfeiting, Security and Identification, 2007, Xiamen China: 125-129
    [114] Xianhe Shao, Hai Du, Jinghong Xue. A new method of ship and chaff pol-arization recognition under rain and snow cluster [C]//.IEEE Internationalworkshop on Anti-Counterfeiting, Security and Identification, 2007, Xiamen China: 142-147
    [115] Guangfu Tang, Ke Zhao, Hongzhong Zhao,et al. A novel discrimination method of ship and chaff based on sparseness for naval radar [J]. 2008 IEEE Radar Conference, 2008, Roma, Italy: 1-4
    [116] W. D. Blair, M. Brandt-Pearce. Monopulse DOA estimation of two unresolved Rayleigh targets [J]. IEEE Trans on Aerospace and Electronic Systems, 2001, 37(2): 452-469
    [117] A. Sinha, T. Kirubarajan, Y. Bar-Shalom. Maximum likelihood angle extractor for two closely spaced targets [J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(1): 183-203
    [118] Ioannidis G A, Hammers D E. Optimum antenna polarization for target discrimination in clutter [J]. IEEE Trans. on Antennas and Propagation, 1979, 27(3):357-363.
    [119] Wang Xuesong, Chang Yuliang, Dai Dahai, Xiao Shunping, Zhuang Zhaowen. Band Characteristic of SINR Polarization Filter[J]. IEEE Trans. on Antennas and Propagation, 2007, 55(4): 1148~1154.
    [120]徐振海,王雪松,施龙飞,肖顺平,庄钊文.信号最优极化滤波及性能分析[J].电子信息学报, 2006, 28(3): 498~501.
    [121]王德纯,丁家会,程望东等.精密跟踪测量雷达技术[M].北京:电子工业出版社, 2006,3.
    [122]黄培康,殷红成.扩展目标的角闪烁[J].系统工程与电子技术, 1990, 12 (12): 1-17.
    [123]徐牧.极化SAR图像人造目标提取与几何结构反演研究.博士学位论文[D].长沙:国防科学技术大学研究生院
    [124]黄培康.雷达目标特征信号.北京:宇航出版社, 1993
    [125] Blair W. D., Brandt-Pearce M.,unresolved Rayleigh target detection using monopulse measurements. IEEE Trans. On Aerospace and electronic systems, 1998, 34(2): 543-552
    [126]马晓岩,向家彬,朱裕生等.雷达信号处理[M].长沙:湖南科学技术出版社, 1999
    [127]陈远征,朱永锋,赵宏钟等.基于包络插值移位补偿的高速运动目标的积累检测算法研究.信号处理, 2004, 20(4): 387-390.
    [128]王远模,马君国,付强等.高速运动目标的积累检测研究.现代雷达, 2006, 28(3): 24-27.
    [129]何友,关键,彭应宁等.雷达自动检测与恒虚警处理.北京:清华大学出版社, 1999.3
    [130]付红卫,张善文,李晓曼.基于灰色理论的一种箔条干扰识别方法[J].电光与控制. 2003, 10(3): 42-44.
    [131]李伟,贾惠波,顾启泰.识别箔条干扰的一种实用方法[J].现代雷达. 2000, 22(3): 35-38.
    [132]黄玉田.反舰导弹识别目标与箔条的频谱分析法[J].电子对抗. 1992, (1): 31-36.
    [133]冯有前,张善文,宋国乡.箔条干扰下的一种雷达目标小波识别方法[J].西安电子科技大学学报. 2003, 30(3): 345-348.
    [134]汤广富,陈远征,赵宏钟,等.一种改进的小波变换抗箔条干扰算法[J].雷达与对抗. 2005, (2): 20-24.
    [135]刘进.微动目标雷达信号参数估计与物理特征提取.博士学位论文[D].长沙:国防科学技术大学研究生院
    [136] R.Lambour, T.Morgan, etc.Assessment orbital debris size estimation from radar cross section measurements.2001 Core technologies for space systems Conf, 2001
    [137]刘永祥,黎湘,庄钊文.空间目标进动特性及其在雷达目标识别中的应用.自然科学进展,2004, 11(11):1329~1332
    [138]金文彬,刘永祥,任双桥,等.锥体目标空间进动特性分析及其参数提取.宇航学报,2004,25(4):408~410
    [139]闫锦,黄培康.雷达目标识别中的维数压缩.系统工程与电子技术,2001,21(12): 35~38
    [140]李跃华,沈庆宏,等.小波神经网络的毫米波雷达目标一维像识别.南京理工大学学报,2002,26(1):20~23
    [141] Su May Hsu.Extracting target features from angle-angle and range-doppler Image.The Lincoln Laboratory Journal,1993.6
    [142] M.A.Hussain.HRR, length and velocity decision regions for rapid target identification.SPIE, 1999, 3810:40~52
    [143]马梁,冯德军,刘进等.高速目标距离像的结构特征及补偿方法.信号处理, 2009, 25(7): 1051-1056
    [144]舍曼.弗兰克尔.用有源假目标挫败战区导弹防御雷达(连载一).863先进防御技术通讯(A类),1997.11:25-35.
    [145]舍曼.弗兰克尔.用有源假目标挫败战区导弹防御雷达(连载二).863先进防御技术通讯(A类),1997.12:30-39.
    [146]闵庆义.有源假目标干扰及其抗干扰.航天电子对抗, 1996(1): 1-5
    [147]顾尔顺.有源欺骗干扰的对抗技术航天电子对抗,1998(3):13 -16
    [148]倪汉昌.抗欺骗式干扰技术途径研究航天电子对抗,1998(3):17-20
    [149]李永祯,王雪松,肖顺平,庄钊文.基于IPPV的真假目标极化鉴别算法.现代雷达,2004,26(9): 38-42
    [150]王涛,王雪松,肖顺平.随机调制单极化有源假目标的极化鉴别研究.自然科学进展,2006,16(5): 611-617.
    [151]李永祯,王雪松,王涛,肖顺平,庄钊文.有源诱饵的极化鉴别研究.国防科大学报, 2004,26(3): 83-88.
    [152]严宗毅.低雷诺数流理论[M].北京:北京大学出版社, 2002, 6
    [153] C. A. Ioannidis. Model for spectral and polarization characteristics of chaff, IEEE Trans. On AES, 1979, 15(5): 723~726
    [154]赵勋杰,陈静.箔条云频谱特性和极化特性研究.电子学报, 1991, 19(2): 113-116
    [155]冯德军.弹道中段目标雷达识别与评估研究[D].博士学位论文,长沙:国防科技大学
    [156]美国国家海洋和大气局,国家航宇局和美国空军部著.任现淼,钱志民译.标准大气(美国, 1976).科学出版社, 1982
    [157]总装备部电子信息基础部.导弹武器与航天器装备.北京:原子能出版社、航空工业出版社、兵器工业出版社, 2003.7
    [158]夏军等编著.百步穿杨——导弹.北京:化学工业出版社, 2009.1
    [159]孙景文,李志民.导弹防御与空间对抗.北京:原子能出版社, 2004.8
    [160]孙连山,杨晋辉.导弹防御系统.北京:航空工业出版社, 2004.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700