农作物秸秆在亚/超临界醇中的液化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石资源的日益减少和环境污染的加剧,寻求新的和洁净的可再生资源迫在眉睫。包括农作物秸秆在内的生物质资源因其产量巨大、洁净性和可再生性而备受关注,开发其高效利用的新方法和新技术也成为能源领域和资源领域的前沿课题。本文以稻秆、麦秆、玉米皮和玉米芯4种农作物秸秆为研究对象,以KOH/γ-Al_2O_3、CaO/γ-Al_2O_3和CaO/γ-Al_2O_3/Fe_3O_4为催化剂,以高压釜为反应器,研究了秸秆在亚/超临界醇中的液化。
     以石油醚为溶剂,比较了索氏萃取、超声波辐射萃取和微波辐射萃取3种方法脱除4种秸秆中蜡份的效果,利用GC/MS分析了蜡份的组成。结果表明,微波辐射是最有效的脱蜡方法。秸秆蜡份中除含有烷烃、醇、醛、酮和酯以外,还含有具有高附加值的化学品甾醇、棕榈酸、反油酸、维他命E和角鲨烯,其中甾醇、反油酸、维他命E和角鲨烯首次在秸秆中检测到。
     研究了反应温度、反应时间和秸秆/醇比对玉米皮在亚/超临界甲醇中液化的影响,考察了反应温度对稻秆、麦秆和玉米芯在亚/超临界甲醇中以及玉米皮在亚/超临界乙醇中液化的影响,用GC/MS分析了液体产物(LPs)的组成,探讨了LPs组成分布随温度变化的规律。结果表明,玉米皮在甲醇中适宜的液化条件为液化温度、液化时间和秸秆/醇比分别是300 oC、30 min和1:30 g/mL。温度对液化的影响最显著。比较甲醇和乙醇对玉米皮的液化,乙醇作为溶剂液化效果好。在适宜的液化条件下,玉米皮、稻秆、麦秆和玉米芯在甲醇以及玉米皮在乙醇中的转化率分别为87%、75%、85%、94%和87%,LPs收率分别为36%、30%、40%、43%和43%。秸秆在亚/超临界醇中液化产生的LPs的主要组成成分包括短链脂肪酸衍生物、呋喃衍生物、环戊酮衍生物、含有取代基的肉桂酸衍生物、芳醛或酮衍生物、苯酚衍生物、苯衍生物,长链脂肪酸衍生物和甾族化合物。秸秆在亚临界醇中液化时,LPs包括木质素侧链断裂产生的含有取代基的肉桂酸衍生物和2,3-二氢苯并呋喃;在超临界醇中,秸秆中的三大组分纤维素、半纤维素和木质素都发生解聚,且随着温度的升高解聚加剧。木质素解聚产物低温时以肉桂酸酯衍生物为主,高温时以苯酚衍生物为主。
     制备并表征了催化剂KOH/γ-Al_2O_3、CaO/γ-Al_2O_3和CaO/γ-Al_2O_3/Fe_3O_4,将其用于催化液化麦秆,考察了催化剂对麦秆在超临界乙醇中液化所产生的LPs和固体残渣(SRs)收率的影响。用GC/MS分析了LPs的组成,探讨了催化剂对LPs组成分布的影响。KOH/γ-Al_2O_3、CaO/γ-Al_2O_3和CaO/γ-Al_2O_3/Fe_3O_4催化液化麦秆得到的LPs收率分别为86.1%、57.8%和104.6%,SRs收率分别为14.2%、16.3%和10.9%。3种催化剂催化液化麦秆所得LPs组成主要包括短链脂肪酸乙酯、呋喃衍生物、环戊醛酮、苯酚衍生物、苯衍生物、芳酸衍生物、长链脂肪酸乙酯和甾族化合物。3种催化剂都提高了短链脂肪酸乙酯、环戊醛酮和苯酚衍生物的收率,其中皆以CaO/γ-Al_2O_3/Fe_3O_4的提高幅度最大。KOH/γ-Al_2O_3和CaO/γ-Al_2O_3/Fe_3O_4提高了呋喃衍生物的收率,KOH/γ-Al_2O_3提高了苯衍生物的收率。
     提出了秸秆在亚/超临界醇中的液化机理。测试了麦秆在超临界乙醇中液化得到的LP的燃料性能,分析了LP的组成。结果表明,LP的主要成分包括短链或环状脂肪酸及其酯、呋喃衍生物、环戊烯衍生物、苯酚衍生物、苯衍生物、芳酮、芳酸及其乙酯、长链脂肪酸乙酯和甾族化合物,经提质其主要指标达到了燃料油的标准。
In this study, liquefaction of crop stalks, including rice straw, wheat straw, corn skin and corn core, with methanol and ethanol under sub/supercritical conditions without catalyst or with different catalysts such as KOH/γ-Al_2O_3, CaO/γ-Al_2O_3 and CaO/γ-Al_2O_3/Fe_3O_4 was investigated.
     Soxhlet, ultrasonic-, and microwave-assisted extractions for dewaxing from rice, wheat, corn skin and corn core stalks with petroleum ether were compared. The compositions of the waxes extracted by different methods were determined by gas chromatography/mass spectrometry (GC/MS) analysis. The results show that microwave-assisted extraction is the most effective method for dewaxing from the stalks. Besides chain alkanes, alcohols, aldehydes, ketones, and esters, a large number of sterides, palmitic acid, (E)-9-octadecenoic acid, vitamin E, and squalene are found, which are more value-added chemicals in the waxes from the four stalks mentioned. Sterols, (E)-9-octadecenoic acid, vitamin E, and squalene in waxes were first detected from crop stalks.
     The effect of temperature, time and the ratio of stalk to solvent on the liquefaction of corn skin in sub- and supercritical methanol was investigated. And the effect of temperature on the liquefactions of rice, wheat and corn core stalks in sub- and supercritical methanol as well as corn skin stalk in sub- and supercritical ethanol was also researched. The liquid products (LPs) from liquefaction of stalks were analyzed by GC/MS. The change of composition distribution of LPs with temperature was studied. The results show that the optimum conditions of corn skin liquefaction in methanol are that reaction temperature, reaction time and the ratio of stalk to methanol are 300 oC, 30 min and 1: 30 g/mL, respectively. The effect of temperature on liquefaction of stalk is the most notable. The liquefaction has better effect when ethanol was used as solvent comparing methanol as solvent. Under the optimum liquefaction condition, the conversion yields of corn skin, rice, wheat, and corn core in methanol as well as corn skin in ethanol are 87%, 75%, 85%, 94% and 87%,respectively, and LPs yields are 36%, 30%, 40%, 43% and 43%. The main compositions of LPs include shorter chain carboxylic acid derivatives, furan derivatives, cyclopentanone, phenol derivatives, benzene derivatives, cinnamic acid derivatives, longer chain carboxylic esters and sterides. Cinnamic acid derivatives and 2,3-dihydrobenzofuran from the cleavage of lignin branch chain are the dominant compositions of LPs from stalk liquefaction in subcritical alcohol. When stalks are liquefied, three main components of stalks are all depolymerized, and the depolymerization is intensified with the temperature increase. The depolymerization of lignin from stalks forms cinnamic acid derivatives at lower temperature and phenol derivatives at higher temperature. KOH/γ-Al_2O_3, CaO/γ-Al_2O_3 and CaO/γ-Al_2O_3/Fe_3O_4 were prepared and characterized, and used to catalyze wheat straw liquefaction in supercritical ethanol. The effect of catalyst on LP yields was investigated. LPs were analyzed by GC/MS. The change of composition distribution of LPs with temperature was studied. The yields of LPs from wheat straw liquefaction with KOH/γ-Al_2O_3, CaO/γ-Al_2O_3 and CaO/γ-Al_2O_3/Fe_3O_4 reach 86.1%、57.8% and 104.6%, respectively. Shorter chain carboxylic acid ethyl esters, furan derivatives, cyclopentanone, phenol derivatives, benzene derivatives, aromatic acid derivatives, longer chain carboxylic ethyl esters and sterides are main compositions of LPs with the above three catalysts. The three catalysts all enhance the yields of shorter chain carboxylic acid ethyl esters, cyclopentanone and phenol derivatives, and CaO/γ-Al_2O_3/Fe_3O_4 shows a better effect. KOH/γ-Al_2O_3 and CaO/γ-Al_2O_3/Fe_3O_4 improve the yield of furan derivatives, and KOH/γ-Al_2O_3 raises the yield of benzene derivatives.
     Mechanisms for stalks liquefaction in sub- and supercritical alcohol were proposed. Fuel properties of LP from wheat straw liquefaction in supercritical ethanol were tested. The composition of LP was analyzed by GC/MS. The main compositions of LP are shorter chain carboxylic acid and their ethyl esters, furan derivatives, cyclopentanone, phenol derivatives, benzene derivatives, aromatic ketone, aromatic acid derivatives, longer chain carboxylic ethyl esters and sterides. After upgrading, the main indexes reach the standard of fuel oil.
引文
[1]《中国化工信息》周刊网(www.chemnewscom.cn).
    [2]美国能源部(BiomassProgram,http:www.eere.ener-gy.govbiomass).
    [3]国家统计局.中国统计摘要[M].北京:中国统计出版社,2003.
    [4]中国农村能源年鉴编辑委员会.中国农村能源年鉴[M].北京:中国农业出版社,1999.
    [5]中华人民共和国农业部.中国农业统计资料[M].北京:中国农业出版社,2000.
    [6]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999第2版:24-25.
    [7]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005:7.
    [8] Sun R C, Lawther J M, Banks W B. Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw [J]. Ind Crop Prod, 1998 (2-3): 121-128.
    [9] Hatfield R, Vermerris W. Ligin formation in plants: the dilemma of linkage specificity [J]. Plant Phys, 2001, 126 (4): 1351-1357.
    [10] Davin L B, Lewis N G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in ligin biosynthesis [J]. Plant Phys, 2000, 123 (2): 453-461.
    [11]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工,2005,22(4):249-252.
    [12]王少光,武书彬,郭秀强,郭伊丽.玉米秸秆木素的化学结构及热解特性[J].华南理工大学学报(自然科学版),2006,34(3):39-42.
    [13]陈云平.花生壳高沸醇木质素的结构研究[J].福州大学学报(自然科学版),2006,34(5):712-715.
    [14]翟梅枝,张风云,高绍棠.核桃叶总黄酮提取方法研究[J].陕西林业科技,2000,(1): 5-8.
    [15]李孟楼,郭新荣.花椒籽油的含蜡量测定与脱蜡[J].西北植物学报,2001,21(2):387-390.
    [16]韩文辉,钟立人.蜂胶有效成分提取研究[J].黑龙江商学院学报(自然科学版),2000,16(4):18-22.
    [17]韩德奇,洪国忠,李平.我国液体石蜡生产技术与重液蜡市场分析[J].化工科技市场,2001,24(8):20-22.
    [18]肖爱平,汪洪鹰.麻纤维脂腊质测定方法的探讨[J].中国麻作,1999,21(2):39-40.
    [19]封莉,刘俊峰,冯晓静.秸秆生物质资源利用途径及相应技术[J].农机化研究,2004,(6):193-195.
    [20] Babu B V, Chaurasia A S. Modeling, simulation, and estimation of optimum parameters in pyrolysis of biomass [J]. Energ Convers Manage, 2003, 44 (13): 2135-2158.
    [21]王智微,苏学泳.流化床中生物质热解气化的实验研究[J].新能源,2000,22(3):5-9.
    [22] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energ Convers Manage,2004, 45 (5): 651–671.
    [23]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [24] Desappa S, Sridhar H V, Sridhar G., et al. Biomass gasification-a substitute to fossil fuel for heat application [J]. Biomass Bioenerg, 2003, 25 (6): 637-649.
    [25]何方,王华.生物质液化制取液体燃料和化学品[J].能源工程,1999,(5):14-17.
    [26]徐兆瑜.超临界技术在化学工业中的应用[J].化工技术与开发,2006,35(4):19-24.
    [27] Dietrich M, Ronald A, Oskar F. Catalytic hydropyrolysis of lignin: Influence of reaction conditions on the formation and composition of liquid products [J]. Bioresource Technol, 1992, 40 (2): 171-177.
    [28] Demirbas A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel [J]. Energ Convers Manage, 2000, 41 (16): 1741-1748.
    [29]魏晓旻.生物质液化的实验研究[D].北京:北京化工大学图书馆,2003.
    [30] Shinya Y, Tomoko O, Katsuya K. Process for liquefying cellulose-containing biomass [P]. US, 4935567, 1990-06-19.
    [31] Qu Y X, Wei X M, Zhong C L. Experimental study on the direct liquefaction of cunning–hamia lanceolata in water [J]. Energy, 2003, 28 (7): 597-606.
    [32] Williams P T. Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste [J]. Energ Fuel, 2006, 20 (3): 1259-1265.
    [33] D'Jesus P, Boukis N, Kraushaar-Czarnetzki B, Dinjus E. Gasification of corn and clover grass in supercritical water [J]. Fuel, 2006, 85 (7-8): 1032-1038.
    [34] Matsumura Y, Sasaki M, Okuda K, et al. Supercritical water treatment of biomass for energy and material recovery [J]. Combust Sci Technol, 2006, 178 (1-3): 509-536.
    [35] Qian Y J, Zuo C J, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass [J]. Energy, 2007, 32 (3): 196-202.
    [36]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):55-58.
    [37]宋春财,胡浩权.生物质秸秆在水中热化学液化研究[J].四川大学学报,2002,34(5):59-62.
    [38]傅木星,袁兴中,曾光明,佟婧怡,傅海燕,陈桂秋.稻草水热法液化的实验研究[J].能源工程,2006,(2):34-38.
    [39]何建辉,钱叶剑,谈建,左承基.水中直接液化木质生物质的试验研究[J].合肥工业大学学报,2006,29(1):110-112.
    [40]曲先锋,彭辉,毕继诚,王锦风,孙东凯.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    [41] Selhan K, Thallada B, Akinori M, et al. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermat treatment [J]. Fuel, 2005, 84 (7-8): 875-884.
    [42]谢文.催化剂对亚临界水中生物质液化行为的影响[D].长沙:湖南大学环境科学与工程学院,2008.
    [43] Demirbas A. Conversion of agricultural residues to fuel products via supercritical fluid extraction [J]. Energ Source, 2004, 26 (12): 1095-1103.
    [44] Mustafa C, Mehmet M K. Liquid products from Verbascum stalk by supercritical fluid extraction [J]. Energ Convers Manage, 2001, 42 (2): 125-130.
    [45] Yamazaki J, Minami E, Saka S. Liquefaction of beech wood in various supercritical alcohols [J]. J Wood Sci, 2006, 52 (6): 527-532.
    [46] Soria A, Mcdonald A G, Shook S, He B J. Supercritical methanol for conversion of Ponderosa pine into chemicals and fuels [C]. Appita Annual Conference, v 3, 59th Appita Annual Conference and Exhibition, incorporating the 13th ISWFPC: International Symposium on Wood, Fibre and Pulping Chemistry - Proceedings. Appita Conference Sessions, 2005: 369-374.
    [47]于树峰,仲崇立.农作物废弃物液化的实验研究[J].燃料化学学报,2005,33(4):205-210.
    [48] Kucuk M M., Agirtas S. Liquefaction of Prangmites australis by supercritical gas extraction [J]. Bioresource Technol, 1999, 69 (2): 141-143.
    [49] Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate [J]. Bioresource Technol, 1999, 70 (1): 61-67.
    [50] Demirbas A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel[J]. Energ Convers Manage, 2000, 41 (16): 1741-1748.
    [51] Zhang T, Zhou Y J, Liu D H, et al. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol [J]. Bioresource Technol, 2007, 98 (7): 1454-1459.
    [52] Yuan X Z, Li H, Zeng G M, et al. Sub- and supercfitical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture [J]. Energy, 2007, 32 (11): 2081-2088.
    [53]童朝晖.麦草化学液化及其机理研究[D].天津:天津轻工业学院图书馆,2000.
    [54]张求慧,赵广杰.木材液化技术研究现状及产业化发展[J].木材工业,2005,19(3):5-11.
    [55]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005:209.
    [56] Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst [J]. J Supercrit Fluid, 1998, 13 (1-3): 253-259.
    [57]徐艾清.三倍体毛白杨乙二醇解的初步研究[D].北京:北京林业大学,2006.
    [58]张素萍,颜涌捷,任铮伟.生物质快速裂解液体产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [59]王梦亮,王华,常如波,刘滇生.纤维素类废弃物的热化学催化液化试验研究[J].中国环境科学,2004,24(4):469-473.
    [60]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-13.
    [61]谢文,袁兴中,曾光明等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学,2008,30(1):129-133.
    [62] Xu C B, Timothy E. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts [J]. Fuel, 2008, 87 (3): 335-345.
    [63] Song C C, Hu H Q, Zhu S W, Wang G, Chen G H. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water [J]. Eergy Fuel, 2004, 18 (1): 90-96.
    [64] Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass [J]. Energ Convers Manage, 2000, 41 (15): 1601-1607.
    [65] Song C C, Hu H Q, Zhu S W, Wang G, Chen G H. Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water [J]. Energy Fuel, 2004, 18 (1): 90-96.
    [66] Agblevor, Foster A. Process for producing phenolic compounds from lignins [P]. US, 5807952, 1998-09-15.
    [67] Shabtai, Joseph S, Zmierczak. Process for conversion of lignin to reformulated, partially oxygenated gasoline [P]. US, 6172272, 2001-01-09.
    [68]朱建华,须沁华. KF负载制备固体强碱的研究[J].化学学报,2007,55(5):474-479.
    [69]雷经新,石秋杰.固体碱催化剂在有机合成中的应用及进展[J].化工时刊,2005,19(2):49-53.
    [70]陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展,1994,(2):18-23.
    [71]张海永,景晓燕,张密林.磁性镁铝水滑石固体碱的制备与表征[J].应用科技,2002,29(3):61-63.
    [72]张海永,景晓燕,张密林.磁性镁铝水滑石固体碱催化苯甲醛与丙二酸二乙酯的反应[J].应用科技,2002,29(2):50-52.
    [73]张慧,徐彦红,Evans D G,段雪.磁性纳米固体碱催化剂MgAl-OH-LDHs/ NiFe2O4的合成、表征与性能研究[J].化学学报,2004,62(8):750-756.
    [74] Wang J, You J, Li Z S, Yang P P, Jing X Y, Zhang M L. Preparation and characteraction of new magnetic Co Al HTLc/Fe_3O_4 solid base [J]. Nano Lett, 2008, 3 (9): 338-342.
    [75] Spila K, Kboppala E, Fagernas L, Oasmaa, A. Characterization of biomass based flash pyrolysis oils [J]. Biomass Bioenerg, 1998, 14 (2): 103-113.
    [76]戴先文.循环流化床反应器固体生物质的热解液化[J].太阳能学报,2001,22(2):124- 130.
    [77]陈明强,王君,王新运.喷动流化床生物质裂解液体产物的燃烧特性研究[J].安徽理工大学学报,2005,25(4):69- 72.
    [78] Rosanna M, Bernard D. Comparison between‘slow’and‘flash’pyrolysis oils from biomass [J]. Fuel, 1994, 73 (5): 671- 677.
    [79]王树荣,骆仲泱,谭洪,洪军,董良杰,方梦祥,岑可法.生物质热裂解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052.
    [80]朱锡锋.生物油雾化燃烧特性试验[J].中国科技大学学报,2005,34(6):856- 860.
    [81]张光全.生物质闪速热裂解制备生物质油[J].能源研究与利用,2005,(5):48- 52.
    [82] Ozcimen D, Karaosmanoglu F. Production andcharacterization of bio-oil and biochar from rapeseedcake [J]. Renew Energ, 2004, 29 (5): 779-787.
    [83] Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (B rassica napus L.): Fuel properties of bio-oil [J]. Biomass Bioenerg, 2000 (19): 271-279.
    [84] Boucher M E, Chaala A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase [J]. Biomass Bioenerg, 2000, (19): 337-350.
    [85] Sensoz S, Kaynar I. Bio-oil p roduction from soybean (Glycine m ax L.): Fuel properties of bio-oil [J]. Ind Crops Prod, 2006, 23 (1): 99-105.
    [86]廖艳芬,王树荣,洪军,谷月玲,骆仲泱,岑可法.生物质热裂解制取液体燃料的实验研究[J].能源工程,2002 ,(3):1-3.
    [87] Oasmaa A, Meier D. Pyrolysis oil combustion tests in an industrial boiler [J]. J Anal Appl Pyrolysis, 2005, 73 (2): 323-334.
    [88] Stamatov V, Honnery D, Soria J. Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species [J]. Renew Energ, 2006, 31 (13): 2108-2121.
    [89]董治国.转锥式生物质热解液化装置的实验研究[J].林业机械与木工设备,2004,32(4):17- 19.
    [90]王树荣.生物质闪速热裂解制取生物油的试验研究[J].太阳能学报,2002, 23 (1): 4-10.
    [92]谢益民,伍红,赖燕明.桉木法制浆过程中化学成分的变化[J].中国造纸学报,1999,14(1):20-25.
    [93]杜甫佑,张晓星,王宏勋,尹艳丽.白腐菌降解木质纤维素顺序规律的研究[J].纤维素科学与技术,2005,13(1):17-25.
    [94]陈洪章,李佐虎.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析[J].纤维素科学与技术,1997,7(4):14-22.
    [95]顾继友,高振华,李志国,李晓萍,隋淑娟.利用FTIR对苯基异氰酸醋与不同含水率纤维素反应的研究[J].林业科学,2004,40(2):142-147.
    [96]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000:329-335.
    [97] Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw [J]. Polym Degrad Stabil, 2001, 74 (2): 307-319.
    [98] Carlo B, Maurizio D A. Degradation and recovery of fine chemicals through singlet oxygen treatment of lignin [J]. Ind Crops Prod, 2004, 20 (2): 243-259.
    [99] Sylwia K W, Jakub N, Edyta W, Jan H, Jan D M. Surface properties of barley straw [J]. Colloid Surface B, 2003, 29 (2-3): 131-142.
    [100] Klinke H B, Ahring B K, Schmidt A S, Thomsen A B. Characterization of degradation products from alkaline wet oxidation of wheat straw [J]. Bioresource Technol, 2002, 82 (1): 15-26.
    [101] Lequart C, Nuzillard J M, Kurek B, Debeire P. Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides [J]. Carbohyd Res, 1999, 319 (1-4): 102-111.
    [102] Taner F, Eratik A, Ardic I. Identification of the compounds in the aqueous phases from liquefaction of lignocellulosics [J]. Fuel Process Technol, 2005, 86 (4): 407-418.
    [103] Adam J, Blazso B, Meszaros E, Stocker M, Nilsen M H, Bouzga A, Hustad J E. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts [J]. Fuel, 2005, 84 (12-13): 1494-1502.
    [104] Sun R C, Sun X F. Identification and quantitation of lipophilic extractives from wheat straw [J]. Ind Crops Prod, 2001, 14 (1): 51-644.
    [105]陈茂彬,黄琴.植物甾醇乙酸酯和植物甾醇油酸酯抗肿瘤作用初探[J].粮食与油脂,2005,(1):16-18.
    [106]彭莺,刘福祯,高欣.天然植物甾醇的应用与提取工艺[J].化工进展,2002,21(1):49-53.
    [107] Neil H A W, Huxley R R. Efficacy and therapeutic potential of plant sterols [J]. Atherosclerosis Suppl, 2002, 3 (3): 11-15.
    [108] Reynhardt E C, Riederer M. Structure and molecular dynamics of the cuticular wax from leaves of Citrus aurantium L [J]. J Phys D: Appl Phys, 1991, 24 (3): 478-486.
    [109] Sun R C, Tomkinson J. Extraction and characterization of lipophilic extractives from wheat straw. I. Chemical composition [J]. Cellulose Chem Technol, 2001, 35 (5-6): 471-485.
    [110] Sun R C, Xiao B, Sun X F. Extraction and characterization of lipophilic extractives from rice straw. I. Chemical composition [J]. J Wood Chem Technol, 2001, 21 (4): 397-411.
    [111] Pare J R J, Belanger J M R, Stafford S S. Microwave extraction A novel technique [J]. Trends Anal Chem, 1994 , 13 (4): 176
    [112]邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14(1):53-59.
    [113]日本能源学会编.生物质和生物质能源手册[D].北京:化学工业出版社,2007.
    [114]许凤,钟新春,孙润仓,詹怀宇.秸杆中半纤维素的结构及分离新方法综述[J].林产化学与工业,25 (增刊):179-182.
    [115]梁凌云.秸秆热化学工艺和机理的研究[D].北京:中国农业大学图书馆,2005.
    [116] Raveendran K, Ganesh A, Khilar K C. Influence of mineral matter on biomass pyrolysis characteristics [J]. Fuel, 1995, 74 (12): 1812-1822.
    [117]丁元生,罗志臣,王浔,韩笑言. Na-Na2CO3/γ-Al_2O_3型固体超强碱催化剂的制备及表征[J].精细石油化工,2004,(1):31-33.
    [118]王亚红,曲小姝,祝波,刘立业,崔昌益.新型固体超强碱催化剂的制备及其结构表征[J].化学世界,2004,45(11):563-565.
    [119]黄从运,袁润章,龙世宗.聚乙烯醇与3 (CaO.Al_2O_3). CaSO4的界面作用机理初探[J].硅酸盐通报,2004,23(3):107-108.
    [120]秦润华,姜炜,刘宏英,李凤生. Fe_3O_4纳米粒子的制备与超顺磁性[J].功能材料,2007,38(6):902-907.
    [121]许越,夏海涛,刘振琦.催化剂设计与制备工艺[M].北京:化学工业出版社,2003:77-78.
    [122] Xu C B, Etcheverry T. Hydro-liquefaction of woody biomass in sub- and supercritical ethanol with iron-based catalysts [J]. Fuel, 2008, 87 (3): 335-345.
    [123] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J].Energ Convers Manage, 2000, 41 (6): 633-646.
    [124] Yamata T, Ono H, Ohara S, et al. Characterization of the p roducts resulting from direct liquefaction of celluloseⅠ——Identification of intermediates and the relevantmechanism in direct phenol liquefaction of cellulose in the p resence of water [J]. Mokuzai Gakkaishi, 1996, 42 (11): 1098-1104.
    [125] Yamata T, Ono H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose [J]. J Wood Sci, 2001, 47 (6): 458-464.
    [126]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2006:229.
    [127] Jakab E, Liu K, Meuzelaar H L C. Thermal decomposition of wood and cellulose in the presence of solvent vapors [J]. Ind Eng Chem Res, 1996, 36 (6): 2087-2095.
    [128]钟杰,张求慧.木质纤维原料的苯酚液化[J].木材加工机械,2005,16(5):34-38.
    [129]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学图书馆,2005.
    [130]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002:57-62.
    [131] Dorrestijn E, Laarhoven L J J, Arends I W C E, Mulder P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal [J]. J. Anal Appl. Pyrolysis, 2000, 54 (1-2): 153-192.
    [132] Sun R C, Lawther J M, Banks W B. A tentative chemical structure of wheat straw lignin [J]. Ind Crops Prod, 1997, 6 (1): 1-8.
    [133]杜瑛,齐卫艳,苗霞,李桂英,胡常伟.毛竹的主要化学成分分析及热解[J].化工学报,2004,55(12):2099-2102.
    [134]林木森,蒋剑春.竹材居里点快速热裂解研究[J].林产化学与工业,2007,27(6):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700