Allicin协同两性霉素B抗白念珠菌机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来临床上深部真菌感染率大幅上升,已成为免疫功能低下患者死亡的主要原因之一。目前可供临床选择的治疗深部真菌感染药物较少且毒副作用大,再加上日益严重的真菌耐药现象使其防治成为临床上的棘手难题。目前深部真菌感染的主要病原菌仍然是白念珠菌,耐药现象也最为突出,因此白念珠菌深部感染的防治也是抗真菌感染研究领域的重点。
     我国中药资源丰富,来源广泛,而且中药用于真菌感染(主要是浅部真菌感染)具有悠久的历史,从中药中筛选抗真菌药物并研究其作用机制已经成为目前抗真菌药物研究领域的重要方向。大蒜是百合科葱属植物的鳞茎,含复杂的化学成分,主要包括大蒜素、蒜氨酸、微量元素等多种活性成分。大蒜素是从大蒜的球形鳞茎中提取的挥发性油状物,是大蒜中主要生物活性成分的总称。Allicin又名大蒜新素,化学名二烯丙基二硫化物,是大蒜素的主要活性成分之一,具有抗病原微生物、抑制肿瘤细胞生长、降血脂、抗血小板、降血压、预防心血管疾病、抗氧化等多种药理学作用。早在上世纪70年代就有研究表明allicin具有抗真菌活性,由于其活性较弱一直未应用于临床,但有文献研究表明allicin具有协同Cu2+抗白念珠菌和协同两性霉素B抗酿酒酵母菌的活性,提示allicin可能也具有协同抗真菌药物对常见致病真菌的抗菌活性。本课题从联合用药的角度出发,考察allicin与临床常用抗真菌药物的相互作用。
     本研究采用美国临床实验室标准化协会(Clinical and Laboratory Standards Institute,CLSI)CLSI-M27A3和M38A2文件所推荐的微量液基稀释法(Broth Microdilution)以棋盘法设计检测allicin与临床常用抗真菌药物联合应用对致病真菌的体外最低抑菌浓度(Minimal Inhibitory Concentration,MIC),以部分抑制浓度指数(fractional inhibitory concentration index,FICI)为主要指标考察药物之间的相互作用,实验结果表明allicin与两性霉素B、氟康唑合用对白念珠菌存在较强的协同作用(FICI <0.5),allicin与两性霉素B合用或者与氟康唑合用后,两性霉素B与氟康唑的MIC值均显著降低,allicin的MIC值也降低到1-8μg/ml之间,并且allicin与两性霉素B的协同作用强于氟康唑;allicin与两性霉素B、氟康唑合用对丝状真菌不存在协同作用,表现为无关作用(0.5     两性霉素B (amphotericin B,AmB)属于多烯类抗真菌药物,其耐药率最低,抗菌谱广,被称为治疗深部真菌感染的“金标准”,但是严重的毒副作用尤其是肾毒性大大限制了两性霉素B在临床上的应用。本课题研究了allicin协同两性霉素B抗白念珠菌作用,结果发现allicin与两性霉素B合用对40株临床分离白念珠菌FICI均小于0.5,全部表现为协同作用;allicin能使两性霉素B对白念珠菌的时间-杀菌曲线明显下移;allicin能够协同两性霉素B对白念珠菌芽管及菌丝形成的抑制作用;动物体内实验结果研究发现,与单独应用两性霉素B相比,allicin与两性霉素B合用能够显著延长系统性白念珠菌感染的免疫功能低下小鼠的生存时间(P<0.05),并且显著降低肝脏、脾脏、肾脏主要脏器的真菌负荷量(P<0.05)。
     目前为止尚未有文献提示allicin协同两性霉素B抗白念珠菌可能的作用机制,本课题考察了两性霉素B单用和allicin与两性霉素B合用对白念珠菌基因表达谱和总代谢谱的差异,旨在整合比较转录组学和代谢组学研究结果初步发现allicin协同两性霉素B抗白念珠菌可能的作用机制。研究结果提示allicin是通过多途径、多靶点发挥协同作用的,可能的作用机制包括氧化损伤、抑制麦角甾醇合成通路、抑制细胞电子传递链影响能量代谢。根据转录组学和代谢组学研究结果,本课题主要从以上三方面验证了allicin协同两性霉素B抗白念珠菌作用机制,进一步的研究结果发现:①allicin通过氧化损伤作用发挥协同两性霉素B抗白念珠菌作用:allicin单独作用于白念珠菌对其细胞内活性氧水平及活性氧所导致的细胞膜的脂质过氧化损伤程度并无显著影响,allicin与两性霉素B联合作用于白念珠菌时细胞内活性氧水平及其所导致的氧化损伤(如细胞膜脂质过氧化损伤)程度均较单用两性霉素B显著升高,同时白念珠菌细胞内抗氧化损伤活性物质还原型谷胱甘肽水平显著降低,也提示allicin能够协同两性霉素B对白念珠菌的氧化损伤;②allicin通过抑制麦角甾醇生物合成通路发挥协同作用:allicin与两性霉素B联合应用和单独应用两性霉素B相比白念珠菌细胞内角鲨烯含量显著升高而麦角甾醇含量显著降低,提示allicin可能通过抑制白念珠菌角鲨烯环氧化酶阻断角鲨烯向羊毛甾醇的合成,从而抑制白念珠菌细胞膜重要成分麦角甾醇的合成,发挥与两性霉素B的协同作用;③allicin与两性霉素B联合应用和单独应用两性霉素B相比细胞内ATP含量降低,能量代谢障碍;④allicin在真菌体外培养基中可代谢生成活性化合物Diallyl disulfide(DADS),发挥协同抗白念珠菌作用。
     综上所述,本课题研究发现allicin具有体外和动物体内协同两性霉素B抗白念珠菌作用;allicin是通过多途径、多靶点发挥协同抗真菌作用的,其主要作用机制包括氧化损伤、抑制麦角甾醇生物合成、抑制细胞内ATP产生及产生活性代谢产物等,但是allicin协同抗白念珠菌作用的具体靶点及动物体内的药代动力学尚有待于进一步研究。
With the increasing immunocompromised patients in recent years, the incidence of systemic fungal infections has been raised dramatically with a heavy mortality. Owing to the adverce effect of antifungal drugs and the severely drug resistance of fungal pathogen, the therapy systemic fungal infections is becomes more and more difficult. Candida albicans (C.albicans) is the major opportunistic fungal pathogen of humans and investigation on the treatment of candidiasis is an important issue.
     Screening active component from traditional Chinese drug is an important strategy for antifungal drug investigation. Allicin (diallyl thiosulfinate) is the main biologically active component of freshly crushed garlic extract. Allicin exerts various biological activities such as antimicrobial and anticancer activities in addition to the capacity to lower serum lipid levels, particularly cholesterol levels, and ocular pressure. Previous published data indicated that allicin had certain in vitro antifungal activity, but the minimal inhibitory concentration (MIC) was relatively high, limiting its clinical utility. Researchers demonstrated that Cu2+ exerted fungicidal activity by promoting endogenous ROS production, and recent studies found that allicin could enhance the fungicidal activity of Cu2+. It is suggested that allicin may also be able to enhance the fungicidal activity of antifungal drugs.
     In the present study, we investgated the interaction effect beteen allicin and antifungal drugs including fluconazole, amphotericin B, terbinafine and 5-fluorouracil. The in vitro MICs of the compounds against isolates of fungal pathogen were determined by the microbroth dilution method according to the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards). The fractional inhibitory concentration index (FICI) is defined as the sum of the MIC of each drug when used in combination divided by the MIC of the drug used alone. Synergy and antagonism were defined by FICIs of≤0.5 and >4, respectively. A FICI result of >0.5 but≤4 was considered indifferent. Our results indicated that AmB+ allicin combination and FLC+allicin combination markedly reduced MIC values of either individual agent for C.albicans and synergism was observed in all isolates of C.albicans (FICI <0.5).
     The polyene macrolide antibiotic AmB is the gold standard of antifungal treatment for the most severe invasivemycoses. However, owing to its poor permeability across membranes, an increased amount of AmB must be administered to patients in clinical situations, often resulting in severe side effects such as renal damage. To lessen the severity of the side effects, AmB is often combined with other antifungal drugs. So in the study, we further confirmed the synergic effect beteen allicin and AmB. Our results indicated that Synergism was observed in all 40 isolates (all the FICI<0.5) .The synergic effect of allicin with AmB was also confirmed in time-kill curves. The fungistatic activity of AmB was dramatically enhanced by addition of allicin. To assess the antifungal activity of AmB combined with allicin, initial experiments were performed by challenging mice. The adddtion of allicin (1 mg/kg) to AmB (0.5 mg/kg) treatment for mice infected by C.albicans significantly improved the survival time (P<0.05) and significantly reduced the fungal burden in kidney tissues, liver tissues and spleen tissues.
     There is no study suggested the possible mechanism of the the synergic effect beteen allicin and AmB. So in the present study, we first investigated the change of gene expression profiling with a complementary DNA microarray and metabolite profile with GC/MS analysis in C.albicans after addtition of alllicin to AmB treatment. Our results suggested that oxidative damage, ergosterol biosynthesis inhibition and electron transport chain blocking may be involved in the mechanism of the the synergic effect beteen allicin and AmB.
     Our further resaeach work indicated: (1) ROS production significantly elevated in C.albicans after addtition of alllicin to AmB treatment. And MDA level, representing the phospholipid peroxidation reaction, was significantly elevated in C. albicans treated by AmB in the presence of allicin, indicating that allicin could accelerate the endogenous ROS production and thus induced oxidative damage such as phospholipid peroxidation; (2) addition of allicin to AmB treatment could inhibit ergosterol production and lanosterol, while elevated squalene level. The above results suggested that maybe target squalene epoxidase to block ergosterol biosynthesis signaling; (3) addition of allicin to AmB treatment induced ATP production inhibited, exerting synergic effectwith AmB; (4) the breakdown products of allicin, diallyl disulfide(DADS), also posees the synergic anticandidal effect with AmB.
     To conclusion,the present study shows that allicin has a synergistic effect with AmB against C. albicans in vitro and in vivo. Oxidative damage, ergosterol biosynthesis inhibition and inhibition of mitochondrial ATP production may be involved in the mechanism of the the synergic effect. Our study suggested that allicin was a promising and safe agent to combine with AmB for efficacy and to reduce the AmB dose to lessen side effects, although the molecular mechanisms need further study.
引文
[1] Fridkin S, Jarvis W. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 1996; 9(4):499-511.
    [2] Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003; 37(9):1172-1177.
    [3] Pfaller MA. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin. Infect. Dis 1996; 22 (Suppl 2):S89-94.
    [4] Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health 2002; 5(1):26-34.
    [5] Maligie MA, Selitrennikoff CP. Cryptococcus neoformans Resistance to Echinocandins: (1,3){beta}-Glucan Synthase Activity Is Sensitive to Echinocandins. Antimicrob. Agents Chemother. 2005; 49(7):2851-2856.
    [6] Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB. Discovery of Novel Antifungal (1,3)-beta -D-Glucan Synthase Inhibitors. Antimicrob Agents Chemother 2000; 44(2):368-377.
    [7] Abruzzo G, Flattery A, Gill C, Kong L, Smith J, Pikounis V, Balkovec J, Bouffard A, Dropinski J, Rosen H, Kropp H, Bartizal K. Evaluation of the echinocandin antifungal MK-0991 (L-743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 1997; 41(11):2333-2338.
    [8] Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997; 35(2):79-86.
    [9] Johnson MD, Perfect JR. Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 2003; 4(5):807-823.
    [10] Chen SC, Slavin MA, Sorrell TC. Echinocandin Antifungal Drugs in Fungal Infections. Drugs 2011; 71(1):11-41.
    [11] Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryotic Cell 2005;4(11):1902-1912.
    [12] Hector RF, Davidson AP, Johnson SM. Comparison of susceptibility of fungal isolates to lufenuron and nikkomycin Z alone or in combination with itraconazole. Am. J. Vet. Res 2005; 66(6):1090-1093.
    [13] Ganesan LT, Manavathu EK, Cutright JL, Alangaden GJ, Chandrasekar PH. In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin. Microbiol. Infect 2004; 10(11):961-966.
    [14] Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob. Agents Chemother 1990; 34(2):183-188.
    [15] Sperry PJ, Cua DJ, Wetzel SA, Adler-Moore JP. Antimicrobial activity of AmBisome and non-liposomal amphotericin B following uptake of Candida glabrata by murine epidermal Langerhans cells. Med Mycol 1998;36(3):135-141.
    [16] Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol 1992; 126 (Suppl 39):2-7.
    [17] Nowosielski M, Hoffmann M, Wyrwicz LS, Stepniak P, Plewczynski DM, Lazniewski M, Ginalski K, Rychlewski L. Detailed mechanism of squalene epoxidase inhibition by terbinafine. J Chem Inf Model 2011 Feb;51(2):455-462.
    [18] Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 1988; 32(1):1-8.
    [19] Sabo J, Abdel-Rahman S. Voriconazole: a new triazole antifungal. Ann Pharmacother 2000; 34(9):1032-1043.
    [20] Cleary J, Taylor J, Chapman S. Itraconazole in antifungal therapy. Ann Pharmacother 1992; 26(4):502-509.
    [21]张鸿龙,顾秀玉,王蕖.氧代赖氨酸抗真菌作用机制的初步研究.微生物学报, 1993, 33(6): 411
    [22] Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D. Sordarins: In Vitro Activities of New Antifungal Derivatives against Pathogenic Yeasts, Pneumocystis carinii, and Filamentous Fungi. Antimicrob Agents Chemother 1998; 42(11):2863-2869.
    [23] Clemons KV, Stevens DA. Efficacies of sordarin derivatives GM193663, GM211676, and GM237354 in a murine model of systemic coccidioidomycosis. p6. Antimicrob Agents Chemother 2000; 44(7):1874-1877.
    [24] Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 2000; 44(12):3389-3394.
    [25] Ebara S, Naito H, Nakazawa K, Ishii F, Nakamura M. FTR1335 is a novel synthetic inhibitor of Candida albicans N-myristoyltransferase with fungicidal activity. Biol Pharm Bull 2005; 28(4):591-595.
    [26] Gearhart MO. Worsening of liver function with fluconazole and review of azole antifungal hepatotoxicity. Ann Pharmacother 1994; 28(10):1177-1181.
    [27] Cronin S, Chandrasekar PH. Safety of triazole antifungal drugs in patients with cancer. J Antimicrob Chemother 2010; 65(3):410-416.
    [28] Pasqualotto AC, Xavier MO, Andreolla HF, Linden R. Voriconazole therapeutic drug monitoring: focus on safety. Expert Opin Drug Saf 2010; 9(1):125-137.
    [29] Hall M, Monka C, Krupp P, O'Sullivan D. Safety of oral terbinafine: results of a postmarketing surveillance study in 25,884 patients. Arch Dermatol 1997; 133(10):1213-1219.
    [30] Matsuoka S, Murata M. Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B. Biochim Biophys Acta 2002; 1564(2):429-434.
    [31] Fanos V, Cataldi L. Amphotericin B-induced nephrotoxicity: a review. J Chemother 2000; 12(6):463-470.
    [32] Mayer J, Doubek M, Doubek J, Horky D, Scheer P, t pánek M. Reduced Nephrotoxicity of Conventional Amphotericin B Therapy after Minimal Nephroprotective Measures: Animal Experiments and Clinical Study. The Journal of Infectious Diseases 2002; 186(3):379-388.
    [33] Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob. Agents Chemother 2003; 47(9):2717-2724.
    [34] Enfert C. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 2006; 7(4):465-470.
    [35] Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QMR, Prasad R. Functional Analysis of CaIPT1, a Sphingolipid Biosynthetic Gene Involved in Multidrug Resistance and Morphogenesis of Candida albicans. Antimicrob Agents Chemother 2005; 49(8):3442-3452.
    [36] Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC.Identification and Expression of Multidrug Transporters Responsible for Fluconazole Resistance in Candida dubliniensis. Antimicrob Agents Chemother 1998; 42(7):1819-1830.
    [37] Kamai Y, Maebashi K, Kudoh M, Makimura K, Naka W, Uchida K, Yamaguchi H. Characterization of mechanisms of fluconazole resistance in a Candida albicans isolate from a Japanese patient with chronic mucocutaneous candidiasis. Microbiol Immunol 2004; 48(12):937-943.
    [38] White T. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997; 41(7):1482-1487.
    [39] Brun S, Berges T, Poupard P, Vauzelle-Moreau C, Renier G, Chabasse D, Bouchara J. Mechanisms of Azole Resistance in Petite Mutants of Candida glabrata. Antimicrob Agents Chemother 2004; 48(5):1788-1796.
    [40] Takahata S, Okutomi T, Ohtsuka K, Hoshiko S, Uchida K, Yamaguchi H. In vitro and in vivo antifungal activities of FX0685, a novel triazole antifungal agent with potent activity against fluconazole-resistant Candida albicans. Med. Mycol 2005; 43(3):227-233.
    [41] Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 2004; 48(2):568-574.
    [42] Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta 2000; 1463(1):20-30.
    [43] Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect 1999 Feb;1(2):125-129.
    [44] Chung LY. The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J Med Food 2006; 9(2):205-213.
    [45] Gonen A, Harats D, Rabinkov A, Miron T, Mirelman D, Wilchek M, Weiner L, Ulman E, Levkovitz H, Ben-Shushan D, Shaish A. The antiatherogenic effect of allicin: possible mode of action. Pathobiology 2005; 72(6):325-334.
    [46] Oron-Herman M, Rosenthal T, Mirelman D, Miron T, Rabinkov A, Wilchek M,Sela B. The effects of S-allylmercaptocaptopril, the synthetic product of allicin and captopril, on cardiovascular risk factors associated with the metabolic syndrome. Atherosclerosis 2005; 183(2):238-243.
    [47] Vimal V, Devaki T. Hepatoprotective effect of allicin on tissue defense system in galactosamine/endotoxin challenged rats. J Ethnopharmacol 2004; 90(1):151-154.
    [48] Elkayam A, Mirelman D, Peleg E, Wilchek M, Miron T, Rabinkov A, Oron-Herman M, Rosenthal T. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats. Am J Hypertens 2003;16(12):1053-1056.
    [49] Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot. Essent. Fatty Acids 2000; 62(4):253-259.
    [50] Padilla-Camberos E, Zaitseva G, Padilla C, Puebla AM. Antitumoral Activity of Allicin in Murine Lymphoma L5178Y. Asian Pac J Cancer Prev 2010; 11(5):1241-1244.
    [51] Bat-Chen W, Golan T, Peri I, Ludmer Z, Schwartz B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer 2010 ;62(7):947-957.
    [52] Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 2004 ;485(1-3):97-103.
    [53] Ogita A, Hirooka K, Yamamoto Y, Tsutsui N, Fujita K, Taniguchi M, Tanaka T. Synergistic fungicidal activity of Cu and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in. Toxicology 2005; 215(3):205-213.
    [54] Ogita A, Fujita K, Taniguchi M, Tanaka T. Dependence of synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic, on selective accumulation of the ion in the plasma membrane fraction via allicin-mediated phospholipid peroxidation. Planta Med 2006; 72(10):875-880.
    [55] Ogita A, Fujita K, Taniguchi M, Tanaka T. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. Planta Med 2006; 72(13):1247-1250.
    [56] Ogita A, Yutani M, Fujita K, Tanaka T. Dependence of vacuole disruption andindependence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae. J Antibiot 2010; 63(12):689-692.
    [57]吴绍熙.现代医学真菌检验手册[M].北京:北京医科大学、中国协和医科大学联合出版社.1998 332-356.
    [58] Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards: Reference method for broth dilution antifungal susceptibility testing of Yeast. Approved Standard, edn 3; Document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2009.
    [59] Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards: Reference method for broth dilution antifungal susceptibility testing of Yeast. Approved Standard, edn 3; Document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
    [60] National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. Document M27-A3.Wayne, PA NCCLS; 2009.
    [61] Odds FC. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy 2003; 52(1):1.
    [62] Barchiesi F, Falconi Di Francesco L, Scalise G. In vitro activities of terbinafine in combination with fluconazole and itraconazole against isolates of Candida albicans with reduced susceptibility to azoles. Antimicrob. Agents Chemother. 1997;41(8):1812-1814.
    [63] Cantón E, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A. Synergistic activities of fluconazole and voriconazole with terbinafine against four Candida species determined by checkerboard, time-kill, and Etest methods. Antimicrob Agents Chemother 2005; 49(4):1593-1596.
    [64] Davis SR. An overview of the antifungal properties of allicin and its breakdown products--the possibility of a safe and effective antifungal prophylactic. Mycoses 2005; 48(2):95-100.
    [65] Eliopoulos, G. 330-396. In V.M., and R. C. Moellering, Jr. 1996. Antimicrobial combinations, Lorian (ed.), Antibiotics in laboratory medicine, 4th ed. The Williams Wilkins Co., Baltimore, Md.
    [66]周婷婷,肖敦振,赵丁源,高俊,姚念.非甾体类抗炎药阿司匹林和消炎痛对白念珠菌菌丝形成的影响.华中科技大学学报(医学版).2006; 35(3): 298-300.
    [67] Atkinson BA, Bocanegra R, Colombo AL, Graybill JR. Treatment of disseminated Torulopsis glabrata infection with DO870 and amphotericin B. Antimicrob. Agents Chemother 1994; 38(7):1604-1607.
    [68] MacCallum DM, Odds FC. Need for early antifungal treatment confirmed in experimental disseminated Candida albicans infection. Antimicrob Agents Chemother 2004; 48(12):4911-4914.
    [69] Maertens J, Vrebos M, Boogaerts M. Assessing risk factors for systemic fungal infections. Eur J Cancer Care (Engl) 2001; 10(1):56-62.
    [70] Snydman DR. Shifting patterns in the epidemiology of nosocomial Candida infections. Chest 2003; 123(5 Suppl):500S.
    [71]张秀珍.1986-2003年深部真菌感染及耐药趋势.抗真菌药物与真菌感染诊治研究学术会议论文集.2003年12月厦门:67-71.
    [72] Pfaller MA, Jones RN, Doern GV, Sader HS, Messer SA, Houston A, Coffman S, Hollis RJ. Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997-1998. Antimicrob Agents Chemother 2000; 44(3):747-751.
    [73] Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health 2002; 5(1):26-34.
    [74] Raman SB, Nguyen MH, Zhang Z, Cheng S, Jia HY, Weisner N, Iczkowski K, Clancy CJ. Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol. Microbiol 2006; 60(3):697-709.
    [75] Zheng X, Wang Y, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 2004; 23(8):1845-1856.
    [76] Lo HJ, K?hler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90(5):939-949.
    [77]章小缓,胡雁,Camile S Farah, Robert B Ashman.小鼠念珠菌感染模型和遗传因素研究.实验动物与比较医学; 2008, 28(1):57-61.
    [78]王晓波.当归补血汤加味抗深部真菌感染作用的实验研究.中医药学刊;2003; 21 (4):540-5410.
    [79] Moser SA, Domer JE. Effects of cyclophosphamide on murine candidiasis. Infect Immun 1980; 27(2):376-386.
    [80] Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combinationtreatment of invasive fungal infections. Clin Microbiol Rev 2005;18(1):163-194.
    [81] Gil-Lamaignere C, Müller FC. Differential effects of the combination of caspofungin and terbinafine against Candida albicans, Candida dubliniensis and Candida kefyr. Int. J Antimicrob Agents 2004; 23(5):520-523.
    [82] Weig M, Müller FM. Synergism of voriconazole and terbinafine against Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 2001; 45(3):966-968.
    [83] K?hrer K, Domdey H. Preparation of high molecular weight RNA. Meth. Enzymol 1991; 194:398-405.
    [84] Gonzalez B, Fran?ois J, Renaud M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 1997;13(14):1347-1355.
    [85] Maharjan RP, Ferenci T. Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 2003; 313(1):145-154.
    [86] Li H, Ni Y, Su M, Qiu Y, Zhou M, Qiu M, Zhao A, Zhao L, Jia W. Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res 2007; 6(4):1364-1370.
    [87] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405(6788):827-836.
    [88] Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U.S.A 2004;101(19):7329-7334.
    [89] Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu Z, Chen W, Jiang Y. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 2005; 49(2):584-589.
    [90] Xu Z, Cao YB, Zhang JD, Cao YY, Gao PH, Wang DJ, Fu XP, Ying K, Chen WS, Jiang YY. cDNA array analysis of the differential expression change in virulence-related genes during the development of resistance in Candida albicans. Acta Biochim Biophys Sin 2005; 37(7):463-72.
    [91] De Backer MD, Van Dijck P. Progress in functional genomics approaches to antifungal drug target discovery. Trends Microbiol 2003;11(10):470-478.
    [92] De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H. Genomic profiling of the response of Candida albicans to itraconazole treatmentusing a DNA microarray. Antimicrob Agents Chemother 2001;45(6):1660-1670.
    [93] Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng J. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 2002;49(6):905-915.
    [94] Zhang L, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Cheng J. Expression profiling of the response of Saccharomyces cerevisiae to 5-fluorocytosine using a DNA microarray. Int J Antimicrob Agents 2002;20(6):444-450.
    [95] Parveen M, Hasan MK, Takahashi J, Murata Y, Kitagawa E, Kodama O, Iwahashi H. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 2004; 54(1):46-55.
    [96] Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11):1181-1189.
    [97] Nicholson JK, Connelly J, Lindon JC, Holmes E.Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002 ;1(2):153-61.
    [98] Griffin JL, Williams HJ, Sang E, Clarke K, Rae C, Nicholson JK. Metabolic profiling of genetic disorders: a multitissue (1) H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem 2001; 293(1):16-21.
    [99] Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HWL, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 2002; 8(12):1439-1444.
    [100] Bollard ME, Holmes E, Lindon JC, Mitchell SC, Branstetter D, Zhang W, Nicholson JK. Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution (1) H NMR spectroscopy of urine and pattern recognition. Anal. Biochem 2001; 295(2):194-202.
    [101] Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst 2002; 127(12):1549-1557.
    [102] Waters NJ, Holmes E, Waterfield CJ, Farrant RD, Nicholson JK. NMR andpattern recognition studies on liver extracts and intact livers from rats treated with alpha-naphthylisothiocyanate. Biochem Pharmacol 2002; 64(1):67-77.
    [103] Gavaghan CL, Wilson ID, Nicholson JK. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett 2002; 530(1-3):191-196.
    [104] Beckwith-Hall BM, Brindle JT, Barton RH, Coen M, Holmes E, Nicholson JK, Antti H. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst 2002; 127(10):1283-1288.
    [105] Kitano H. Systems biology: a brief overview. Science 2002; 295(5560):1662-1664.
    [106] Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 2002; 48(1-2):155-171.
    [107]徐铮,曹永兵,姜远英.麦角甾醇生物合成途径中的抗真菌药作用靶酶.国外医药抗生素分册2001;22(5):193-197.
    [108] Gupta N, Porter TD. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J Nutr 2001; 131(6):1662-1667.
    [109] Rabinkov A, Miron T, Mirelman D, Wilchek M, Glozman S, Yavin E, Weiner L. S-Allylmercaptoglutathione: the reaction product of allicin with glutathione possesses SH-modifying and antioxidant properties. Biochim Biophys Acta 2000; 1499(1-2):144-153.
    [110] Sokol-Anderson M, Sligh JE, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 1988;32(5):702-705.
    [111] Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 1986; 154(1):76-83.
    [112] Okamoto Y, Aoki S, Mataga I. Enhancement of amphotericin B activity against Candida albicans by superoxide radical. Mycopathologia 2004; 158(1):9-15.
    [113] Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol 1999; 37(6):375-389.
    [114] Muller FL, Roberts AG, Bowman MK, Kramer DM. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 2003;42(21):6493-6499.
    [115] St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277(47):44784-44790.
    [116] Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997; 17(1):3-8.
    [117] Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2):335-344.
    [118] Campo ML, Kinnally KW, Tedeschi H. The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J Biol Chem 1992; 267(12):8123-8127.
    [119] Leconte O, Bonfils JP, Sauvaire Y. Protective effect of iridals from saponin injury in Candida albicans cells. Phytochemistry 1997; 44(4):575-579.
    [120]张军东,陈海生,曹永兵,徐铮,高平辉,阎澜,姜远英.天然产物T12抗真菌作用及其机制研究.中国新药杂志. 2004, 13(12): 1110-1114.
    [121] Munayyer HK, Mann PA, Chau AS, Yarosh-Tomaine T, Greene JR, Hare RS, Heimark L, Palermo RE, Loebenberg D, McNicholas PM. Posaconazole is a potent inhibitor of sterol 14alpha-demethylation in yeasts and molds. Antimicrob. Agents Chemother 2004; 48(10):3690-3696.
    [122] Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agents Chemother 2002; 46(10):3113-3117.
    [123] Aust SD. Thiobarbituric acid assay reactants. Methods Toxicol 1994; 1B:367–74.
    [124] Horvath A, Riezman H. Rapid protein extraction from Saccharomyces cerevisiae. Yeast 1994;10(10):1305-1310.
    [125] Lupetti A, Brouwer CPJM, Dogterom-Ballering HEC, Senesi S, Campa M, Van Dissel JT, Nibbering PH. Release of calcium from intracellular stores and subsequent uptake by mitochondria are essential for the candidacidal activity of an N-terminal peptide of human lactoferrin. J Antimicrob Chemother 2004 ;54(3):603-608.
    [126] Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Gali?anes M. Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 2006; 69(2):450-458.
    [127] Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 2000; 46(1):126-138.
    [128] Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963; 61:882-888.
    [129] Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974; 11(3):151-169.
    [130] Freeman F, Kodera Y. Garlic Chemistry: Stability of S-(2-Propenyl)-2-Propene-1-sulfinothioate (Allicin) in Blood, Solvents, and Simulated Physiological Fluids. Journal of Agricultural and Food Chemistry 1995; 43(9):2332-2338.
    [131] Feinendegen LE. Reactive oxygen species in cell responses to toxic agents. Hum Exp Toxicol 2002;21(2):85-90.
    [132] P oszaj T, Robaszkiewicz A, Witas H. [Oxidative damage of mitochondrial DNA: the result or consequence of enhanced generation of reactive oxygen species]. Postepy Biochem 2010; 56(2):139-146.
    [133] Landolfo S, Politi H, Angelozzi D, Mannazzu I. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim. Biophys. Acta 2008; 1780(6):892-898.
    [134] Fernández-Checa JC, García-Ruiz C, Colell A, Morales A, MaríM, Miranda M, Ardite E. Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 1998; 8(1-2):7-11.
    [135] Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J 1984; 219(1):1-14.
    [136] Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in 't Veld P, Renstr?m E, Schuit FC. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 2005; 54(7):2132-2142.
    [137]王迪浔,金惠铭.人体病理生理学.北京:北京人民卫生出版社, 2002.515-516
    [138] Kobayashi D, Sasaki M, Watanabe N. Caspase-3 activation downstream from reactive oxygen species in heat-induced apoptosis of pancreatic carcinoma cells carrying a mutant p53 gene. Pancreas 2001; 22(3):255-260.
    [139] Benhar M, Dalyot I, Engelberg D, Levitzki A. Enhanced ROS production inoncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 2001;21(20):6913-6926.
    [140] Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998; 14(16):1511-1527.
    [141] Avery SV, Howlett NG, Radice S. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 1996; 62(11):3960-3966.
    [142] Howlett NG, Avery SV. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 1997; 63(8):2971-2976.
    [143] Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998;14(16):1511-1527.
    [144] Eilat S, Oestraicher Y, Rabinkov A, Ohad D, Mirelman D, Battler A, Eldar M, Vered Z. Alteration of lipid profile in hyperlipidemic rabbits by allicin, an active constituent of garlic. Coron. Artery Dis 1995; 6(12):985-990.
    [145] Gebhardt R, Beck H, Wagner KG. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells. Biochim. Biophys. Acta 1994; 1213(1):57-62.
    [146] Yu T, Wu C. Stability of Allicin in Garlic Juice. J Food Science 1989; 54(4):977-981.
    [147] Lemar KM, Aon MA, Cortassa S, O'Rourke B, Müller CT, Lloyd D. Diallyl disulphide depletes glutathione in Candida albicans: oxidative stress-mediated cell death studied by two-photon microscopy. Yeast 2007; 24(8):695-706.
    [1] Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L. The mode of action of allicin: its ready permeability through phospholipids membranes may contribute to its biological activity. Biochim Biophys Acta. 2000,15;1463(1):20-30.
    [2] Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infec. 1999; 1(2):125-9.
    [3] Cavallito C, Bailey JH. Allicin, the antibacterial principal of Allium sativum. Isolation, physical properties and antibacterialaction. J Am Chem Soc. 1944; 66(11): 1950–1951.
    [4] Ruddock PS, Liao M, Foster BC, Lawson L, Arnason JT, Dillon JA. Garlic natural health products exhibit variable constituent levels and antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. Phytother Res. 2005; 19(4):327-34.
    [5] Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin- resistant Staphylococcus aureus. Br J Biomed Sci. 2004; 61(2):71-4.
    [6] Jonkers D, Sluimer J, Stobberingh E. Effect of garlic on vancomycin vancomycinresistant enterococci. Antimicrob Agents Chemother, 1999;43(12): 3045.
    [7] Cai Y, Wang R, Pei F, Liang BB. Antibacterial activity of Allicin alone and in combination with beta - Lactams against Staphylococcus spp. and Pseudomonas aeruginosa. J Antibiot (Tokyo). 2007; 60(5):335-8.
    [8] Ross ZM, O'Gara EA, Hill DJ, Sleightholme HV, Maslin DJ. Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol. 2001; 67(1):475-80.
    [9] Ca?izares P, Gracia I, Gómez LA, García A, Martín De Argila C, Boixeda D, de Rafael L. Thermal degradation of allicin in garlic extracts and its implication on the inhibition of the in-vitro growth of Helicobacter pylori. Biotechnol Prog. 2004; 20(1):32-7.
    [10] Rabinkov A, Miron T, Mirelman D, Wilchek M, Glozman S, Yavin E, Weiner L. S-Allylmercaptoglutathione: the reaction product of allicin with glutathione possesses SH-modifying and antioxidant properties. Biochim Biophys Acta. 2000, 11; 1499(1-2):144–153.
    [11] Davis SR. An overview of the antifungal properties of allicin and its breakdown products--the possibility of a safe and effective antifungal prophylactic. Mycoses. 2005; 48(2):95-100.
    [12] Ogita A, Hirooka K, Yamamoto Y, Tsutsui N, Fujita K, Taniguchi M, Tanaka T. Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae. Toxicology. 2005,15; 215(3): 205–13.
    [13] Ogita A, Fujita K, Taniguchi M, Tanaka T. Dependence of synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic, on selective accumulation of the ion in the plasma membrane fraction via allicin-mediated phospholipid peroxidation. Planta Med. 2006; 72(10):875–80.
    [14] Ogita A, Fujita K, Taniguchi M, Tanaka T. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. Planta Med. 2006; 72(13):1247–50.
    [15] Ogita A, Yutani M, Fujita K, Tanaka T. Dependence of vacuole disruption and independence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae. JAntibiot (Tokyo). 2010;63(12):689-92.
    [16] An M, Shen H, Cao Y, Zhang J, Cai Y, Wang R, Jiang Y. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int J Antimicrob Agents. 2009; 33(3):258-63.
    [17] Guo N, Wu X, Yu L, Liu J, Meng R, Jin J, Lu H, Wang X, Yan S, Deng X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol Med Microbiol. 2010; 58(2):193-201.
    [18] Ogita A, Fujita K, Tanaka T. Enhancement of the fungicidal activity of amphotericin B by allicin: effects on intracellular ergosterol trafficking. Planta Med. 2009; 75(3):222-6.
    [19] Coppi A, Cabinian M, Mirelman D, Sinnis P. Antimalarial activity of allicin, a biologically active compound from garlic cloves.Antimicrob Agents Chemother. 2006; 50(5):1731-7.
    [20] Liu Z F, Fang F, Dong Y S, Li G, Zhen H. Experimental study on the prevention and treatment of murine cytomegalovirus hepatitis by using allitridin. Antiviral Res. 2004; 61(2):125-8.
    [21] Sun L, Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol. 2003; 9(9):1930–4.
    [22] Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol. 2004; 485(1-3):97–103.
    [23] Zheng S, Yang H, Zhang S, Wang X, Yu L, Lu J, Li J. Initial study on naturally occurring products from traditional Chinese herbs and vegetables for chemoprevention. J Cell Biochem Suppl. 1997; 27:106–12.
    [24] Herman-Antosiewicz A, Singh SV. Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res. 2004; 555(1-2):121-31.
    [25] Wu X, Kassie F, Mersch-Sundermann V. Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutat Res. 2005; 589(2): 81 - 102.
    [26] Bat-Chen W, Golan T, Peri I, Ludmer Z, Schwartz B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer. 2010; 62(7):947-57.
    [27] Zhang ZM, Zhong N, Gao HQ, Zhang SZ, Wei Y, Xin H, Mei X, Hou HS, Lin XY, Shi Q. Inducing apoptosis and up regulation of Bax and Fas ligand expression by allicin in hepatocellular carcinoma in Balb/c nude mice. Chin Med J. 2006; 119(5):422-5.
    [28] Sun L, Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC27901 cells. World J Gastroenterol. 2003; 9(9):1930-4.
    [29] Patya M, Zahalka MA, Vanichkin A, Rabinkov A, Miron T, Mirelman D, Wilchek M, Lander HM, Novogrodsky A. Allicin stimulates lymphocytes and elicits an antitumor effect: a possible role of p21ras. Int Immunol. 2004; 16(2):275-81.
    [30] Khoutorsky M, Goncharov I, Rabinkov A, Mirelman D, Geiger B, Bershadsky AD. Allicin inhibits cell polarization, migration and division via its direct effect on microtubules. Cell Motil Cytoskeleton. 2007; 64(5);321-37.
    [31] Ackermann RT, Mulrow CD, Ramirez G, Gardner CD, Morbidoni L, Lawrence VA. Garlic shows promise for improving some cardiovascular risk factors. Arch Intern Med. 2001; 161(6):813–24.
    [32] Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids.2000; 62(4):253–9.
    [33] Campbell JH, Efendy JL, Smith NJ, Campbell GR. Molecular basis by which garlic suppresses atherosclerosis. J Nutr. 2001; 131(3s):1006S–9S.
    [34] Kwon MJ, Song YS, Choi MS, Park SJ, Jeong KS, Song YO. Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Sci. 2003; 72(26): 2953–64.
    [35] Brace LD. Cardiovascular benefits of garlic ( Allium sativum L). J Cardiovasc Nurs. 2002; 16:33–49.
    [36] Orekhov AN, Grunwald J. Effects of garlic on atherosclerosis. Nutrition. 1997; 13:656–63.
    [37] Efendy JL, Simmons DL, Campbell GR, Campbell JH. The effect of the aged garlic extract, 'Kyolic', on the development of experimental atherosclerosis. Atherosclerosis 1997; 132(1):37-42.
    [38] Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J. Nutr 2001 Mar;131(3s):989S-93S.
    [39] Espirito Santo SMS, van Vlijmen BJM, Buytenhek R, van Duyvenvoorde W, Havekes LM, Arnault I, Auger J, Princen HMG. Well-characterizedgarlic-derived materials are not hypolipidemic in APOE*3-Leiden transgenic mice. J. Nutr 2004; 134(6):1500-1503.
    [40] Espirito Santo SMS, van Vlijmen BJM, van Duyvenvoorde W, Offerman EH, Havekes LM, Arnault I, Auger J, Princen HMG. Absence of an atheroprotective effect of the garlic powder printanor in APOE*3-Leiden transgenic mice. Atherosclerosis 2004; 177(2):291-297.
    [41] Lawson LD, Wang ZJ, Papadimitriou D. Allicin release under simulated gastrointestinal conditions from garlic powder tablets employed in clinical trials on serum cholesterol. Planta Med 2001; 67(1):13-18.
    [42] Eilat S, Oestraicher Y, Rabinkov A, Ohad D, Mirelman D, Battler A, Eldar M, Vered Z. Alteration of lipid profile in hyperlipidemic rabbits by allicin, an active constituent of garlic. Coron. Artery Dis 1995; 6(12):985-990.
    [43] Dillon SA, Burmi RS, Lowe GM, Billington D, Rahman K. Antioxidant properties of aged garlic extract: an in vitro study incorporating human low density lipoprotein. Life Sci 2003; 72(14):1583-1594.
    [44] Gonen A, Harats D, Rabinkov A, Miron T, Mirelman D, Wilchek M, Weiner L, Ulman E, Levkovitz H, Ben-Shushan D, Shaish A. The antiatherogenic effect of allicin: possible mode of action. Pathobiology 2005; 72(6):325-334.
    [45] Abramovitz D, Gavri S, Harats D, Levkovitz H, Mirelman D, Miron T, Eilat-Adar S, Rabinkov A, Wilchek M, Eldar M, Vered Z. Allicin-induced decrease in formation of fatty streaks (atherosclerosis) in mice fed a cholesterol-rich diet. Coron. Artery Dis 1999; 10(7):515-519.
    [1] Maertens J, Vrebos M, Boogaerts M. Assessing risk factors for systemic fungal infections. Eur J Cancer Care (Engl) 2001; 10(1):56-62.
    [2] Snydman DR. Shifting Patterns in the Epidemiology of Nosocomial Candida Infections*. Chest 2003; 123(5 suppl):500S -503S.
    [3]张秀珍.1986-2003年深部真菌感染及耐药趋势.抗真菌药物与真菌感染诊治研究学术会议论文集.2003年12月厦门:67-71.
    [4] Verduyn Lunel FM, Meis JF, Voss A. Nosocomial fungal infections: candidemia. Diagn. Microbiol. Infect. Dis 1999; 34(3):213-220.
    [5] Kullberg BJ, Oude Lashof AML. Epidemiology of opportunistic invasive mycoses. Eur. J. Med. Res 2002; 7(5):183-191.
    [6] Ellis M. Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol. Immunol 2002; 38(12-13):947-957.
    [7] Adams DJ. Fungal cell wall chitinases and glucanases. Microbiology (Reading, Engl.) 2004; 150(Pt 7):2029-2035.
    [8] Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362(9390): 1142-1151.
    [9] Bal AM. The echinocandins: three useful choices or three too many? Int. J. Antimicrob. Agents 2010; 35(1):13-18.
    [10] Garcia-Effron G, Park S, Perlin DS. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob. Agents Chemother 2009; 53(1):112-122.
    [11] Maligie MA, Selitrennikoff CP. Cryptococcus neoformans Resistance toEchinocandins: (1, 3) {beta}-Glucan Synthase Activity Is Sensitive to Echinocandins. Antimicrob. Agents Chemother. 2005; 49(7):2851-2856.
    [12] Chandrasekar PH, Sobel JD. Micafungin: a new echinocandin. Clin. Infect. Dis 2006; 42(8):1171-1178.
    [13] Vazquez JA, Sobel JD. Anidulafungin: a novel echinocandin. Clin. Infect. Dis 2006; 43(2):215-222.
    [14] Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J. Clin. Microbiol 2008; 46(1):150-156.
    [15] Pfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ. In vitro susceptibilities of Candida spp. to caspofungin: four years of global surveillance. J. Clin. Microbiol 2006; 44(3):760-763.
    [16] Antachopoulos C, Meletiadis J, Sein T, Roilides E, Walsh TJ. Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against germinated and nongerminated Aspergillus conidia. Antimicrob. Agents Chemother 2008; 52(1):321-328.
    [17] Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ. In Vitro Susceptibility of Clinical Isolates of Aspergillus spp. to Anidulafungin, Caspofungin, and Micafungin: a Head-to-Head Comparison Using the CLSI M38-A2 Broth Microdilution Method. Journal of Clinical Microbiology 2009; 47(10):3323-3325.
    [18] Arathoon EG, Gotuzzo E, Noriega LM, Berman RS, DiNubile MJ, Sable CA. Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrob. Agents Chemother 2002; 46(2):451-457.
    [19] Walsh TJ, Teppler H, Donowitz GR, Maertens JA, Baden LR, Dmoszynska A, Cornely OA, Bourque MR, Lupinacci RJ, Sable CA, dePauw BE. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N. Engl. J. Med 2004; 351(14):1391-1402.
    [20] Kuse E, Chetchotisakd P, da Cunha CA, Ruhnke M, Barrios C, Raghunadharao D, Sekhon JS, Freire A, Ramasubramanian V, Demeyer I. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. The Lancet 2007; 369(9572):1519-1527.
    [21] van Burik JH, Ratanatharathorn V, Stepan DE, Miller CB, Lipton JH, Vesole DH, Bunin N, Wall DA, Hiemenz JW, Satoi Y, Lee JM, Walsh TJ. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin. Infect. Dis 2004; 39(10):1407-1416.
    [22] Reboli AC, Rotstein C, Pappas PG, Chapman SW, Kett DH, Kumar D, Betts R, Wible M, Goldstein BP, Schranz J, Krause DS, Walsh TJ. Anidulafungin versus fluconazole for invasive candidiasis. N. Engl. J. Med 2007; 356(24):2472-2482.
    [23] Krause DS, Simjee AE, van Rensburg C, Viljoen J, Walsh TJ, Goldstein BP, Wible M, Henkel T. A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin. Infect. Dis 2004; 39(6):770-775.
    [24] Naider F, Shenbagamurthi P, Steinfeld AS, Smith HA, Boney C, Becker JM. Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother 1983; 24(5):787-796.
    [25] Shenbagamurthi P, Smith HA, Becker JM, Steinfeld A, Naider F. Design of anticandidal agents: synthesis and biological properties of analogs of polyoxin L. Journal of Medicinal Chemistry 1983; 26(10):1518-1522.
    [26] Khare RK, Becker JM, Naider FR. Synthesis and anticandidal properties of polyoxin L analogues containing alpha-amino fatty acids. J. Med. Chem 1988; 31(3):650-656.
    [27] Emmer G, Ryder NS, Grassberger MA. Synthesis of new polyoxin derivatives and their activity against chitin synthase from Candida albicans. J. Med. Chem 1985; 28(3):278-281.
    [28] Delzer J, Fiedler HP, Müller H, Z?hner H, Rathmann R, Ernst K, K?nig WA. New nikkomycins by mutasynthesis and directed fermentation. J. Antibiot 1984; 37(1):80-82.
    [29] Kakushima M, Masuyoshi S, Hirano M, Shinoda M, Ohta A, Kamei H, Oki T. In vitro and in vivo antifungal activities of BMY-28864, a water-soluble pradimicin derivative. Antimicrob Agents Chemother 1991; 35(11):2185-2190.
    [30] Gonzalez CE, Groll AH, Giri N, Shetty D, Al-Mohsen I, Sein T, Feuerstein E, Bacher J, Piscitelli S, Walsh TJ. Antifungal activity of the pradimicin derivative BMS 181184 in the treatment of experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob. Agents Chemother 1998;42(9):2399-2404.
    [31] Ohtsuka K, Watanabe M, Orikasa Y, Inouye S, Uchida K, Yamaguchi H, Kondo S, Takeuchi T. The in-vivo activity of an antifungal antibiotic, benanomicin A, in comparison with amphotericin B and fluconazole. J. Antimicrob. Chemother 1997; 39(1):71-77.
    [32] Johnson EM, Szekely A, Warnock DW. In-vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J. Antimicrob. Chemother 1998; 42(6):741-745.
    [33] Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv. Pharmacol 1998; 44:343-500.
    [34] Martín E, Parras P, Lozano MC. In vitro susceptibility of 245 yeast isolates to amphotericin B, 5-fluorocytosine, ketoconazole, fluconazole and itraconazole. Chemotherapy 1992; 38(5):335-339.
    [35] Arias A, Arévalo MP, Andreu A, Rodríguez C, Sierra A. In vitro susceptibility of 545 isolates of Candida spp. to four antifungal agents. Mycoses 1994; 37(7-8):285-289.
    [36] Dermoumi H. In vitro susceptibility of fungal isolates of clinically important specimens to itraconazole, fluconazole and amphotericin B. Chemotherapy 1994; 40(2):92-98.
    [37] Kondori N, Svensson E, Mattsby-Baltzer I. In vitro susceptibility of filamentous fungi to itraconazole, voriconazole and posaconazole by Clinical and Laboratory Standards Institute reference method and E-test [Internet]. Mycoses 2010.
    [38] Shi JY, Xu YC, Shi Y, LüHX, Liu Y, Zhao WS, Chen DM, Xi LY, Zhou X, Wang H, Guo LN. In vitro susceptibility testing of Aspergillus spp. against voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin. Chin Med J (Engl). 2010; 123:2706-2709.
    [39] Cornely OA, Maertens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, Helfgott D, Holowiecki J, Stockelberg D, Goh Y, Petrini M, Hardalo C, Suresh R, Angulo-Gonzalez D. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med 2007; 356(4):348-359.
    [40] Vazquez JA, Skiest DJ, Nieto L, Northland R, Sanne I, Gogate J, Greaves W, Isaacs R. A multicenter randomized trial evaluating posaconazole versusfluconazole for the treatment of oropharyngeal candidiasis in subjects with HIV/AIDS. Clin. Infect. Dis 2006; 42(8):1179-1186.
    [41] Ullmann AJ, Lipton JH, Vesole DH, Chandrasekar P, Langston A, Tarantolo SR, Greinix H, Morais de Azevedo W, Reddy V, Boparai N, Pedicone L, Patino H, Durrant S. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N. Engl. J. Med 2007; 356(4):335-347.
    [42] Suzuki E, Tanaka AK, Toledo MS, Levery SB, Straus AH, Takahashi HK. Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Biochim. Biophys. Acta 2008; 1780(3):362-369.
    [43] Shimizu T, Kinoshita H, Nihira T. Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol. Lett 2006; 28(2):115-120.
    [44] Denny PW, Shams-Eldin H, Price HP, Smith DF, Schwarz RT. The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem, 2006; 281:28200 - 28209.
    [45] Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG, Kurtz MB. Khafrefungin, a novel inhibitor of sphingolipid synthesis. J. Biol. Chem 1997; 272(51):32709-32714.
    [46] Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ, Bartizal K, Dreikorn S, Kurtz MB. Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J. Biol. Chem 1998; 273(24):14942-14949.
    [47] Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob. Agents Chemother 1998; 42(11):2863-2869.
    [48] Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob. Agents Chemother 2000; 44(12):3389-3394.
    [49] Clemons KV, Stevens DA. Efficacies of sordarin derivatives GM193663, GM211676, and GM237354 in a murine model of systemic coccidioidomycosis. p6. Antimicrob. Agents Chemother 2000; 44(7):1874-1877.
    [50] Ebiike H, Masubuchi M, Liu P, Kawasaki K, Morikami K, Sogabe S, Hayase M,Fujii T, Sakata K, Shindoh H, Shiratori Y, Aoki Y, Ohtsuka T, Shimma N. Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2. Bioorg. Med. Chem. Lett 2002; 12(4):607-610.
    [51] Prasad KK, Toraskar MP, Kadam VJ.N-myristoyltransferase: a novel target Mini Rev Med Chem. 2008; 8(2):142-9.
    [52] Masubuchi M, Ebiike H, Kawasaki K, Sogabe S, Morikami K, Shiratori Y, Tsujii S, Fujii T, Sakata K, Hayase M, Shindoh H, Aoki Y, Ohtsuka T, Shimma N. Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase. Bioorg. Med. Chem 2003; 11(20):4463-4478.
    [53] Ebara S, Naito H, Nakazawa K, Ishii F, Nakamura M. FTR1335 is a novel synthetic inhibitor of Candida albicans N-myristoyltransferase with fungicidal activity. Biol. Pharm. Bull 2005; 28(4):591-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700