小肽铬对大鼠生长性能和糖代谢的影响与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以SD大鼠和L6骨骼肌细胞为研究对象,通过体内和体外两部分试验,研究了自备小肽铬对大鼠生长性能和糖代谢的影响与作用机理。
     体内试验,以吡啶羧酸铬为试验对照,研究了不同水平小肽铬对大鼠生长性能和糖代谢的影响。选用72只健康的清洁级SD大鼠(雌雄各半),按体重一致的原则分6个处理,每个处理6个重复,每个重复2只大鼠;分别在6组大鼠的基础日粮中添加0、100、200、500、1000μg/kg铬(小肽铬源)和200μg/kg铬(吡啶羧酸铬源)。饲养期间,大鼠自由采食,饮用双重蒸馏水,试验期35 d。试验结果表明:
     饲粮小肽铬显著提高大鼠日增重(ADG)和饲料转化效率(FE)。500μg/kg的小肽铬源铬,提高ADG可达17.5%(P<0.05),比吡啶羧酸铬高6.8个百分点。提高FE可达23.2%(P<0.05),比吡啶羧酸铬高14个百分点。达最大ADG和最高FE的饲粮小肽铬添加量分别为524和528μg/kg。
     饲粮添加小肽铬,显著影响生理生化参数。200μg/kg和500μg/kg的小肽铬分别显著降低胰岛素水平39.2%和24.5%(P<0.05),500μg/kg的小肽铬显著提高乳酸脱氢酶(LDH)和肌酸激酶(CK)活性(P<0.05)。饲粮添加267μg/kg小肽铬,可最大限度提高胰岛素效率。
     饲粮小肽铬也显著促进骨骼肌糖代谢。500μg/kg的小肽铬显著提高琥珀酸脱氢酶(SDH)活性(P<0.05),提高总ATP酶活性20.8%(P=0.053),显著增加乳酸(LD)、丙酮酸(PD)和肌糖原含量(P<0.05)。
     体外试验,以L6骨骼肌细胞为研究对象,在模拟生理胰岛素水平和不含胰岛素的培养条件下,考察了小肽铬对葡萄糖代谢的影响与作用机理,各分4个处理,每个处理4个重复;以不添加任何铬源为空白对照,以三氯化铬和吡啶羧酸铬处理为试验对照,测定糖分解代谢和合成代谢过程的中间产物、起关键调控作用的酶活性,及糖代谢调控相关蛋白mRNA表达的量。试验结果表明:
     在生理胰岛素水平和不含胰岛素条件下添加小肽铬,均可促进骨骼肌细胞对葡萄糖的吸收和代谢,显著提高已糖激酶(HK)、LDH、苹果酸脱氢酶(MDH)、SDH和CK活性(P<0.05),显著增加LD和PD浓度(P<0.05)。
     基因表达测定表明,骨骼肌细胞在生理胰岛素水平或不含胰岛素的条件下培养,小肽铬均能显著上调胰岛素受体(IR)、葡萄糖转运载体蛋白4(GLUT4)、糖原合成酶(GS)和解偶联蛋白3(UCP3)mRNA的表达(P<0.05)。添加小肽铬对上述指标的提高幅度均大于三氯化铬和吡啶羧酸铬。
     综合两部分试验结果发现:
     ①小肽铬增强胰岛素效率、促进糖代谢、提高能量利用效率,提高饲料利用效率,作用效果优于三氯化铬和吡啶羧酸铬;
     ②小肽铬对糖代谢的促进作用可不依赖于胰岛素,并能显著增强胰岛素的作用;
     ③小肽铬通过上调IR、GLUT4和UCP3 mRNA的表达量,提高细胞对葡萄糖的摄取和转运,促进糖酵解和三羧酸循环,增强糖分解代谢供能;并通过上调GS mRNA的表达水平,促进肌糖原合成,增加能量的贮备,从而提高能量利用效率,提高大鼠生长性能和饲料转化效率。
Chromium (Cr) is an essential trace mineral of humans and animals. Despite over five decades of endeavour, the role of Cr at cell and molecular level has been a poorly understood field of study. Two experiments were conducted to invertigate the influence of CrSP (Chromium chelated small peptides) on glucose metabolism and the possible mechanisms on cell and molecular level.
     Trial 1 Effects of CrSP on the growth performance and glucose metabolism in Spargue-Dawley (SD) rats
     In this experiment, 72 SD rats with initial body weight of 65±5 g were randomly assigned to six dietary treatment groups (n=12). The first group was offered a basal diet as a control. The second, third, fourth and fifth groups received basal diet supplemented with 100, 200, 500 and 1000μg/kg Cr (CrSP), and the sixth group was offered basal diet supplemented with 200μg/kg Cr in the form of chromium picolinate (CrPic), respectively. At the end of the 5-week trial, average daily gain (ADG), food efficiency (FE), and sera concentrations of insulin, glucose, and glucose metabolism-related enzymes were determined. The results indicated that rats that received 500μg/kg CrSP exhibited great improvement in ADG and FE compared to the control group and CrPic group (P<0.05). There was not significant difference between the gtoups of 100, 200μg/kg CrSP. 200μg/kg CrPic and the control group (P>0.05). The results of blood biochemical parmeters in SD rat showed that the concentration of blood glucose and insulin were both significantly decreased (P<0.05), enzyme activity of LDH and SDH were significantly increased (P<0.05), and the LD, PD and muscle glycogen in the skeletal muscle were significantly increased (P<0.05), with the supplementation of 500μg/kg CrSP.
     Trial 2 Effects of CrSP on the glucose metabolism in L6 skeletal muscle cells and Approach to the Mechanism
     The aim of the second part of this study was to evaluate the impact of three different chromium forms as chromic chloride (CrCl), chromium picolinate (CrPic), and CrSP on glucose uptake and metabolism in vitro. The result showed that in cultured L6 skeletal muscle cells, chromium augmented insulin-stimulated glucose uptake and metabolism as assessed by a reduced glucose concentration of culture medium (P<0.05). And the glucose metabolism relative enzymy activity,such as HK、LDH、MDH、SDH were significantly increased (P<0.05). At the molecular level, insulin signifieantly increased the mRNA levels of insulin receptor (ER), glucose transporter 4 (GLUT4), glycogen synthase (GS) and uncoupling protein- 3 (UCP3), and these impacts can be enhanced by the addition of chromium (P<0.05), especially in the form of CrSP.
     Collectively, results of this study demonstrate that chromium improves glucose catabolism and anabolism through enhances the function of insulin, improves the glucose metabolism relative enzymy activity of HK、LDH、MDH and SDH, upregulates the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. CrSP has independent insulin like function, and has higher efficacy on glucose uptake and metabolism compared to the forms of CrCl and CrPic.
引文
[1]Mertz W.,Schwarz K.Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration[J].Arch Biochem Biophys,1955,58:504-506.
    [2]Schwarz K.,Mertz W.Chromium(Ⅲ) and glucose tolerance factor[J].Arch Biochem Biophys,1959,85:292-295.
    [3]Jeejeebhoy K.N.,Chu R.C.,Marliss E.B.,et al.Chromium deficiency,glucose intolerance,and neuropathy reversed by chromium supplementation,in a patient receiving long-term total parenteral nutrition[J].Am.J.Clin.Nutr.,1977,30:531-538.
    [4]Page T.G.,Southern L.L.,Warred T.L.Chromium supplementation of corn-soybean meal diets for finising swine[J].J.Anim.Sci.,1990,68(suppl.):39.
    [5]Chang,X.,Mowat D.N.,Spiers G.A.Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium[J].Can.J.Anim.Sci.,1992,72:663-669
    [6]National Research Council.Nutrient requirements of swine,10th revised edition[M].Washington,D.C.,National Academy Press,1998.
    [7]Anderson,R.A.Chromium in animal tissues and fluids[A],in Trace Elements in Human and Animal Nutrition.Mertz W.,ed.Vol.1.5th edition[M].New York:Academic Press,Inc.1987,225-244.
    [8]Starich,G.H.,Blincoe C.Dietary chromium-forms and availabilities[J].The Science of the Total Environment,1983,28:443-454.
    [9]Stearns,D.M.,Belbruno J.J.,Wetterhahn K.E.Chromium(Ⅲ) picolinate produces chromosome damage in Chinese hamster ovary cells[J].FASEB J,1995,9:1643-1648.
    [10]Yang X.P.,Palanichamy K.,Ontko A.C.,et al.A newly synthetic chromium complex-chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance[J].FEBS Letters,2005,579:1458-1464.
    [11]乔伟.小肽铬的制备及其吸收效应探讨[D].雅安:四川农业大学,2004.
    [12]乔伟,周安国,王之盛.小肽促进微量元素吸收的研究进展[J].饲料工业,2006,17:12-14.
    [13]Parisini P.,Cicipioni R.S.,Archetti S.,et al.Effects of peptide components in a proteolysate in piglet nutrition.Zoo[J].Nutr.Anim.1989,15:637-644.
    [14]Cahu C.,Zambonino J.L.Maturation of the pancreatic and intestinal functions in sea bass(Dicentrarchus labrax):effect of weaning with different protein sources[J].Fish Physiol Biochem.1995,14:431-437.
    [15]施用晖,乐国伟,杨风.不同比例小肽与游离氨基酸对来航公鸡氨基酸吸收的影响[J].四川农业大学学报,1996,14(增刊):37-45.
    [16]Zambonino J.,Cahn C.,Peres A.Partial substitution of di-and tri-peptides forn ative proteins in sea bass diets improves dicentrarchusl abrax larval development[J].J.Nutr.1997,127:608-614.
    [17]曹光辛,林其慕.鹤鹁生产试验简报[J].中国家禽,1998,20(12):41-42.
    [18]王碧莲,徐加锐,钱雪桥.小肽制品对欧鳗生长特征的影响[J].淡水渔业,2001,31(2):42-43.
    [19]王碧莲,周围,罗虹,周赶谱.喂大快对产蛋鸡后期生产性能的影响[J].饲料研究,2000,(2):32-33.
    [20]高欣,马秋刚,计成,等.肠膜蛋白粉对早期断奶仔猪生产性能及消化道的影响[J].动物营养学报,2001,13(2):15-19.
    [21]Page,T.G.,Southern L.L.,Ward T.L.,et al.Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs[J].J.Anim.Sci.1993,71:656-662.
    [22]Zha L.,Xu Z.,Wang M.,et al.Effects of chromium nanoparticle dosage on growth,body composition,serum hormones and tissue chromium in Sprague-Dawley rats[J].J Zhejiang Univ Sci B.2007,8(5):323-330.
    [23]Vincent J.B.The biochemistry of chromium[J].J Nutr.2001,130:715-718.
    [24]Speetjens J.K.,Collins R.A.,Vincent J.B.,et al.The nutritional supplement chromium(Ⅲ) tris(pieolinate) cleaves DNA[J].Chem Res Toxicol.1999,12:483-487.
    [25]Steele N.C.,Riehards M.P.,Rosebrough R.W.Effeet of dietary chromium and protein status on hepatic insulin binding characteristics of swine[J].J.Anim.Sci.,1982,55(suppl):300.
    [26]Mooney K.W.,Cromwell G.L.Effects of dietary chromium picolinate supplementation on growth,carcass characteristics,and accretion rates of carcass tissues in growing-finishing swine[J].J Anim.Sci,1995,75:2661-2671.
    [27]Lein,T.F.,Chen S.Y.,Wu C.P.,et al.Effects of chromium picolinate and chromium chloride on growth performance and serum traits of growing-finishing swine[J].J.Anim.Sci.1996,74(Suppl.1):185(Abstr.).
    [28]Harper A.F.,Komegay E.T.Supplemental dietary chromium and fish meal for pigs from weaning to slaughter weight[J].J Anim Sci,1996,74(Suppl.1):194(Abstr.).
    [29]张敏红,张应龙.持续日变高温对猪的铬代谢及血液生化指标的影响[J].畜牧兽医学报,1998,29(2):112-120.
    [30]Lien T.F.,Homg Y.M.,Yang K.H.Performance,serum characteristics,carcase traits and lipid metabolism of broilers as affected by supplement chromium pieolinate[J].British Poultry Science,1999,40:357-363.
    [31]Steele N.C.,Rosebrogh M.P.Trivalent chromium and nicotinic acid supplementation for the turkey Poult[J].Poult.Sci,1979,58:983.
    [32]吴永胜.饲料中添加铬—烟酸复合物对肉鸭生产性能、体成分及血液生化指标的影响[D].重庆:西南农业大学,1998.
    [33]王丹莉,张敏红.高温时日粮铬水平对肉鸡血液生理生化和脂肪代谢的影响[J].动物营养代谢研究,1999,165-170.
    [34]Holoubek J.,Jankovsky M.,Arent E.,et al.Importance of organic form of chromium in turkey fattening[J].Scientia-Agriculturae-F3ohemica.1997,28:147-159.
    [35]呙于明,刘彩霞,周毓平.高温应激对肉仔鸡的影响及补铬的效果研究[J].畜牧兽医学报.1998,29(4):339-344.
    [36]郭艳丽,罗绪刚,郝正里,等.铬对肉仔鸡生长性能、血清生化特性、免疫功能和胴体品质的影响[J].中国农业科学,1999,32(5):79-86.
    [37]Chang X.,Mowat D.N.Supplemental chromium for stressed and growing feeder calves[J].J.Anim.Sci.1992,70:559-565.
    [38]Mowat D.N.,Chang X.,Yang W.Z.Chelated chromium for stressed feeder calves[J].Can.J.Anim.Sci.1993,73:49-55.
    [39]Mowat D.N.,Lyons T.P.,Jacques K.A.Organic chromium:a new nutrient for stressed animals.Biotechnology in the feed industry:Proceedings of Alltech's Tenth Annual Symposium[C].1994,275-282.
    [40]Moonsie S.S.,Mowat D.N.Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves[J]. J. Anim. Sci. 1993, 71:232-238.
    [41] Kegley E.B., Spears J. W., Brown Jr. Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride[J]. J. Dairy Sci. 1996, 79:1278-1283.
    [42] Anderson R.A. Chromium in the prevention and control of diabetes[J]. Diabetes Metab,2000,26(1):22.
    [43] Jovanovic L., Gtierrez M., Peterson CM. Chromium supplementation for women with gestational diabetes mellitus[J]. J Trace Elem Exp Med, 1999,12 (2):91-97.
    [44] Ravina A., Slezak L., Mirsky N., et al. Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium[J]. Diabetic Med, 1999,16(2) :164.
    [45] Shinde U.A., Sharma G., Xu Y.J., et al. Insulin sensitizing action of chromium picolinate in various experimental models of diabetes mellitus[J]. J Trace Elem Med Biol,2004, 18 (1) :23.
    [46] Cefalu W.T., Wang Z.Q., Zhang X.H., et al. Oral chromiumpicolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle glut4 translocation in obese ,hyperinsulinemic (JCR2LA Corpulent) rats[J]. J Nutr, 2002,132 (6) :1107.
    [47] Davis C. M., Vincent J. B. Chromium oligopeptide activeates insulin recaptor tyrosine kinase activeity[J]. Biochemistry. 1997, 36:4382-4385.
    [48] Wang H., Kruszewski A., Brautigan D.L. Cellular chromium enhances activation of insulin receptor kinase[J]. Biochemistry, 2005,44:8167.
    [49] Chen G.L., Liu P., Pattar G.R., et al. Chromium Activates Glucose Transporter 4 Trafficking and Enhances Insulin-Stimulated Glucose Transport in 3T3-L1 Adipocytes via a Cholesterol-Dependent Mechanism[J]. Molecular Endocrinology, 2006, 20(4):857-870.
    [50] Jain S.K., Patel P., Rogier K., et al. Trivalent chromium inhibits protein glycosylation and lipid peroxidationn in high glucose2treated erythrocytes[J]. Antioxid Redox Signal, 2006,18:238.
    [51] Vincent J.B. Mechanisms of chromium action : low-molecular-weight chromium2binding substance[J]. J Am Coll Nutr, 1999, 18(1) :6.
    [52]Vincent J.B.Elucidating a biological role for chromium at a molecular level[J].Acc Chem Res.2000,33:503-510.
    [53]Vincent J.B.Recent advances in the nutritional biochemistry of trivalent chromium[J].Proceedings of the Nutrition Society,2004,63(1):41.
    [54]Wild S.,Roglic G.,Green A.,et al.Global prevalence of diabetes:estimates for the year 2000 and projections for 2030[J].Diabetes Care.2004,27:1047-1053.
    [55]Anderson R.A.,Cheng N.,Bryden N.A.,et al.Elevated intakes of supplemental chromium improved glucose and insulin variables in individuals with type 2 diabetes[J].Diabetes,1997,46(11):1786-1791.
    [56]Toepher E.W.,Mertz W.,Roginski E.E.,et al.Chromium in foods in relation to biological activeity[J].J.Agri.Food Chem.1973,21:69-73.
    [57]Anderson R.A.,Bryden N.A.,Polansky M.M.,et al.Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats[J].J Trace Elem in Exper Med,1996,9:11-17.
    [58]Downes A.M.,McDonad I.W.The chromium-Si complex of ethylene diaminotetracetic acid as soluble rumen marker[J].British J.Nutr.1964,18:153-163.
    [59]董晓慧,陈靖华,滕冰,等.不同形式铬对肉仔鸡组织器官铬浓度的影响[J].饲料博览,2001,增刊:92-94.
    [60]Manygoats K.R.,Stearns D.M.Ultrast ructural damage in chromium picolinate treated cells:a TEM study[J].J Biol Inorg Chem,2002,7:791-798.
    [61]Stearns D.M.,Silveira S.M.,Wolf K K.,et al.Chromium(Ⅲ) tris(picolinate) is mutagenic at the hypoxanthine(guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells[J].Mutation Research,2002,51:135-142.
    [62]Green D.,Kroemer G.The central executioners of apoptosis:caspases or mitochondria ?[J].Trends Cell Biol,1998,8:267-271.
    [63]Stohs S.J.,Bagchi D.,Bagchi M.,et al.Comparative induction of oxidative st ress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate[J].Res Commun Mol Pat hol Pharmacol,1998,97(3):335-346.
    [64]Hepburn D.D,Burney J.M.,Woski So A.,et al.The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidised lipids in vivo [J].Polyhedron,2003,22:455-463.
    [65]Whittaker P.,San R.H.,Clarke J.J.,et al.Mutagenicity of chromium picolinate and it s component s in Salmonella typhimurium and L5178 Y mouse lymphoma cells[J].Food and Chemical Toxicology,2005,43:1619-16251.
    [66]Kato I.,Vogelman J.H.,Dilman V.,et al.Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil[J].Eur J Epidemol,1998,14:621-626.
    [67]Anderson R.A.,Bryden N.A.,Polansky M M.Lack of toxicity of chromium chloride and chromium picolinate in rats[J].J Am Coll Nutr,1997,16:273-279.
    [68]毕晋明.超量添加吡啶甲酸铬对猪细胞DNA的影响[D].陕西杨凌:西北农林科技大学,2007.
    [69]Matthews J.O.,Guzik A.C.,LeMieux F.M.,et al.Effects of chromium propionate on growth,carcass traits,and pork quality of growing-finishing pigs[J].J.Anim.Sci.2006,84:858-862.
    [70]金花.微生物发酵法研制富铬酵母[D].吉林长春:吉林大学,2004.
    [71]关荣发.纳米三价铬对生长肥育猪胴体组成和免疫机能的影响及其作用机理探讨[D].浙江杭州,浙江大学硕士,2003.
    [72]王敏奇.纳米粒径化处理三价铬对杜长大肥育猪胴体组成、肉质和组织铬沉积的影响及其机理研究[D].浙江杭州,浙江大学,2004.
    [73]Zha L.,Zeng J.,Sun S.,et al.Chromium(Ⅲ) Nanoparticles Affect Hormone and Immune Responses in Heat-Stressed Rats[J].Biol Trace Elem Res,2008,DOI 10.1007/s12011-008-8282-9.
    [74]张华.蛋氨酸螯合铬食品添加剂的研究[D].哈尔滨,东北农业大学,2003.
    [75]李正刚.胶原蛋白铬螯合物的制备及降血糖功效的研究[D].天津,天津科技大学,2004.
    [76]李俊艳.胶原蛋白多肽-铬螯合物降血糖、抗热应激保健功效的研究[D].石家庄:河北农业大学,2004.
    [77]彭忠利,乔伟.周安国,等.肉鸡对不同铬源吸收的比较研究[J].动物营养学报.2008,20(2):128-132.
    [78]俞酶兰.槲皮素铬配合物的合成、表征及生物活性研究[D].江西南昌:南昌大学,2006.
    [79]刘祎春,刘钢.芦丁铬的合成及应用研究[J].宁夏工程技术.2002,1(3):224-226.
    [80]冯培刚,韩友文.微量元素铬对肉仔鸡屠体、肌肉组织组成及血清代谢物的影响[J].饲料博览,2001,增刊:103-110.
    [81]腾冰,韩友文.微量元素氨基酸螯合物及其应用中的若干问题[J].饲料博览.2001,增刊:14-20.
    [82]Lindemann M.D.,W ood C.M.,Harper A.F.,et al.Dietary chromium picolinate additions improve gain:feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows[J].Anim.Sci.1995,73(2):457-465.
    [83]Hasten D.L.,Hegsted M.,Keenan M.J.,et al.Dosage efects of chromium picolinate on growth and body composition in the rat[J].Nutr.Res.,1997,17(7):1175-1186.
    [84]Amoikon E.K.,Femandez J.M.,Southern L.L.,et al.Effect of chromium tripicoliante on growth,glucose tolerance,insulin sensitivity,plasma metabolites and growth hormone in pigs[J].Anim.Sci.,1995,73(4):1123.1130.
    [85]刘珍珍.有机铬影响肉鸡生长的分子机制[D].北京:中国农业大学,2007.
    [86]Evans G.W.,Bowman T.D.Chromium picolinate increased memberane fluidity and rate of insulin internalization[J].J.Inorg.Biochem.1992,46:243-250.
    [87]Pechova A.,Pavlata.L.Chromium as an essential nutrient:a review[J].Veterinarni Medicina,2007,52(1),1-18.
    [88]孙长颗,张薇,王舒燃等.铬对大鼠体重及体内瘦素和胰岛素水平的影响[J].卫生研究,2000,29(6):14-17.
    [89]Striffler S.S.,Polansky M.M.,Anderson R.A.Dietary chromium enhances insulin secretion in perfused rat pancreas[J].J.Trace Elem.Exp.Med.1993,6:75.
    [90]Ward T.L.,Berrio L.E.,Southern L.L.,et al.In-vivo and in-vitro evaluation of chromium tripicolinate on insulin binding in pig liver cell plasma membranes[J].FASEB J.1994,8:A194.
    [91]Steele N.C.,Rosebrough R.W.Effect oftrivalent chromium on hepatic lipogenesis by the turkey poult[J].Poultry Science.1981,60:617.
    [92]Morris B.W.,Blumsohn A.,Neil S.M.,et al.The trace element chromium-a role in glucose homeostasis[J]. American Journal of Clinical Nutrition, 1992,55:989.
    [93] Morris B.W., et al, Glucose dependent uptake of chromium in human and rat insulin-sensitive tissues[J]. Clinical Science, 1993, 84:477.
    [94] Mertz W. Chromium occurrence and function in biological systems[J]. Physiological Reviews, 1969,49(2): 163-169.
    [95] Davis C.M., Sumrall K.H., Vincent J.B. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP) [J]. Biochemistry, 1996, 35: 129-133.
    [96] Wayne W., et al, Exercise training and dietary chromium effects on glycogen synthase, phosphorylase and total protein in rats[J]. J. Nutri. 1988, 119:653.
    [97] Rosebrough R. W. Steele N. C. Effect of supplemental dietary chromium or nicotinic acid on carbohydrate metabolism during basal, starvation, and refeeding periods in poults[J]. Poultry Science, 1981, 60:407-417.
    
    [8] Horecker B. L., Stotz E., Hogness T. R. The promoting effect of chromium and the rare earths in the succinic dehydrogenase cytochrome system[J]. J. Biol. Chem., 1939, 128:251-256.
    [99] Stickland L. H. Activation of phosphoglucomutase by metals ions[J]. Biochem.J. 1949,44:190-197.
    [100] Curran G. L. Effect of certaion transition group eklements on hepatic synthesis of cholesterol in the rat[J]. J. Biol. Chem. 1954,210:765-770.
    [101 ] Liarn T. F., Chen S. Y., Horng Y. M., et al. The effects of adding chromium picolinate on the growth perfomance, serum traits, liver ATP-citrate, Fructose-1,6-diphosphatase activities and carcass characteristics of broilers[J]. Taiwan Journal of Veterinary Medicine and Animal Husbandry. 1993,62:1-10.
    [102] Lien T.F., Wu C.P., Lin B.H., et al. Effect of different protein and limiting amino acid levels coupled with a supplement of chromium picolinate on lipid metabolism and carcass characteristics of pigs[J]. Animal Science, 1998, 67(3):601-607.
    [103] Gardner G.E., Pethick D.W., Smith G. Effect of chromium chelative supplementation of the metabolism of glycogen and lipid in adult Merino sheep[J]. Austr. J. Agric. Res. 1998,49:137.
    [104]Kramer P.,Nowak T.The preparation and characterization of Cr(Ⅲ) and Co(Ⅲ)complexes of GDP and GTP and their interactions with avian phosphoenolpyruvate carboxykinase[J].J.Inorganic Biochemistry,1988,32:135.
    [105]张伟,韩友文,许梓荣,等.铬对肉仔鸡激素代谢及酸烯醇式丙酮酸羧激酶与脂肪酸合成酶的影响[J].饲料博览增刊.2001,123-133.
    [106]沈同,王镜岩.生物化学(第二版)[M].北京,高等教育出版社,2000,78-161.
    [107]Speck J.R.The effects of cation on the decarboxylation of oxalacetic acids[J].J.Biol.Chem.1949,178:315.
    [108]董宝军.吡啶羧酸铬对猪生产性能、肉品质及肌细胞胰岛素受体基因表达的影响[D].北京:中国农业科学研究院,2002.
    [109]Mertz W.,Toepfer E.W.,Roginski E.E.,et al.Present knowledge of the role of chromium[J].Fed.Proc.1974,33:2275-2280.
    [110]Toepfer E.W.,Mertz W.,Polansky M.M.,et al.Preparation of chromium-containing material of glucose tolerance factor activity from brewer's yeast extracts and by synthesis[J].J.Agric.Food Chem.1977,25:162-166.
    [111]Vincent J.B.Relationship between glucose tolerance factor and low-molecular-weight chromium-binding substance[J].J.Nutr.1994,124:117.
    [112]Wada O.,Wu G.Y.,Yamamoto A.Purifyication and chromium-excretory function of low-molecular-weight,chromium binding substances from dog liver[J].Environ.Res.1983,2:228-239.
    [113]Yamamoto A.,Wade O.,Ono T.Distribution and chromium-binding capacity of a low-molecular-weight,chromium-binding substance in mice[J].J.Inorg.Biochem.1984,22:91-102.
    [114]Yamamoto A.,Wade O.,Ono T.Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver[J].Eur.J.Biochem.1987,165:627-631.
    [115]Yamamoto A.,Wade O.,Suzuki H.Purification and propertyes of biologically active chromium complex from bovine colostrum[J].J.Nutr.1988,118:39-45.
    [116]Davis C.M.,Vincent J.B.Chromium in carbohydrate and lipid metabolism[J].J.Biol.Inorg.Chem.1997,2:675-679.
    [117]Davis C.M.,Vincent J.B.Synthetic multinuclear chromium assembly activeates insulin receptor kinase activeity:functional model for low-molecular-weight,chromium-binding substance[J].Inorg.Chem.1997,36:5316-5320.
    [118]Davis C.M.,Vincent J.B.Isolation and characterizeation of a biologically active form of chromium oligopeptide from bovine liver[J].Arch.Biochem.Biophys.1997,339:335-343.
    [119]Gayatri R.,Rajaram R.,Nair B.U.,et al.Chromium-induced molecular assemblies and long range ordering in collagenous tissues:A conceptual insight into chromium tanning[J].Proc Indian Acad Sci(Chem Sci),1999,111:133-145.
    [120]Gayatri R.,Rajaram R.,Rajaram A.,et al.Chromium induced structural changes in biomolecules[J].Proc Indian Acad Sci(Chem Sci),1997,109:307-317.
    [121]Dinakarpandian D.,Morrissette V.,Chaudhary S.,et al.An informatics search for the low-molecular weight chromium-binding peptide[J].BMC Chemical Biology 2004,4:2,doi:10.1186/1472-6769-4-2.This article is available from:http://www.biomedcentral.com/1472-6769/4/2.
    [122]Stearns D.M.,Belbruno J.J.,Wetterhahn K.E.A prediction of chromium(Ⅲ)accumulation in humans from chromium dietary supplements[J].FASEB J,1995,9:1650-1657.
    [123]Mertz W.Chromium in human nutrition:a review[J].J Nutr,1993,123:626-633.
    [124]Sahin N.,Onderci M.,Sahin K.Effects of dietary chromium and zinc on egg production,egg quality,and some blood metabolites of laying hens reared under low ambient temperature[J].Biol Trace Elem Res,2002,85(1):47-58.
    [125]Kim J.K.,Zisman A.,Fillmore J.J.,et al.Glucose toxicity an d the development of diabetes in mice wit} I muscle-specific inactivation of GLUT4[J].J Clin Invest,2001,108:153-160.
    [126]唐火顺,等.体育训练与血清乳酸脱氢酶同工酶关系的观察[J].体育与科学,1986,2:45-52.
    [127]王荣辉,刘桂华,胡琪,等.低氧训练对大鼠骨骼肌乳酸脱氢酶和节果酸脱氢酶活性的影响[J].北京体育大学学报.1998,21(3):31-34.
    [128]闻芝梅,陈君石.现代营养学.北京:人民卫生出版社,1999,330-338.
    [129]Huertas R.,et al.Respirtoty chaim enzyme in muscle of endurance atbletes[J].Biochem Biophys Commun.1992,188(1):102-108.
    [130]Wang Z.F.,Yang Y.,Zhou H.M.Conformational changes of active sites during refolding of urea-denatured creatine kinase[J].Biochimie,1995,77:953-956.
    [131]Yang Y.,Park Y.D.,Yu T.W.,et al.eactivation and refolding of a partially folded creatine kinase modified by 5,5-Dithio-bis(2-nitrobenzoic acid)[J].Biochem.Biophys.Res.Commun.1999,259:450-454.
    [132]李志英,等.运动的强度和时间对运动后血清磷酸肌酸激酶和乳酸脱氢酶活性的影响[J].天津体育学院学报.1987,1:1-8.
    [133]张蕴琨.力量练习对血清肌酸激酶、肌红蛋白和尿甲基组氨酸水平的影响[J].中国运动医学杂志,1994,13(1):7-10.
    [134]Miranda E.R.,Dey C.S.Effect of chromium and zinc on insulin signaling in skeletal muscle cells[J].Biol Trace Elem Res.2004,101:19-36.
    [135]Tremblay F.,Dubois M.J.,Marette A.Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle[J].Front Biosci,2003,8:1072-1084.
    [136]Hoenack C.,Roesen P.Inhibition of angiotensin type 1 receptor prevents decline of glucose transporter(GLUT4)in diabetic rat heart[J].Diabetes,1996,45(suppl 1):S82-S87.
    [137]Marette A.,AtGie C.,Liu Z.,et al.Differential regulation of GLUT1 and GLUT4glucose transporters in skeletal muscle of a new modei of type Ⅱ diabetes[J].Diabetes,1993,42:1195-1201.
    [138]Garvey W.T.,Maianu L.,Huecksteadt T.P.,et al.Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity[J].J Clin Invest,1991,87:1072-1081.
    [139]孙忠,吴蕴棠,车素萍,等.铬对糖尿病大鼠骨骼肌GLUT4基因表达的影响[J].营养学报.2005,27(3):196-199.
    [140]Patrick S.,Joris H.,Matthijs K.C.,et al.Putative function and physiological relevance of the mitochondrial uncoupling protein-3:Involvement in fatty acid metabolism?[J].Progress in Lipid Research,2006,45:17-41.
    [141]John C.C.,Jonathan R.S.,Helen C.Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean[J].Nature,2000,406:415-417.
    [142]Knoll A.,Putnova L.,Dvorak J.,et al.Linkage mapping of an Ava I PCR-RFLP within the porcine uncoupling protein 3(UCP3) gene.Anim Genet,2000,31(2):156-157.
    [143]Lowell B.B.,S-Susulic V.,Hamann A.Development of obesity in transgenic mice after genetic ablation of brown[J].Nature,1993,366:740-742.
    [144]刘平祥.谷胱甘肽对断奶仔猪的促生长作用及其机制[D].广州:华南农业大学,2002.
    [145]韦建福.谷胱甘肽和肌肽促黄羽肉鸡生长及其机制的研究[D].广州:华南农业大学,2004.
    [146]李文清.肌肽、肌肽锌对黄羽肉鸡生长及肉品质的影响[D].广州,华南农业大学,2005.
    [147]梁春梅.还原型谷胱甘肽对奥尼罗非鱼(Oreochromis niloticus×O.aureus)幼鱼生长、免疫功能的影响及其机理研究[D].广州:华南农业大学,2006.
    [148]张国良.肌肽、肌肽锌对奥尼罗非鱼抗氧化水平及生长的影响[D].广州:华南农业大学,2007.
    [149]王镜岩,朱圣庚,徐长法.生物化学(第三版,上册)[M],北京:高等教育出版社,2002,564
    [150]Thorbum A.W.,et al.Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in noninsulin-dependent diabetes mellitus[J].J clin invest,1991,87:489-490.
    [151]王艳荣,前荣立,马晓伟.实验性糖尿病大鼠肝糖原合成酶活性的改变[J].北京医科大学学报,1998,30:46-49.
    [152]Sun Y.,Ramirez J.,Woski S.A.,et al.The binding of trivalent chromium to low-molecular-weight chromium-binding substance(LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCr[J].JBIC,2000,5:129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700