运动改善胰岛素抵抗:骨骼肌线粒体解偶联蛋白3作用的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过高脂饲料喂养C57BL/6小鼠以建立胰岛素抵抗(IR)动物模型,再进行有氧运动干预,观察骨骼肌线粒体解偶联蛋白3(UCP3)、线粒体呼吸功能和游离脂肪酸(FFA)含量等,进而探讨UCP3在IR发生中的作用,与线粒体功能的关系,有氧运动对骨骼肌线粒体UCP3的表达和线粒体功能的影响,并探究其机制。
     方法:1)IR动物模型建立:8周龄雄性C57BL/6小鼠80只,经过适应性喂养一周,随机分为正常膳食和高脂膳食组,分别饲以正常饲料和高脂饲料。喂养8周后,检测相关指标以鉴定IR模型是否成功。待模型建立后,再次将正常膳食组随机分为正常膳食安静组(NC)和运动组(NE);高脂膳食组随机分为高脂膳食安静组(HC)和高脂膳食运动组(HE);2)运动方案:各运动组小鼠进行为期8周的12米/分(75% VO2max)强度的跑台训练,1次/天,60分钟/次,5天/周。3)指标检测:8周运动后检测空腹血糖(FBG)、空腹血清胰岛素(FINs)、态3、态4呼吸速率、ATP酶合成活力,骨骼肌游离脂肪酸(FFA)、线粒体UCP3和GLUT4表达以及骨骼肌油红O染色观察脂质沉积。
     结果:1)FBG,FINs和HOMA-IR的变化:HC组FBG、FINS和HOMA-IR显著高于NC组和NE组(p<0.01);HE组FBG、FINS和HOMA-IR显著低于HC组(p<0.01),但仍显著高于NC组和NE组(p<0.01),高脂膳食和运动均对FBG、FINS和HOMA-IR有影响,并存在交互作用。2)线粒体呼吸功能的变化:HC与NC组相比小鼠骨骼肌线粒体态4呼吸显著升高(p<0.05),态3呼吸和RCR显著降低(p<0.01);NE较NC组线粒体态3呼吸和呼吸控制比(RCR)显著升高(p<0.01),态4呼吸有下降趋势但无显著性;HE线粒体态3呼吸和RCR显著高于HC组(p<0.01),态4呼吸有下降趋势但无显著性。3)线粒体ATP酶合成活力: NE组小鼠骨骼肌线粒体ATP酶合成活力显著高于NC组(p<0.05);HC组显著低于NC组(p<0.01);HE组显著高于HC组(p<0.01),与正常膳食NC组差异无显著性。4)骨骼肌线粒体UCP3 mRNA和蛋白的表达:HC组小鼠骨骼肌线粒体蛋白UCP3 mRNA的表达NC组比显著升高了41.78%(p<0.01)UCP3蛋白表达显升高了69.47%;NE组与NC组相比mRNA和蛋白分别降低了25.37%和25.03%(p<0.01);HE组UCP3 mRNA比HC降低了将近100%(p<0.01),蛋白降低56.64%(p<0.01)。5)骨骼肌GLUT4 mRNA和蛋白的表达:HC组骨骼肌GLUT4 mRNA表达比NC组低49%(p<0.01),蛋白表达降低42.71%(p<0.01);NE组骨骼肌细胞GLUT4 mRNA的表达比NC组高8%(p<0.05),蛋白表达却比NC组高73.81%(p<0.01);HE组骨骼肌GLUT4 mRNA表达比HC组高40%(p<0.01),蛋白表达高36.9%(p<0.01)。6)骨骼肌游离脂肪酸: HC组骨骼肌游离脂肪酸显著高于NC组(p<0.01);各运动组显著低于对照组(p<0.01);7)UCP3蛋白与RCR、态4、骨骼肌FFA的相关性分析:RCR与UCP3蛋白水平呈显著负相关;UCP3与态4和骨骼肌FFA水平分别呈显著正相关。8)形态学检测:油红O染色发现HC组的脂质沉积较多。
     结论:
     1)长期高脂膳食可诱导小鼠IR,表现为HOMA-IR升高并伴有骨骼肌脂质堆积。
     2)长期高脂负荷所致IR小鼠骨骼肌线粒体态4呼吸增加,诱导呼吸链解偶联,下调RCR,呼吸功能降低;高脂状态下UCP3表达的上调,可能与代偿性增加FFA代谢,对抗IR的发生与发展有关。
     3)长期有氧耐力训练可减少IR小鼠骨骼肌线粒体态4呼吸,增加线粒体能量转换偶联,提高线粒体呼吸功能;下调的骨骼肌UCP3表达,反映骨骼肌线粒体功能的适应能力增加,加速高脂状态下糖脂代谢速率,延缓IR的发生与发展。
Objective: High-fat feed C57BL/6 mice to induce animal model of insulin resistance, then carried out program of aerobic exercise intervention, observe the changes of mitochondrial uncoupling protien 3 expression ,mitochondrial respiratory function, free fatty acid content in skeleton muscle. Explore role of UCP3 in mechanism of IR occurance and in the aerobic exercise prevent IR.
    
     Methods: 1)Creating mouse model of insulin resistance: First, 80 male, 8-week old C57BL/6 mice were divide into normal chow group and high-fat diet group randomly, fed by normal and high fat diet respectively. 8 weeks later, The normal chow group was randomly divided into normal chow diet contorl (NC) and normal chow exercise group (NE), meanwhile mice from high fat diet groups which have insulin resistance continued to be fed with high-fat diet and randomly divided into high-fat diet control (HC) and high-fat diet exercise training group (HE) during the subsequent 8-week period. 2) Exercise protocol: Exercise training consisted of motorized treadmill running for 1 hour/day, 5days/week at an intensity of 75%VO2max. 3) Measurement of Indicators: after 8-week exercise, measured fasting blood glucose concentration, fasting serum insulin level, mitochondrial respiratory state 3 and state 4 and ATP synthesis enzyme activity. Detected content of FFA, UCP3 and GLUT4 expression in skeletal muscle. observe lipid desposition with Oil red O stain skeletal muscle. Results: 1) Changes of FBG and FINs:The FBG and FINs were altered significantly by either high fat diet or aerobic exercise. 2) Changes in mitochondrial respiratory function: HC compared with NC, mitochondrial state 4 respiration of mice skeletal muscle was significantly higher (p<0.05), state 3 respiration and respiratory control ratio (RCR) were significantly lower (p<0.01). NE and HE compared with respective control groups, state 3 and RCR were significantly increased (p<0.01). 3) Mitochondrial ATP synthesis enzyme activity: ATP synthesis enzyme activity was increased by high-fat feeding (p<0.01) but were decreased by exercise training (p<0.05). 4) The expression of UCP3 mRNA and protien: we found UCP3 mRNA level of HC group was increased by 41.78% than NC group (p<0.01), similarly UCP3 protien level was increased by 69.47% (p<0.01). Two exercise groups were decreased significantly in mRNA and protien. 5) The expression of GLUT4 mRNA and protien: The expression of GLUT4 mRNA and protien were significantly decreased in HC group compared to NC group (espectively decreased 49% and 42.71%, p<0.01). The expression of GLUT4 mRNA and protien of HE group were espectively increased by 40% and 36.9% than HC group. 6) Free fatty acid content: HC group were significantly higher than in skeletal muscle free fatty acid NC group (p<0.01). The exercise group was significantly lower than the control group (p<0.01). 7)Correlation analysis: RCR and UCP3 protien were significantly negative correlation, UCP3 protien and FFA and State 4 were significantly positive correlation. 8) Lipid desposition : Oil red staining, we found lipid desposition in HC was more than NC. Conclusion:
     1) High-fat can induce IR accomponied higher HOMA-IR and lipid accumulation. 2) Long term high-fat load increase state 4 respiration, induce uncoupling of respiratory chain, reduced RCR, respiratory function was reduced in the mitochondria of mice skeletal muscle; Up-regulation of UCP3 is maybe induced by elevation of FFA, be related to compensatory increase in FFA metabolism, fight IR occurrence and development.
     3)Long-term aerobic training can reduce skeletal muscle mitochondria state 4 respiration in the IR mice, increased coupling of mitochondrial energy conversion and improve mitochondrial respiratory function; Down-regulation of UCP3 expression reflect the adaptability of skeletal muscle mitochondrial function to accelerate the glucose and lipid metabolism rate under high-fat, delay the occurrence and development of IR.
引文
[1] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care,2004,27(5):1047-1053.
    [2] Schinner S, Scherbaum W A, Bornstein S R, et al. Molecular mechanisms of insulin resistance. Diabet Med,2005,22(6):674-682.
    [3] Bezaire V, Spriet L L, Campbell S, et al. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J,2005,19(8):977-979.
    [4] Maclellan J D, Gerrits M F, Gowing A, et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes,2005,54(8):2343-2350.
    [5] Choi C S, Fillmore J J, Kim J K, et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest,2007,117(7):1995-2003.
    [6] Schrauwen P, Hesselink M K, Blaak E E, et al. Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes,2001,50(12):2870-2873.
    [7] Coker R H, Williams R H, Yeo S E, et al. The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. J Clin Endocrinol Metab,2009,94(11):4258-4266.
    [8] Solomon T P, Sistrun S N, Krishnan R K, et al. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J Appl Physiol,2008,104(5):1313-1319.
    [9] Bloem C J, Chang A M. Short-term exercise improves beta-cell function and insulin resistance in older people with impaired glucose tolerance. J Clin Endocrinol Metab,2008,93(2):387-392.
    [10] Schenk S, Horowitz J F. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest,2007,117(6):1690-1698.
    [11] Kodama S, Shu M, Saito K, et al. Even low-intensity and low-volume exercise training may improve insulin resistance in the elderly. Intern Med,2007,46(14):1071-1077.
    [12] Koopman R, Manders R J, Zorenc A H, et al. A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men. Eur J Appl Physiol,2005,94(1-2):180-187.
    [13] Hawley J A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev,2004,20(5):383-393.
    [14] Bruce C R, Hawley J A. Improvements in insulin resistance with aerobic exercise training: a lipocentric approach. Med Sci Sports Exerc,2004,36(7):1196-1201.
    [15] Ivy J L. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Med,1997,24(5):321-336.
    [16] Boss O, Samec S, Desplanches D, et al. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J,1998,12(3):335-339.
    [17] Russell A P, Wadley G, Hesselink M K, et al. UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Arch,2003,445(5):563-569.
    [18] Schrauwen P, Hesselink M. Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited. Proc Nutr Soc,2003,62(3):635-643.
    [19] Cline G W, Vidal-Puig A J, Dufour S, et al. In vivo effects of uncoupling protein-3 genedisruption on mitochondrial energy metabolism. J Biol Chem,2001,276(23):20240-20244.
    [20] Bezaire V, Hofmann W, Kramer J K, et al. Effects of fasting on muscle mitochondrial energetics and fatty acid metabolism in Ucp3(-/-) and wild-type mice. Am J Physiol Endocrinol Metab,2001,281(5):E975-E982.
    [21] Vidal-Puig A J, Grujic D, Zhang C Y, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem,2000,275(21):16258-16266..
    [22]张桦,焦选茂,刘树森.缺血再灌注对大鼠心肌线粒体电子传递与质子泵出偶联的影响.中国病理生理杂志,1993,9(5):561-563.
    [23] Morino K, Petersen K F, Shulman G I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes,2006,55 Suppl 2:S9-S15.
    [24] Lowell B B, Shulman G I. Mitochondrial dysfunction and type 2 diabetes. Science,2005,307(5708):384-387.
    [25] Petersen K F, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med,2004,350(7):664-671.
    [26] Houmard J A. Intramuscular lipid oxidation and obesity. Am J Physiol Regul Integr Comp Physiol,2008,294(4):R1111-R1116.
    [27] Mootha V K, Lindgren C M, Eriksson K F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet,2003,34(3):267-273.
    [28] Koves T R, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem,2005,280(39):33588-33598..
    [29] Kelley D E, He J, Menshikova E V, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes,2002,51(10):2944-2950.
    [30] Patti M E, Butte A J, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A,2003,100(14):8466-8471.
    [31] Miller W C, Bryce G R, Conlee R K. Adaptations to a high-fat diet that increase exercise endurance in male rats. J Appl Physiol,1984,56(1):78-83.
    [32] Nemeth P M, Rosser B W, Choksi R M, et al. Metabolic response to a high-fat diet in neonatal and adult rat muscle. Am J Physiol,1992,262(2 Pt 1):C282-C286.
    [33] Turner N, Bruce C R, Beale S M, et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes,2007,56(8):2085-2092.
    [34] Hancock C R, Han D H, Chen M, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A,2008,105(22):7815-7820.
    [35] Forman B M, Chen J, Evans R M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A,1997,94(9):4312-4317.
    [36] Coleman R A, Lee D P. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res,2004,43(2):134-176.
    [37] Morino K, Petersen K F, Shulman G I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes,2006,55 Suppl2:S9-S15.
    [38] Wang X, Devaiah S P, Zhang W, et al. Signaling functions of phosphatidic acid. Prog Lipid Res,2006,45(3):250-278.
    [39] Jean-Baptiste G, Yang Z, Khoury C, et al. Lysophosphatidic acid mediates pleiotropic responses in skeletal muscle cells. Biochem Biophys Res Commun,2005,335(4):1155-1162.
    [40] Sampson S R, Cooper D R. Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab,2006,89(1-2):32-47.
    [41] Stratford S, Dewald D B, Summers S A. Ceramide dissociates 3'-phosphoinositide production from pleckstrin homology domain translocation. Biochem J,2001,354(Pt 2):359-368.
    [42] Koves T R, Ussher J R, Noland R C, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab,2008,7(1):45-56.
    [43] Himms-Hagen J, Harper M E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood),2001,226(2):78-84.
    [44] Schrauwen P, Saris W H, Hesselink M K. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J,2001,15(13):2497-2502.
    [45] Echtay K S, Esteves T C, Pakay J L, et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J,2003,22(16):4103-4110.
    [46] Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc,1966,41(3):445-502.
    [47] Miwa S, St-Pierre J, Partridge L, et al. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med,2003,35(8):938-948.
    [48] Papa S, Skulachev V P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem,1997,174(1-2):305-319.
    [49] Schrauwen P, Hinderling V, Hesselink M K, et al. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J,2002,16(12):1688-1690.
    [50] Himms-Hagen J, Harper M E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood),2001,226(2):78-84.
    [51] Goglia F, Skulachev V P. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J,2003,17(12):1585-1591.
    [52] Weigle D S, Selfridge L E, Schwartz M W, et al. Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes,1998,47(2):298-302.
    [53] Zhou M, Lin B Z, Coughlin S, et al. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab,2000,279(3):E622-E629.
    [54] Schrauwen P, Schaart G, Saris W H, et al. The effect of weight reduction on skeletal muscle UCP2 and UCP3 mRNA expression and UCP3 protein content in Type II diabetic subjects. Diabetologia,2000,43(11):1408-1416.
    [55] Hoeks J, Hesselink M K, van Bilsen M, et al. Differential response of UCP3 to mediumversus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett,2003,555(3):631-637.
    [56] Hamilton J A, Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?. Diabetes,1999,48(12):2255-2269.
    [57] Vidal-Puig A J, Grujic D, Zhang C Y, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem,2000,275(21):16258-16266.
    [58] Brand M D, Pamplona R, Portero-Otin M, et al. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J,2002,368(Pt 2):597-603.
    [59] Andres R, Cader G, Zierler K L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest,1956,35(6):671-682.
    [60] Huppertz C, Fischer B M, Kim Y B, et al. Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem,2001,276(16):12520-12529.
    [61] Clapham J C, Arch J R, Chapman H, et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature,2000,406(6794):415-418.
    [62] Argyropoulos G, Brown A M, Willi S M, et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Invest,1998,102(7):1345-1351.
    [63] Bezaire V, Hofmann W, Kramer J K, et al. Effects of fasting on muscle mitochondrial energetics and fatty acid metabolism in Ucp3(-/-) and wild-type mice. Am J Physiol Endocrinol Metab,2001,281(5):E975-E982.
    [64] Liang P, Hughes V, Fukagawa N K. Increased prevalence of mitochondrial DNA deletions in skeletal muscle of older individuals with impaired glucose tolerance: possible marker of glycemic stress. Diabetes,1997,46(5):920-923.
    [65] Petersen K F, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science,2003,300(5622):1140-1142.
    [66] Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science,1999,286(5440):774-779.
    [67] Kerner J, Turkaly P J, Minkler P E, et al. Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am J Physiol Endocrinol Metab,2001,281(5):E1054-E1062.
    [68] Russell A P, Wadley G, Hesselink M K, et al. UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Arch,2003,445(5):563-569.
    [69] Ljubicic V, Adhihetty P J, Hood D A. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis. J Appl Physiol,2004,97(3):976-983.
    [70] Deshmukh A S, Hawley J A, Zierath J R. Exercise-induced phospho-proteins in skeletal muscle. Int J Obes (Lond),2008,32 Suppl 4:S18-S23.
    [71] Corcoran M P, Lamon-Fava S, Fielding R A. Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am J Clin Nutr,2007,85(3):662-677.
    [72] Goodpaster B H, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab,2001,86(12):5755-5761.
    [73] Christ C Y, Hunt D, Hancock J, et al. Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats. J Appl Physiol,2002,92(2):736-744.
    [74] Ezaki O, Higuchi M, Nakatsuka H, et al. Exercise training increases glucose transporter content in skeletal muscles more efficiently from aged obese rats than young lean rats. Diabetes,1992,41(8):920-926.
    [75] Henriksen E J. Invited review: Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol,2002,93(2):788-796.
    [76] Luciano E, Carneiro E M, Carvalho C R, et al. Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway. Eur J Endocrinol,2002,147(1):149-157.
    [77] Mccutcheon L J, Geor R J, Hinchcliff K W. Changes in skeletal muscle GLUT4 content and muscle membrane glucose transport following 6 weeks of exercise training. Equine Vet J Suppl,2002(34):199-204.
    [78] Ojuka E O, Jones T E, Nolte L A, et al. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab,2002,282(5):E1008-E1013.
    [79] Cortright R N, Zheng D, Jones J P, et al. Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am J Physiol,1999,276(1 Pt 1):E217-E221..
    [80] Pilegaard H, Ordway G A, Saltin B, et al. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab,2000,279(4):E806-E814.
    [81] Schrauwen P, Hesselink M K, Vaartjes I, et al. Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab,2002,282(1):E11-E17.
    [82] Ledesma A, de Lacoba M G, Rial E. The mitochondrial uncoupling proteins. Genome Biol,2002,3(12):S3015.
    [83] Zhou M, Lin B Z, Coughlin S, et al. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab,2000,279(3):E622-E629.
    [84] Murray A J, Panagia M, Hauton D, et al. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes,2005,54(12):3496-3502.
    [1] Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc,1966,41(3):445-502.
    [2] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev,2004,84(1):277-359.
    [3] Krauss S, Zhang C Y, Lowell B B. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol,2005,6(3):248-261.
    [4] Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett,1997,408(1):39-42.
    [5] Chung W K, Luke A, Cooper R S, et al. Genetic and physiologic analysis of the role of uncoupling protein 3 in human energy homeostasis. Diabetes,1999,48(9):1890-1895.
    [6] Larkin S, Mull E, Miao W, et al. Regulation of the third member of the uncoupling protein family, UCP3, by cold and thyroid hormone. Biochem Biophys Res Commun,1997,240(1):222-227.
    [7] Halliwell B, Gutteridge J M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys,1986,246(2):501-514.
    [8] Brand M D, Buckingham J A, Esteves T C, et al. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp,2004(71):203-213.
    [9] Hoeks J, Hesselink M K, Schrauwen P. Involvement of UCP3 in mild uncoupling and lipotoxicity. Exp Gerontol,2006,41(7):658-662.
    [10] Liu S S. Cooperation of a "reactive oxygen cycle" with the Q cycle and the proton cycle in the respiratory chain--superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr,1999,31(4):367-376.
    [11] Brand M D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol,2000,35(6-7):811-820.
    [12] Skulachev V P. Membrane-linked systems preventing superoxide formation. Biosci Rep,1997,17(3):347-366.
    [13] Papa S, Skulachev V P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem,1997,174(1-2):305-319.
    [14] Echtay K S, Esteves T C, Pakay J L, et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J,2003,22(16):4103-4110.
    [15] Costford S R, Chaudhry S N, Crawford S A, et al. Long-term high-fat feeding induces greater fat storage in mice lacking UCP3. Am J Physiol Endocrinol Metab,2008,295(5):E1018-E1024..
    [16] Son C, Hosoda K, Ishihara K, et al. Reduction of diet-induced obesity in transgenic mice overexpressing uncoupling protein 3 in skeletal muscle. Diabetologia,2004,47(1):47-54.
    [17] Bezaire V, Spriet L L, Campbell S, et al. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J,2005,19(8):977-979.
    [18] Maclellan J D, Gerrits M F, Gowing A, et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes,2005,54(8):2343-2350.
    [19] Himms-Hagen J, Harper M E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med(Maywood),2001,226(2):78-84.
    [20] Schrauwen P, Saris W H, Hesselink M K. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J,2001,15(13):2497-2502.
    [21] Seifert E L, Bezaire V, Estey C, et al. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem,2008,283(37):25124-25131.
    [22] Cortright R N, Zheng D, Jones J P, et al. Regulation of skeletal muscle UCP-2 and UCP-3 gene expression by exercise and denervation. Am J Physiol,1999,276(1 Pt 1):E217-E221.
    [23] Pilegaard H, Ordway G A, Saltin B, et al. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab,2000,279(4):E806-E814.
    [24] Schrauwen P, Hesselink M K, Vaartjes I, et al. Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab,2002,282(1):E11-E17.
    [25] Tsuboyama-Kasaoka N, Tsunoda N, Maruyama K, et al. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Biochem Biophys Res Commun,1998,247(2):498-503.
    [26] Ledesma A, de Lacoba M G, Rial E. The mitochondrial uncoupling proteins. Genome Biol,2002,3(12):S3015.
    [27] Zhou M, Lin B Z, Coughlin S, et al. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab,2000,279(3):E622-E629.
    [28] Murray A J, Panagia M, Hauton D, et al. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes,2005,54(12):3496-3502.
    [29] Boss O, Samec S, Desplanches D, et al. Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat. FASEB J,1998,12(3):335-339.
    [30] Russell A P, Wadley G, Hesselink M K, et al. UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Arch,2003,445(5):563-569.
    [31] Schrauwen P, Hesselink M. Uncoupling protein 3 and physical activity: the role of uncoupling protein 3 in energy metabolism revisited. Proc Nutr Soc,2003,62(3):635-643.
    [32] Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care,2004,27(5):1047-1053.
    [33] Schinner S, Scherbaum W A, Bornstein S R, et al. Molecular mechanisms of insulin resistance. Diabet Med,2005,22(6):674-682.
    [34] Randle P J, Garland P B, Hales C N, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet,1963,1(7285):785-789.
    [35] Tsao T S, Burcelin R, Katz E B, et al. Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle. Diabetes,1996,45(1):28-36.
    [36] Zierath J R, Houseknecht K L, Gnudi L, et al. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes,1997,46(2):215-223.
    [37] Kim J K, Wi J K, Youn J H. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Diabetes,1996,45(4):446-453.
    [38] Yu C, Chen Y, Cline G W, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem,2002,277(52):50230-50236.
    [39] de Luis R D, Aller R, Izaola J O, et al. Relation of -55CT polymorphism of uncoupling protein 3 gene with fat mass and insulin resistance in morbidly obese patients. Metabolism,2009
    [40] Vimaleswaran K S, Radha V, Ghosh S, et al. Association of uncoupling protein 2 and 3 gene polymorphisms with type 2 diabetes in Asian Indians. J Endocrinol Invest,2009.
    [41] Choi C S, Fillmore J J, Kim J K, et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest,2007,117(7):1995-2003.
    [42] Tiraby C, Tavernier G, Capel F, et al. Resistance to high-fat-diet-induced obesity and sexual dimorphism in the metabolic responses of transgenic mice with moderate uncoupling protein 3 overexpression in glycolytic skeletal muscles. Diabetologia,2007,50(10):2190-2199.
    [43] Costford S R, Chaudhry S N, Salkhordeh M, et al. Effects of the presence, absence, and overexpression of uncoupling protein-3 on adiposity and fuel metabolism in congenic mice. Am J Physiol Endocrinol Metab,2006,290(6):E1304-E1312.
    [44] Costford S R, Crawford S A, Dent R, et al. Increased susceptibility to oxidative damage in post-diabetic human myotubes. Diabetologia,2009,52(11):2405-2415.
    [45] Herlein J A, Fink B D, O'Malley Y, et al. Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology,2009,150(1):46-55.
    [46] Mazzatti D J, Smith M A, Oita R C, et al. Muscle unloading-induced metabolic remodeling is associated with acute alterations in PPARdelta and UCP-3 expression. Physiol Genomics,2008,34(2):149-161.
    [47] Petersen K F, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med,2004,350(7):664-671.
    [48] Patti M E, Butte A J, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A,2003,100(14):8466-8471.
    [49] Mootha V K, Lindgren C M, Eriksson K F, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet,2003,34(3):267-273.
    [50] Kelley D E, He J, Menshikova E V, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes,2002,51(10):2944-2950.
    [51] Schrauwen P, Hesselink M K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes,2004,53(6):1412-1417.
    [52] Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond),2005,29 Suppl 2:S111-S115.
    [53] Schrauwen P, Schrauwen-Hinderling V, Hoeks J, et al. Mitochondrial dysfunction and lipotoxicity. Biochim Biophys Acta,2010,1801(3):266-271.
    [54] Lenaers E, De Feyter H M, Hoeks J, et al. Adaptations in Mitochondrial Function Parallel, but Fail to Rescue, the Transition to Severe Hyperglycemia and Hyperinsulinemia: A Study in Zucker Diabetic Fatty Rats. Obesity (Silver Spring),2009.
    [55] Schrauwen P, Hesselink M K, Blaak E E, et al. Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes,2001,50(12):2870-2873.
    [56] Karlsson H K, Zierath J R, Kane S, et al. Insulin-stimulated phosphorylation of the Aktsubstrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes,2005,54(6):1692-1697.
    [57] Heilbronn L K, Gan S K, Turner N, et al. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab,2007,92(4):1467-1473.
    [58] Mensink M, Feskens E J, Saris W H, et al. Study on Lifestyle Intervention and Impaired Glucose Tolerance Maastricht (SLIM): preliminary results after one year. Int J Obes Relat Metab Disord,2003,27(3):377-384.
    [59] Fritz T, Kramer D K, Karlsson H K, et al. Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev,2006,22(6):492-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700